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PREFACE

rriHE University of Calcutta did me the honour early in

-*- 1908 to appoint me Reader, and asked me to deliver

a series of lectures upon some subject, preferably electrical,

which would be of use to the lecturers in the outlying colleges

as well as to the more advanced students in Calcutta. It was

a condition of the appointment that the lectures should subse-

quently be published, and it appeared that I could best attain

these ends by attempting to put some of the more important

developments of electromagnetic theory into a connected and

convenient form. It is therefore chiefly in the mode of presen-

tation, rather than in the subject matter, that any originality

which the lectures may possess must be sought.

For the material I am very largely indebted to the writings

of H. A. Lorentz, while some features in the treatment of

vector analysis are taken from the Vector Analysis of E. B.

Wilson.

G. T. W.

October, 1910.
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CHAPTER I.

VECTOR ANALYSIS.

1. WE may divide the quantities that we meet with in

physics into two classes according as they have or have not a

direction associated with them. Quantities of the former type
which obey the parallelogram law, such as velocities and forces,

are called vectors, while those of the latter type, such as time

intervals, masses and temperatures, are called scalars. The

algebra of scalars is that of ordinary real quantities and need

not concern us further.

2. If the straight lines OP, OQ represent two vectors

me addition A, B, we shall define A + B, the geometric sum,

tion

8

(J
btrac" as represented by the diagonal OR of the parallelo-

vectors. gram POQR. This is the same as B + A.

Similarly A B is the sum of the vectors OP, OT, where

OT is equal and opposite to OQ. Thus A B, the geometric

difference, is represented by the diagonal 0$ of the parallelogram

TOPS, i.e. by the second diagonal QP of the original parallelo-

gram.

3. We now define i, j, k as vectors of unit length along

rectangular axes OX, 07, OZ; so that if P be the point (x, y, z)

w. 1



THE THEORY OF ELECTROMAGNETISM

and PM, PN be perpendiculars to OX and the plane XOY
respectively, the vectors OM, MN, NP will represent ix, jy, kz.

Now the vector ON, being the sum of the vectors OM, MN,
will represent ix + jy ;

hence ix + \y + kz will be represented

by the sum of the vectors ON, NP, or OP, which we shall

denote by r. Thus

If I, m, n be the direction cosines of OP we have x = lr,

y mr, z = nr
;
so

r = r (il + jra 4- kn).

4. Consider a second line OP' denned by /, I', m', ri
;
and

illustration let the angle POP' be denoted by 8. Since the
L

projection of the vector OP along OP' is equal to

the sum of the projections of the component vectors OM, MN,
NP along that line,

OP cos 6 = xl' + ym' -f zn',

i.e. r cos 6= rll' + rmmf + run'.

Hence rr' cos 6 = xx + yy + zz'

and cos Q = 11' + mm' + nn'.

5. If r, r' be two consecutive vectors OP, OP' at

illustration times t, t+ Bt to a particle P moving with
^

velocity v,

v = limit of

= limit of

= limit of

-r.

PP'
St

r'-r

Sr
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Similarly if v, v
7
be the velocities at the times t, t + $t, we

have the acceleration

v' v
f= limit of K

ot

= v

6. Taking (r, 6} as the polar coordinates of a point P, let

illustration R> T be unit vectors along and at right angles to

m ' OP in the directions r, increasing ; then, if Q be

the point (1,0) which lies on OP and remains at unit distance

from as 6 varies,

R = the velocity of the point Q
= 6T, for its direction is that of T, i.e. that of OS, at right

angles to OP.

Similarly if 0$ remains of unit length,

T = the velocity of the point S
= 0R, for its direction is that of QO.

Now

= rR+r0T.

Thus the velocity is made up of r along OP and rd at right

angles to it.

Further

1



4 THE THEOKY OF ELECTROMAGNETISM

giving the usual components along R and T. The acceleration

of a particle whose three-dimensional polar coordinates are

(r, 6, (f>) may be obtained in a similar manner.

7. Let us consider the functions of the second degree with

which we are concerned in physics. If a force F
Scalar and . .

vector act upon a particle moving with velocity u, the

products of rat,e at which work is done is the product of the

numerical scalar values of F and u, multiplied by
the cosine of the angle between the directions of F and u. This

is a scalar quantity, and so, if we have two vectors

we give the title of their scalar product to rr cos 6 or

xx + yy + zz . We shall denote it by {rr'} or {r'r} ;
and when

no ambiguity can arise from the omission of the brackets they
will usually be omitted.

8. On the other hand if a force (x'y'z') be applied at the

point (as, y, z) the couple about the origin has components

yz
-

y'z, zx' - z'x, xy'
-

x'y.

This is a vector r" of scalar magnitude rr' sin 0, and its direction

is at right angles to r, r', being that of the axis about which r

must be rotated in the right-handed direction in order to bring
it into coincidence with r'. If r be due east, and r' due north,

T" is towards the zenith. The directions r, r', r" form a right-

handed system, and it is important to remember that the axes

of reference OX, OY, OZ must always be chosen so as to form

a right-handed system. The vector r" is called the vector

product of r, r', and is denoted by [rr'], these square brackets

never being omitted. Thus

[n'] = i (yz'
-

y'z} + j (gaf
-

z'x) + k (xy'
-

x'y)

, 3, k

, y, z

, y', z'

[r'r].
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9. Its numerical magnitude is the area of the parallel-

ogram whose sides are r. r'. Thus the scalar
Lemma I.

&

product

C [A B] = (scalar magnitude of C) x (area of parallelogram

A, B) x (cosine of the angle between C and the

positive normal to A, B)
= volume of the parallelepiped of which three adjacent

edges are A, B, C, being positive when A, B, C
form a right-handed system.

If the components of A be A l} A 2 ,
A 3 , &c., the components

of [AB] being A^B3 A 3B2 , &c., we have

C[AB] =
Ci, C,, Cs

A,, A,, A 3

A, B3

A[BC]=B[CA] .(1).

A 3

Lemma II. 10. We have

[A[BC]].

= !(#!. {CA}
- d. {BA}) + j (B,. {CA} -<72 . {BA})

+ k( 3.{CA}-(73 .{BA})
=

(iB, + j 2 + k 3) CA -
(itfi + j(72 + k(73) BA

= B.CA-C.BA (2).

11. Let us denote by V the operator

Vectorial iA +j A + k l
differentia- dx dy dz

so that, if
</>

be any scalar function of x, y, z,

dx dy dz

= R, say.

If the magnitude and direction of R be J? and (I, m, n), we

shall have

,dx'
,

dy'
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Now if we consider the rate of change of
<j>

in the direction

of any unit vector D or (\, //,, v) we shall have, on going a small

distance 8s,

,..dx dy
r dz

= Rl\$s + RmfiSs + RnvSs

= R cos 08s,

where 6 is the angle between R and D.

.'.
-- = R cos 6 = RD and is a maximum when = 0, i.e. in
ds

the direction of R. It is zero in a direction perpendicular to R.

Thus R is along the normal to the surface
<f>
= constant, and its

scalar magnitude is -=-^-
,
where dn is an element of this normal.

an

We have seen that the rate of change of
<f>

in any direction

D is |DV$}, the component of
-^- along D: hence V< is

a vector which is independent of the selection of the axes.

12. Green's theorem tells us that for a region in which

any vector u or (u, v, w) is finite, continuous and

theorem. single-valued

du dv dw\

where (I, ra, ri) is the normal N of unit length drawn into the

region.

Thus /dt{Vu}=-/dS{Nu}
= -/{dSu},

if dS be treated as a vector whose direction is N.

13. If u be the velocity of a fluid, -/{dSu} is the rate

The operator a^ which fluid leaves the region : thus, applying
'divergence.' ^ne theorem to an element of volume, Vu is

the rate at which the fluid expands per unit volume
;
hence

its name of
'

divergence
'

of u. It is usually written div u.
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14. If u = B<, where B is a vector and ^ is a scalar,

Green's theorem becomes

Now on the left side we may replace VB< by

where in the first term V operates on B only, and in the second

on
<f> only: thus it becomes {VB} + {BV} <. Hence the

theorem

/dv(divB + BV.0) = -/{dSB}0 ......... (3).

15. (a) If
<f>

be a scalar quantity, integration, as in

Analogues
Green's theorem, gives

(4).

(6) If u be a vector whose components are (u, v, w),

i
, j ,

k

d d d

da;' dy' dz

U
,

V
,
W

Now in integrating we replace Idv
^- by IdSl, &c.; hence

we get

-fdS i, j, k

I, m, n

u, v
,
w

or -/dflf[Nn],

or -/[dSu].

We call [Vu] the '

rotation
'

of u and write it rot u.

Thus
The operator
'rotation.' = -/[dSu] (5).
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16. Putting u= B<f>, where B is a vector and
</>

a scalar,

and replacing [VB<] by [VjB^j+ fVaB^], we obtain

(6).

17. Stokes' theorem tells us that the line integral

stokes' f(udx+vdy + wdz) or/{dsu} round the margin
theorem. of any area js equa} to the surface integral

over it,

/TCI
fj fdw dv\ fdu dw\ fdv du\\

*S IM 3
--

:r) +w ;T"-;j-) + TO (;j--;j-))
\ \dy dzj \dz dx] \dx dyJJ

or /d/SfNrotu}, or /{dS rot u}.

We may show that rotu has a meaning independent of

the position of the axes exactly as we did in the case of V$ :

for the line integral round an element of area dS is equal to

the component normal to dS of rotu: and the line integral

is independent of the particular axes selected.

18. It may be of interest to have a proof of Stokes'

theorem in terms of vector analysis.

Proof of Let us consider one only, dS, of the elements

stokes* mt which the surface S may be divided
;
and

vector let r be the vector joining a fixed point P
analysis.

-

n ^n
-

g e}ement to any point P which lies on

its margin. Then if P' be a consecutive point r + dr, the

area of the triangle P PP' will be equal in magnitude and

direction to [r, dr]. Thus

{dS . rot u} = i/[r, dr] rot u,

the integration being round the margin of dS,

= /dr[rotu, r]

where V x operates only on u,

= i/dr({rV}u-V 1 {ur}).

Now by Taylor's theorem, if squares of small quantities be

neglected, the value of u at P will exceed its value U at P by
rV . u. Thus

/dr {rV} u = /dr (u
- u ) =/dr . u - ujdr.
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Also Vi {ur}
= V {ur} V 2 fur}, where V 2 operates only

on r
;
and V 2 {ur}

= V 2 (ux + vy + wz] = u : thus we find on

substitution

dS rot u = i/dr (u
- V {ur} + u)

-
uo/dr.

Now when integrated round dS the perfect differentials

dr and dr V {ur} will vanish. Hence

dS rot u = /dr u = /ds u,

the integral being taken round the margin of dS. Summing
over all the elements dS the line integrals along the internal

arcs cut out and we obtain Stokes' theorem in its usual

form.

19. If in Stokes' theorem we replace u by
we obtain

as before,

Thus /{dsB}</>=/{dS(<rotB-[BV] </>)} (7).

20. If T be a unit vector along the arcds whose direc-

Anaiogue tion is (V, m, n'), the direction of the normal

N to dS being (I, m, n) as before, Stokes'

theorem is

of Stokes'

theorem.

or fdS I
,
m

,
n !

= fds (I'u + m'v + riw).

d d d
\

dx' dy' dz

Since this is analytically true for all values of u, v, w, we may
is a scalar function. Then

or .(8).



10 THE THEORY OF ELECTROMAGNETISM

21. We have

div[AB]={V[AB]},Lemma m.
and we may replace V by V : 4- V 2 ,

where V 2

operates on A only and V 2 on B only; further if C be any
vector

C[AB]=B[CA]=-A[CB].
Hence div [AB] = B [V XA]

- A [V,B]
= BrotA-ArotB ............... (9).

Lemma iv. 22. In a similar manner

rot[AB] = [V[AB]]

= ({BV,} A - B
{
V aA}) + (A {

V 2B}
- {AV2} B)

= BV.A-BdivA + AdivB-AV.B ...... (10).

23. We have seen that the operator V, whether operating
on a scalar or vector quantity, has a meaning

independent of the axes of reference
;
hence the

operator {VV} must also be independent of the axes. We
may obtain the meaning in the following manner :

If
<f>

be the value of a function at a point (x, y, z) whose

vector from the origin is r, then at a neighbouring point r + p,

where p or (f, 77, ) is small, the value of the function will, by

Taylor's theorem, be

+ higher powers of
, 77, .

Now the mean values of f
2

, rf and 2 over the surface of

a sphere of small radius p are each equal to ^(P+;2 +^2
),

or
/?

2
;
while the mean of all terms including odd powers of

|f,
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77 or is zero. Thus the mean value of the function over the

surface is

$ + ?r V*<f> + fourth and higher powers of p :

and we find

rt

V2
<
=

{the excess of the mean value of < over a spherical

surface of small radius p above its value at the

centre}.

We may thus call V 2
< the '

dispersion
'

of
<j>.



CHAPTER II.

APPLICATIONS OF VECTORIAL METHODS TO
MAGNETOSTATICS.

24. THE potential at a point (x
f

, i/, z') due to a magnetic

pole of strength fi at (x, y, z) is p/r, or pp, where

Let us consider a magnetic doublet consisting

of poles fj.
and + /j,

at P, P' respectively ;
and let the length

PP' be p and its direction D, the scalar magnitude of this last

vector being unity. Ifp and p be the reciprocals of the distances

of P and P' from the point (of, y', z'), the magnetic potential

there due to the doublet will be up pp or p,(p p). Now p
differs from p in that it is estimated at a point distant p from

P in the direction D. Hence p p is equal, when p is in-

definitely small, to p x (rate of change of p in the direction D)
or p. DV.p by 11. Hence l = /zp. DV.^ or M.DV.p, if

while p diminishes indefinitely /j,
increases indefinitely in such

a manner that p,p remains equal to M. If the vector MD be

denoted by M, so that M has the moment and direction of

the magnetic doublet, this may be put into the form MV.p.

In an exactly similar manner it may be shown that the

potential energy of the doublet in a field whose potential is

flor MV.a

25. This analysis shows that a magnetic moment obeys

A magnetic
*^e *aws ^ a vector

>
anc* the truth of this is

doublet is obvious from the fact that we can introduce equal
and opposite poles + /j,

and /* at the ends U,
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V of the rectangular components lp, mp, np, and thereby

completely replace our doublet PQ of moment M by doublets

PU, UV, VQ of moments IM, mM, nM respectively.

26. Let us consider a magnetised body of which I is the

Potential of intensity of magnetisation. Due to an element

a magnetised of volume Bv at (#, y, z) of moment \8v the
body*

potential at a point (x', y', /) outside the body is

Bv . IV. p. Due then to the whole body

= -fdS. N\.p-Jdvpdiv I, by (3),

=fdS<rp+fdvpp ........................(12),

where o- = -NI, p = -div\ ...................(13).

Thus the magnetic potential is the same as that due to

a surface density, equal to the normal outward component of

magnetisation, and a volume density which is minus the di-

vergency of the magnetisation.

27. The potential (11) above found is, strictly speaking,

applicable only at external points, for lV.^> is infinite at

internal points. The expression (12) is however finite at

internal as well as external points if a-, p are finite. Now the

potential inside a magnet, regarded as made up of doublets,

will change with extreme rapidity as we pass from doublet to

doublet, and we may suppose that the number of doublets in

unit volume is very large. Thus the potential at (x, y, z) is
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in reality indefinite unless account is taken of the distribution

of doublets in its immediate neighbourhood, and we cannot

specify it in terms of I alone. But we may for convenience

define the value of fl given by (12) as the magnetic potential

within the body ;
and in that case, from the ordinary properties

of the potential,

TO + 4^-0
J

0)

Now if the magnetic force Vfi be denoted by H these

equations become

-divH-47rdivl=0)

Oj'

where in the second equation we have written (NI)* or

NJi + N 2 I 2 in order to include cases of contact between two

magnetised bodies.

28. Thus if we introduce a new vector B defined by the

,
we have

}
(15).

equation B = H + 4nr I, we have
Magnetic
induction. div B =

(NB)?=0

This quantityls called by Maxwell the magnetic induction,

and its distribution, being like that of the velocity of an

incompressible fluid, may be called solenoidal.

29. Since div B vanishes we may, without loss of generality,

suppose that the rectangular components of B are

dH_dO dF_dH dG _dF
dy dz

'

dz dx '

dx dy
'

Le. B = curl A, where A =
(F, G, H).

Then Stokes' theorem gives over any surface

/{dSB}=/{dsA},

and in free space, as B = H, the surface integral of normal force

over any area is equal to the line integral of the tangential

component of A round its margin. The name given to A by
Maxwell is the vector potential.
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30. Owing to the presence of a magnetic doublet of

moment M at (x, y, z) we shall have at (#', y', z')

where V ' = i -T-, + j -^,
4- k -T-, ,

and as p is a function of x' as,

, j , , dp dp dp dp dp dp
y y and z z, we have -* = -

, -^ = f- ~r-> = F .

d#' da;' d' d' d/ dz
-

dy'

Thus

for, as p satisfies Laplace's equation, V /2

p = 0,

= [V'[V
/

M]]^), by Lemma I, paragraph 9,

= - rot' [M V]p, where rot' C ==
[V'C].

Hence we may take, as due to the doublet,

A = -[MV']p=[MV]p.

31. Considering a body of which I is the magnetisation
at (a, y, z), the vector potential at (a?', y', z') will be

fdv[\V]p;

or, by Green's theorem,

where in the second term V, must be regarded as operating
on I but not on p.

Thus A=/dfif[NI]p + /dv[V 1 l]jp

=fdS[U\]p+fdv(roi\)p,

and the vector potential may be regarded as due to a surface

density [Nl] and a volume density rot I.

32. Let us express by these methods the mutual energy

Mutual
^ ^wo s^mP^e magnetic shells of moments

(f>,

energy of <f>' per unit area.
two shells.

We have seen that the vector potential at

(x, y', /) due to a magnetic particle at (x, y, z) is
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Now the first shell may be regarded as made up of elements

of area dS of which the magnetic moment is <J>dS and direction

<N dS : thus its vector potential at (#', y', z') will be

and this, by the analogue of Stokes' theorem, is equal to

<f>fdsp.

Now, by 24, for a particle of moment M' at (x, y , z)
the energy of position W is equal to IN/TV. Q. Thus for the

two shells, regarding the second as made up of doublets $'dS',

Tf=f/^'{N'V'}n
= -f/{dS'H'}
= -<7{dS'rot'A}
=

$' /ds' A, by Stokes' theorem,

=
(jxf>'J/ds da'p

= -$$ fjdsds' cos e/r ..................(16),

where e is the angle between the directions of ds, ds'.

33. When the magnetising force is extremely small the

induced
induced temporary magnetisation \ t is propor-

magnetisa- tional to the magnetic force H and is equal to
on'

&H, where k is the susceptibility. In order that

the analysis may include cases both of temporary magneti-
sation l t and permanent magnetisation \p , we shall suppose

that both may exist together and thus assume that the total

magnetisation I is equal to \
t + \p or &H + \p . Thus

B = H + 477-1 = H + 47r (&H + g
= fj,U+4nr\p ,

where fi
= l+^irk ...... (17).

Thus the conditions (15) obtained in 28, i.e.

divB = 0, (NB)J = 0,

give div/nH +47rdivlp = 0, {N (/*H +47rlp)}^ = 0.

We now replace H by Vfl and denote the permanent

magnetic densities, corresponding to those of (13) in 25,

by pf ,
a-p ,

i.e.
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then div AtVn + 4^=0, [M pV (l}t + 4<7r<rp
=

;

or V* ft + 4-TTft,
= 0, fp^Vfar*. = ......(18),

\ aw/!

d / dn\ d / dn\ d / di\ ,

where V'O denotes -y- (/*-j- )
+ 3- U j~ + ;r (/* -3-) and

da V a*/ dy V dt/y dj V o^
dn is an element of the normal drawn into the region of the

corresponding potential.

34. The potential energy of a magnetostatic field may
be obtained by considering the work done in

me potential . j , n ,1

of a gradually and proportionally increasing the

magneto- strength of all the permanent magnets from
static pole.

6
. . , . .

zero to their final value
; during this process

any iron capable of temporary magnetisation must remain in

its final position, its magnetisation at any time being deter-

mined by the field due to the permanent magnets. At a time

when all the permanent magnetisation is of n times its final

strength the value of the potential and force at any point will

be n times the final value and, as in the case of an electro-

static field, the work done in increasing n from n to n+8n will be

2,n8nmp{l, where mp is a representative permanent magnetic

pole. Thus the work done in creating the system will be

where Mp is the moment of a representative permanent

magnetic doublet,

- ^ jdS {N B}?
- ^

jdvto
div B,

by (3) of 14.

Now, by (15) of 28, {N B}?
= 0, div B = : hence

(19).



CHAPTEK III.

THE THEORY OF MAXWELL AS EXPRESSED BY HERTZ.

35. IN his papers and his classical Treatise on Electricity

and Magnetism Maxwell gave a number of different interpre-

tations of the processes at work, and the interest of these caused

nearly as much importance to be attached to them as to the

final equations to which they led. It was Hertz who pointed

out that however Maxwell's equations might be interpreted it

was they which in effect constituted Maxwell's theory, and he

put them into an extremely convenient form.

In the electrostatic-electromagnetic units adopted by Hertz

the energy of the field per unit volume is taken, when the

media are stationary, as ^ (J5TE
2 + /u,H

2

), where the units are
OTT

such that for free space K=\ and p = 1, and E, H stand for the

electric and magnetic forces.

We adopt the following further symbols :

D = KE. the electric polarisation

= Maxwell's displacement multiplied by 4?r,

C = the conduction current,

B = the magnetic polarisation

= Maxwell's magnetic induction =/iH +4>7r\p *.

Then Hertz's equations are

* Hertz does not explicitly discuss the case of permanent magnetisation.
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36. It follows that over any area

JjdS (S? + 47rc)
=
Fj{dS

rot H}

=
FJds

H
;

thus the rate of increase of the surface integral of electric

polarisation over any area, together with 4nr times the con-

duction current through it, is equal to the line integral of H
round it. Similarly from the second equation it follows that

the rate of diminution of the magnetic polarisation through

any circuit is equal to the line integral of E round it. Thus

the equations (20) express Maxwell's fundamental relations.

37. Also, taking the divergence of the former equation of

(20),

but, by the definition of the conduction current, div C is the rate

at which charge is conveyed away per unit volume, and must

be equal to -
, where p is the electric density. Hence

at all points, and integrating with reference to the time,

div D = 4tirp,

the constant of integration vanishing, since p = at all points

if D = at all points.

Similarly div B = 0.

Jrj

38. In electrostatic fields -JT = ^, for there is no time

change of any variable. Hence rot E = 0, and we may take

E = V<, where
<f>

is a function given by

4-7T/3
= div D = - div (KV<j>)

= -

22
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Similarly for a maguetostatic field H = Vfl, where H is

given by
= divB, 0={NB}>,

as in 33. Thus

dnj,

where pp , <rp are the volume and surface densities of permanent

magnetism.

39. A surface at which there is a discontinuity between

surface *ne physical conditions on the two sides should
conditions. be regarded as the limit of a thin layer of

continuous transition when the thickness of the layer is inde-

finitely diminished. Now the values of
-j-

+ 4?rC, and of

TO

-JT
,
are finite on each side of the layer, and so may be regarded

as finite within it also : hence the values of rot H and rot E will

be finite in the layer. But if the axis of Z be taken in the

direction of the normal to the bounding surface at any point
the first of the three rectangular components of rot H will be

dN dM , (T w . v dN .

fi
.

5 } , where H = (L, M, N). Now as -= is nmte on each
dy dz

'

dy

side of the layer it will be finite within it : hence r- will also

be finite in the layer, and I dz -j- integrated through the

layer will be of the same order of small quantities as the

thickness of the layer. Hence when the thickness is in-

definitely diminished the values of M on the two sides will be

the same. In a similar manner the values of L, X, Y may be

shown to be the same on the two sides. Thus the tangential

electric and magnetic forces must be continuous across the

surface.

40. It follows from the consideration of adjacent points

in the first medium, and points opposite to them in the second

medium, that the differential coefficients of L, M, X or Y with
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respect to x or y will be the same on the two sides*. Hence

in the third of the three Cartesian equations of the former

of (20), i.e.

dlrr^.K -T7 + 4-nT = -j
-- j- ,

dt \ dx dyj

the terms on the right side are continuous. Accordingly the

left side must have the same value on the two sides, i.e. the

total oormal electric flow is continuous.

Similarly the normal magnetic flow is continuous.

It must be noted that as the two boundary conditions of

this section are derived from the equations of the field, and

these equations are satisfied throughout each medium, the two

boundary conditions are satisfied when the conditions of 39

are satisfied. Hence the independent boundary conditions reduce

to the continuity of the tangential components of E and H.

41. It follows from Y1
- F2

= 0, Z, - Z*= that (E:
- E2)

must be normal in direction and hence that [N (E l E2)]

must be zero. Thus the surface conditions may be put into

the form

[NE]; = 0, [NH]? = ..................(21).

*
If we take points P, P' in the first medium snch that PP' is parallel

to OX, and if Q, Q' be the points closest to them in the second medium, such

that the lengths PQ and P'Q' are of the second order of small quantities,

then in the first medium ^is the limit of
Mp
p
~

p^
P'

; and as MP=MQ and

HP>= MQI this is the same in the limit as **

,

^ or -3 in the second

medium.



CHAPTER IV.

HERTZ'S EQUATIONS FOR MOVING MEDIA.

42. WE have next to consider the case in which the

material media in which electromagnetic processes are at work

are in motion, and we shall suppose that the velocity at any

point is u, a continuous function of the coordinates.

The most natural extension of the two fundamental laws

of Maxwell is to suppose that they apply to a circuit moving
with the velocity u of the medium. Now the rate of change of

the surface integral of any vector R is made up of two parts,

one due to the change in R and the other to the motion of the

surface. The former part is mS -5- ;
the latter may be obtained

by considering the cylindrical element of volume 8v whose ends

SS, &SP are formed by the area SS in its

positions at the time t and the time t + St.

The total surface integral of the component
of R along the inward normals to the

element of volume is by Green's theorem

equal to Sv div R, or {SS u 8t] div R.

Now the contribution to the surface integral from the two

faces &Sf, &S' will be

R 58 - R' S&,

where R' is the value of R at the face &S'. Also the tubular

surface may be regarded as made up of parallelograms of which

adjacent sides are elements of arc SB (bounding S) and lines
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u St : thus by 9 the contribution to the surface integral from

the tubular surface will be

or

or St {8$ rot [Ru]}.

Hence Green's theorem gives

-
{u 8S} St div R = R 58 - R' 8S' + St {8S rot [Ru]} ;

thus R' SB' - R 8S = St {8S (u div R + rot [Ru])}.

Accordingly the rate of change of R &S due solely to the motion

is R! 8S, where

R! ^S = {8S (u div R + rot [Ru])},

and so R x
= udiv R + rot [Ru] ...............(22).

43. If then we decide to make the assumption that the

polarisations D, B are, in spite of the motion, equal to KE,
/iH + 4-TrI.p,

where E, H are the electric and magnetic forces

acting in the moving media, we shall have, instead of the

equation

[IdS (^ + WO)!
= V

[{dS
rot H},

the modified equation

[IdS ^~ + u div D + rot [Du] +
47rC)

1 = V
|{dS

rot H},

and since this is true for all circuits S we shall have

^ + u div D + rot [Du] + 4>TrC = Frot H ......(23).
cLt

Similarly the second fundamental equation becomes

~ + udiv B + rot[Bu] = - Frot E ......... (24).
out

On expanding rot[Du] the former equation becomes

at

or, if the time-rate of change in the value of a function at
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a point moving with the medium be denoted by ^-7,
so that

dD dD

(25).

Similarly the second fundamental equation becomes

^ + Bdivu-BV.u = -FrotE (26).

These are Hertz's equations for moving media.

44. At a point in the boundary between two media,

Boundary regarded as the limit of a region of very rapid
conditions. transition from one medium to the other, we have

and -j-7+ Ddivu- DV.u + 47rC,
at

are finite*, provided that u and its differential coefficients are

finite, i.e. provided that there is no discontinuity in the

velocity of the two media at the interface. In that case,

by (25) and (26), rot E and rot H will be finite in the region

of transition, and as in 39, 41 it follows that

[NE] = 0, [NH]' = 0.

45. In order to decide definitely whether the Hertzian

Biondiot's theory for moving media is in accordance with

JS
e

ofHer?s
fact8

'
Blondlot took two parallel plates, say 2 = a,

theory for and made a field of magnetic force L, parallel
moving media.

to OZj between them> He then sent a current

* It might at first sight appear legitimate to suppose that in (23)

is finite at the interface
; and to deduce that the tangential components of

H - [Du] were continuous. This is not however justifiable, for -v- gives the

time-change at a stationary point, and while
,
is finite is infinite unless

the value of K on the two sides is the same or the velocity u is parallel to the
interface.
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of air with velocity v parallel to OY between the plates.

According to Hertz's theory this would create opposite charges
on the two plates and hence on reversing L or v there would

be a current along a wire joining the plates: this was not found

and the theory must therefore be incorrect.

In order to obtain the charges we shall suppose that L, v

are constant and that the conditions have become steady so that

-r = ;
further the charges on the infinite plates being constant,

there will be no current in the wire. As the air is uncharged

p = 0, and in equation (24) -r- = both in the air and the

metal, .'. rot [Bu] = FrotE in both media.

(27).

Hence we may put in the air,

E + [Bu] = -V<f> (27'),

where < is given by the condition p = 0, or

div D =
4>7rp

= 0.

Now from (27')

X = -<, F 5* * **-?.
das dy dz V

Thus, as div D = 0,
- V 2

< = 0,

and we take as the appropriate solution

<f>
= A + Bx + Gy + Dz.

Now as the velocity v is parallel to the plates we have

-%- + u div D, and -^- + 11 div B finite in both media, and so
dt dt

finite in the interface*. Thus rot (E + y[Bu]\
will be finite,

and it follows at once that X, Y will be continuous across the

surface of the metal.

* See the footnote of the previous page.
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But as there is no current in the plates when the conditions

are steady X, Y will there vanish. Hence B = 0, C = and

< = A + Dz.

In order to determine D we shall utilise the fact that, from

(27), the integral over the surface bounded by any circuit

or the line integral of E+~[Bu] round the circuit vanishes.

Let the circuit consist of a line PP' parallel to OZ in the air

from the first plate to the second, a line thence in the second

plate from P' to the end of the wire, thence along the wire to

the first plate and thence to the point P to complete the circuit.

Along the whole of this circuit, except the straight line PP',
E = and u = 0. Hence along PP' the component parallel to

OZ of E +
y-[Bu]

must vanish.

Hence the line integral of Z + ^ ,
or - D +

-y ,
must

vanish : and D =
-^

.

Thus the value of ^within the metal being zero, the surface

charge <r on the plate z = a will be given by

vL

Similarly on z a the charge will be 7 ?/- Per uni^ area.

Thus on reversing v or L there will be a current in the wire,

and its amount can be calculated for comparison with experi-

ment.

46. Another test which may be applied to Hertz's theory

The influence is that of finding the influence of motion in the

veTJcity'of
medium upon the velocity of light propagated

light. along the direction of motion.
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For a medium moving with uniform velocity u parallel

to OX the equations are

.

dX\ jr fdN dM\
+ U ~T- } V (-I

---r- )

eta; V< */

dX
-l%

dL dL ^fdZ dT
-dt+

u
d^

= - V
(dj-dz

dM dM fdX dZ

dt dx
~

\dx dy
'

Thus if the velocity of propagation he U, and we take

^ = K=?-L_M_N_ x)

e . .if x *
we find

Hence ^ and X vanish, and E and H lie in the wave front:

and as Xf + pr) + v% vanishes, E and H are at right angles.

Further, eliminating /*,

if V be the velocity of light in the medium at rest. Hence

U =uV.
47. According to this theory then the velocity u of the

medium is superposed on that of the light, a result which is

contradicted by experimental determinations : the latter show

that the velocity of light along a current of air is only affected

by a small fraction of the velocity of the air.



CHAPTER V.

SOME EFFECTS DUE TO THE MOTION OF CHARGED
PARTICLES THROUGH A STATIONARY AETHER.

48. BEFORE considering Lorentz's theory, in which all

phenomena are interpreted in terms of electrons moving

through aether at rest, it is of interest to examine some

simple cases of this type in which a complete solution can be

effected.

Let us consider the case in which electricity of density p

per unit volume is moving with velocity u through stationary

aether, the only restriction on u being that it shall be a finite

and continuous function of the coordinates. If we consider

a circuit fixed in the aether the convection current will be pu
and the fundamental laws give

.(28).

Now, as Maxwell pointed out, the electric force E' acting

on a conductor moving with velocity u is not the same as E
the force when the conductor is at rest : and as E is the same

whether the result of it be to set up a conduction current, to

act on a charged particle, or to cause polarisation in a dielectric,

we shall suppose that E' is the same whatever be the nature of

the effect produced on the moving body. Let us consider a

circuit of which u is the velocity at any point. The rate of

increase of the surface integral of electric force E will be
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and there will be no convection current through the circuit

as the velocity of the charge relative to the circuit is zero.

Thus if we apply the first fundamental law to the moving
circuit we get

[dS ( + u div E + rot
[Eu])

= F
JdS

rot H',

where on the right side we have H', not H, since it is the

magnetic force on a moving circuit which is considered.

Hence + 47rpu + rot [Eu] = Frot H' ......... (28'),

and similarly from the second law

...............(29).

On comparing these with (28) we find

rot[Eu] = Frot(H'-H),

and so we take H'=H+i[Eu] ..................(30).

Similarly from the second equations

E' = E + i[uH] ..................(31).

49. On expanding rot[Eu] as

E div u EV . u u div E + uV . E,
Boundary , ,

conditions. and repiacing Jl
+ uV by -^ ,

we get from (28')

. .........(32),
dt

and similarly from (29)

.

'
.........(33).

at

Now at a surface which separates two media we shall have,

if u be continuous at the surface, the left sides of (32) and (33)

finite within the region of rapid transition which replaces the

surface of discontinuity: thus the right sides will be finite, and
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the condition at the surface, as in 44, will be that the tan-

gential components of E', H' shall be the same in the two

regions, ie. that

[NPE-0,

50. We shall now consider in slightly greater detail the

Convection
case *n wn^c^ electric charges of density p are

with constant moving through empty space with velocity u
which is uniform and constant.

The equations of the field referred to moving circuits will

be, from (32) and (33),

Also divE =
47r/3,

divH=0 ...............(35),

], H'=H-^[uE] ......(36).

In (34), since the conditions are steady, there are no changes
in quantities estimated at points moving with velocity u, and

Thus rot E' = 0, rot H'=
;
and we may put

where <l>, fi may be called the electric and magnetic convection

potentials.

Also by (36)

divE'=divE+y(Hrotu-urotH) (37).

Now

rot H = rot ( H'+^

:rot
H'+^(udiv

E -uV . E + EV . u- E divu)
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for rot H' = 0, and u is independent of the coordinates, being
uniform. Thus

u2 1
urot H =

ytnrp -puV .uE.

Also as u [uH] = 0,

uE = uE' = - uV . 4>.

Thus (37) becomes

*-* +4n.l--0 .........(38).

51. If u = (u, 0, 0) and 1 -
2
= l\

so that if we put x = 1%, y = 77, z = we have

c
2 4> d2

<E> d2

and ^> is the potential at (f, 77, ) due to charges represented

by pPdgdv)d within an element of volume

Thus at (of, y', /)

where r?-= (' - a;)
2

/^ + (y
-

y)
9 + (z

-
z)\

or 3> = l-%-,
ft

where e is a representative charge in the original system.

In an exactly similar manner, as div H = 0,

and as there is now no volume density 11 = 0: hence H' = 0,

and by (36)

H=l[uEJ.
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Thus when u is unrestricted as to direction,

When u = (u, 0, 0) this gives

V- 7__
~Z2

dy' I* dz'

andso

52. Due to a point-charge e moving along OX past the

origin 3> = Ze/r, and if u?/V* be neglected rx
= r, the distance

from the origin. Thus the electric forces will be the same as

those due to a fixed charge, and, in addition,

uez uey



CHAPTEE VI.

THE ELECTRON THEORY OF LORENTZ APPLIED TO

STATIONARY MEDIA.

53. WE have seen that the Maxwell-Hertz theory of

moving media is contradicted by experience, and it becomes

necessary to adopt hypotheses different from those on which

that theory was based. It was there supposed that if E were

the electric force acting upon a circuit moving with the

medium, the polarisation of the medium was KE.\ so that if

the medium were a greatly rarefied gas the polarisation in

the gas would be K times the electric force acting on the

moving gas. But in the limit when the gas is evanescent in

density the polarisation becomes that of the aether only, and

the force tending to produce the polarisation is dependent on

the velocity, for, as Maxwell pointed out, the electric force on

a moving body exceeds that on a stationary body by -y [uH]
:

thus the assumption that the polarisation within a moving
medium is K times the electric force at a moving point really

involves the hypothesis that the aether is carried along with

the velocity of the medium. In Lorentz's theory the aether

is supposed to be stationary and it is only the electrons (minute

particles, either with or without ordinary mass, carrying electric

charges) which are supposed to move through it with the

velocity of the material medium : the interpretation of electrical

phenomena in terms of electrons has received very strong con-

firmation from the facts of electrolysis, the discharge of gases,

kathode and Rb'ntgen rays, radio-activity, electrical conductivity

and various optical phenomena. Further as the distributions of

w. 3
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electrons which are required to explain electric and magnetic

polarisation, and conduction currents, are probably very com-

plicated, it becomes desirable for the sake of simplicity to

consider separately the explanation of each of these phenomena;
when they occur simultaneously we can suppose that the effect

may be obtained by adding their separate effects.

54. In the Hertzian electrostatic-electromagnetic units

the force between electric charges e, e' is Kee'/r
2

and that between magnetic poles m, m' is /iwra'/r
3

,

where K, /A are unity in free space. The units of e and m are

modified by Lorentz in such a manner that the forces become

Keefl^Trr* and /j,mm /^irr
3

. Thus two units of charge in a vacuum

repel with force I/4>7rr* and the potential due to a charge e in a.

medium K is Kej^Trr. The unit charge of electricity is 1/2 VTT

times the ordinary electrostatic unit and for Gauss's equation
we have J{dS E} =the surface integral of inward force = the

total charge inside. Hence if < be the potential,

and for an electrostatic field,

Tf=

dvKE*.

55. Let us suppose that the unit of length is very small

and that the closeness of examination is such
The electro- . . , . , ,

statics of that the space occupied by an electron may be

stationary considered as finite : we may then suppose that

there is no outer surface of discontinuity bounding

an electron, but that there is gradual transition from the

electron to the empty aether. We shall denote by p the

density of the electricity within an electron, and by e, h the

electric and magnetic forces at any point in this highly magnified
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consideration of the conditions. If u be the velocity within

the electron the Maxwell-Hertzian equations will be

TT + pu V rot h

an. Tr

7g
Trot.

with div e = p,

and on taking the divergence of the former of (40),

dc

56. Let us consider a small volume containing a group
of electrons for which the total charge, fpdv, vanishes. We
may then call the electric moment of the volume the integral

fprdv, where r is the radius-vector from an origin within the

volume to any point where the density is p : if r' is the radius-

vector from a second origin whose radius-vector referred to the

first origin is r
,
we have r= r + r', and

fprdv =fpr dv + fpr'dv = r jpdv +fpr'dv=fpr'dv,

for fpdv = 0. Thus the electric moment of the volume so

denned is, as it should be, independent of the position of the

origin within the volume.

Further, the time-change of the moment will be $prdv, or

fpudv, the value of which per unit volume is the electric current

due to the motion of the charges.

57. If then in the dielectric the electric moment per unit

volume, when averaged over an element of volume containing

many groups of electrons, is D', and if this is changing at

a rate D', the current due to this will be D'. The equations

(40) of the field, which referred to dimensions small compared
with the dimensions of an electron, may now be averaged over

an element of volume of the size usual in mathematical physics,

i.e. containing many groups of electrons : the result is

32
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If the specific inductive capacity be K, and the total polarisation

(E + D') be denoted, as before, by D, we know, by comparison
with Maxwell's theory, that D = KE

t and so D'=(K-l)E:
this is closely analogous with the corresponding total magnetic

polarisation

where (/A 1) H is in these units &H, the moment per unit

volume of the induced magnetism, k being the susceptibility.

The equation of continuity for a volume containing a number

of groups of electrons is

1

-^
= rate of flow of electricity into the volume

f / f= I (dS . D
}
= I dv div D'

;

hence, as the volume is arbitrary,

dp ,. dD'

Now let us integrate with respect to the time, and remember

that the dielectric was uncharged at the time when D' =
and there were no electric forces,

.-. p = div D'.

58. This theorem is the analogue of the corresponding

expression (13) for the density in magnetostatics and may be

stated in the following manner :

If over each molecule or group of electrons fpdv = 0, then

over a region, taken at random and large enough to contain

a large number of molecules or groups, the charge per unit

volume is div D', where D' is the mean value per unit volume

of Jpr dv.

It is clear that if the boundary were drawn deliberately,

with infinite precision, in such a manner as never to cut

through any group and so to contain only entire groups, the

total charge and so the density would be zero. But when we

speak of div D' as the density we mean the density in any
element of volume taken at random.
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Regarding this as a purely analytical theorem its applica-
tion may be generalised in the following manner. If < be any
scalar quantity such that f<f)dv vanishes over each group of

electrons, then the mean value of
<J>

over an element of volume

taken at random and containing a large number of groups is

div A, where A is the mean value per unit volume of the

integral fdv<f>r.

59. Let us assume that over a small volume containing

Poiarisa-
one grouP ^ electrons fdvp = Q, and fdvpr = 0,

tion of a where r = (x, y, z) ;
so that the medium has no

magnetic
7

electric charge or polarisation. Further, let us
medium. assume that

fdvpx
3
, fdvpy

2
, fdvpz*,

fdvpyz, jdvpzx, fdvpxy

are all independent of the time. We shall then denote by m
or (p, q, r) the integral ^. I dvp [rf] , where the region of in-

tegration includes the group of electrons: we shall later see

that m is the magnetic moment of the group. In virtue of

the assumptions just made we shall have zero time rates of

the quantities fdvpa?, &c., so that

/'dvpxx = 0, fdvp (xy + xy) = 0; &c.

Thus fdvpxy = %fdvp (xy xy) = Vr,

fdvpxz = $ fdvp (xz xz) Vq.

Further we have, on substituting px in the generalised theorem

of the previous section, that the mean current parallel to OX,
i.e. the value per unit volume of $dvpx, is equal to

_dP_dQ_dR
dx dy dz

'

where P, Q, R are the values per unit volume of

fdvpxx, fdvpxy, jdvpxz.

From any group of electrons the contribution will be

d , -rr \ d , Tr N Tr (dr dq\
-T-(- Vr) -^-(Vq) or V (-, r- ;

dy^
' dz^ ^'

\dy dzj'
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and so the component current parallel to OX per unit area

will be F(-5--
T-J,

where A, B, C are the sum totals per unit

volume ofp t q, r. Thus if we denote (A, B, C) by G', the electric

current, expressed as a vector, is Frot G'.

60. Let us consider a stationary medium in which there

Electro-
*s electric density p in addition to, and apart

magnetic from, any effect of the polarisation D', and also

^stationary
a conduction current C. The equations (41) will

medium. now become

!* (E + D') + Frot G' 4- C = Frot H
......(42),

with

div E = total densities = - div D '

+ p, i.e. div (E + D ')
= p ;

and div H = 0, for we have no strictly magnetic matter, having

merely electrons.

Let us now introduce a new quantity Hj defined by

then the equations become

-(E + D')+ C=FrotH 1

with div(E + D') = /3, div(H 1 + G') = ......... (44).

But these are the ordinary Maxwell-Hertz equations in these

units, H! being Maxwell's magnetic force and G' the magnetic

moment; H or (l-^ + G') is Maxwell's magnetic induction. We

have therefore justified the interpretation of ^.1 dvp[rf],

or
^p. (moment of electric momentum) as the magnetic moment

of the group of electrons.
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61. Returning to the minute scale of examination adopted

Ener in tn
"* ^^ ^& ÔTCe act*n uPon a statinary charge

field and the* of volume density p when the electric force is e

will be pe: if the charge be moving with velocity
u the electric force acting upon it will be

which we shall denote by f, and the ponderomotive force per
unit volume will be p times this, or pf.

Now over any stationary volume

(e (V rot h - />u)
- hFrot e} , by (40),

= V jdv (e rot h h rot e) $dvpeu
= - Vjdv div [eh]

-
Jtfopuf,

by (9), and because

uf= u (e + -^ [uh] )

= ue,

Thus the rate at which potential energy increases in any

volume, after providing for the rate at which work is done

on the moving charges, is equal to the rate of flow into that

volume of the vector F[eh] across the bounding surface. This

quantity is the Poynting flow of energy and may be denoted

by P-

62. Let us now examine the question of whether the

Forces in a interpretation in 60 of magnetisation as due to

magneto- the movements of electrons in small orbits will

give the same ponderomotive forces as the ordinary

theory of magnetic matter.

Continuing with the minute scale of examination of the

previous section we have as the resultant force acting on a

group of electrons I dvp ( e + -^ [rh] j
,
where r is, as before, the

vector to the point from an origin within the group. Now we
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are here concerned not with the electric and magnetic forces

due to the other electrons of the group but with those due to

an external field which we may denote by E, H. If E, H be

used to denote the forces at the origin those at the point r

will be, to the first approximation, E -f rV . E, H + rV . H and

the resultant force on the group will be

jdvp (E + rV . E + y [r, H + rV .

H])
.

Now
since the magnetic medium is supposed to have no charge and

no electric polarisation. Thus the resultant becomes

yjdvp[r,rV.H]
or

-lJctop[r.rV,
H].

Now we saw in 59 that

^dvpxx = 0, fdvpxy = Vr, \dvpxz = Vq,

so that the operator

and accordingly

i J

p v

A A
dx dy

(45).

Hence

I

y$dvp [r . rV, H] = [[mV] H]

= V.mH-m.VH
= V.mH,

for div H = 0, as the H is due to an external field.

Now the force according to Maxwell's theory is mV . H and

mV . H - V . mH = - [m [VH]], by (2),

= 0,
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for [VH] = rotH=0,

as H is due to currents or magnetisation away from the origin.

Hence the resultant force is mV . H as in Maxwell's theory.

63. The couple acting on the group of the previous

section will be, omitting terms in E which ob-
Couples in

a magneto- viously vanish,
static field.

(46).

Now
Idvp [~r,^

[rH]l =^.fdvp(r.rH
-rr. H),

and as in (45),

while $dvprr 0, for \dvpxx = 0, &c.

Hence ( dvp
[~r, j.

[rH]l = [mH],
* L. J

and the contribution to the couple from rV. H in (H + rV. H)

of (46) will, since r is very small, be negligible in comparison

with that from H which we have evaluated. Thus the couple

is [mH] as in Maxwell's theory.

64. The force acting on any particle whose charge is q is

qf, and the stress inside a material medium made

th"nei<i

m
up of such particles will be determined by the

ordinary laws of mechanics, just as the stresses

due to gravity are determined by such forces as mg upon

particles of mass m.

Inasmuch as we have no means of measuring stresses in

the aether it does not appear that much is gained by obtaining

stresses in the aether to explain the force qf exerted upon

particles imbedded in it. There is however some interest in

such an interpretation of the phenomena and we may proceed
as follows.

65. The resultant force exerted over any volume is

35
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or, as p = div e and -7- + pu = Frot h,
dt

On adding to this the contribution

- ~
jdv |~e,

(^ + V rot e\] +
jdv

h div h,

which vanishes in virtue of the second equation of (40) and
div h = 0, we obtain

jdv
(e div e + h div h - [e, rot e]

-
[h, rot h])

Now by (2),

[e, rote] = [e[Ve]]= Vj.ee -eV.e,

where the suffix of the operator V x indicates that it acts upon
the first e of ee only ;

.'. [e, rot e]
= V . e2 - eV . e.

Hence

$dv (e div e - [e, rot e])
=
\dv (e . Ve + eV . e - V . 8*)

=/^(Ve.e-^V.ea
),

the V operating in the usual manner on the terms which

follow it,

where N is, as before, a unit vector along the inward normal.

Thus the force is F1 + F2 ,
where

dp
J'

p being F[eh], the Poynting flow.

66. Accordingly if the field be purely electrostatic, and

the components of e are (X, Y, Z\ we shall have F2
= and the
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force in the direction of OX may be interpreted as due to a

force per unit area upon the surface amounting to

- (IX + mY+ nZ) X + 1 1 (X 2 + F2 + Z a
),

where N =
(I, m, n).

Thus on a rectangular parallelepiped with its edges parallel

to the planes of reference we have forces per unit area parallel

to the axis OX:

(a) on the face parallel to YOZ, for which

N=(- 1,0,0), i(Z-r>-Z);
(6) on the face parallel to ZOX, for which

N=(0, -1, 0), XY;

(c) on the face parallel to XOY, for which

N = (0, 0,
-

1), ZX.

We have accordingly tensions |e
2

along lines of force and

pressures ^e
2 at right angles to them. This system agrees with

Maxwell's stresses in the aether.



CHAPTEE VII.

THE ELECTRON THEORY OF LORENTZ APPLIED TO

MOVING MEDIA.

67. LET us first of all consider a medium capable of electric

but not of magnetic polarisation. Let us take an
Case of a non-

conducting ordinary element of volume to containing a number

Sectric
1 ^^

f groups of electrons, and within that element an

polarisation origin moving with the velocity u of the medium,
but with no _,,

&
,, ^, . ^

J
.

, , _ .
.,

magnetic sus- Then for each group the integral jdvp = 0, while

ceptibiiity.
Jdvpr, the electric moment, is the contribution

towards a>D', the moment of the element of volume o>.

Now since the algebraic sum of the charges in any group is

zero we may suppose that when D' is zero all the electrons in a

group are superposed at the origin within the group, and that

the polarisation of the medium is effected by moving these

electrons from the origin to their final positions. Owing to

this movement only, I dvpx, the component of b' along OX,

is, as in 56, the rate of flow of electricity per unit area across

a plane perpendicular to OX
;
and hence I dvpx, the com-

ponent of D' along OX, may be regarded as the quantity of

electricity which has flowed through a plane perpendicular to

OX, per unit area.

Thus D' is a vector of the type considered in 42, and its

rate of change through a circuit moving with the velocity u of

the medium is made up of

u div D' + rot [D'u],

owing to the velocity of the medium, and -y- owing to time

changes independent of that.
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Now, since the coordinate of an electron of charge q is r

referred to an origin which moves with the medium, the con-

vection current due to the electron will be qf relative to that

origin. If then we take a circuit whose linear dimensions are

of the first order of small quantities and which has at each

point the velocity u of the medium at that point, the flow of

electricity through the circuit will be that obtained by summing
over it the effects of such terms as qr. On the other hand the

surface integral of D' over the circuit will be changing at a rate

which is due to the same terms ^r. Thus the flow of electricity

through a circuit moving at each point with the velocity u of

the medium will, as when the medium is stationary, be equal
to the rate of change of the surface integral of D' over the

circuit : the flow will, accordingly, be

-T- + u div D' + rot [D'u].

Further, as in 43, the rate of change of the surface integral

of E over the moving circuit per unit area will be the com-

ponent perpendicular to it of

-j- + u div E + rot [En].

68. Let us now consider the equations obtained by applying

the two fundamental relations to a circuit moving with the

velocity u of the medium. If E', H' be the electric and

magnetic forces at a point moving with the medium we have

-j- + u div E + rot [Eu] + -^r
+ u div D' + rot [D'u]

= Frot H',

and similarly,

~ + udiv H + rot [Hu] =-FrotE'

These equations may be written in the form

~ + D div u-DV.u= Frot H'
^

dt

^! + H div u - HV.u = - Frot E'
at
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69. Owing to the magnetisation of moment G' which

A moving
resulted from the movement of electrons we had,

magnetic when the medium was stationary, an electric con-
me um.

vection current of amount Frot G', and the

magnetic moment of a group of electrons was the integral

through it of
^-y I dap [rf]. If the medium be moving instead

of stationary and the circuit through which the flow is con-

sidered be either stationary or moving with the medium, the

electric current due to the magnetisation will be still F rot G' :

for owing to its physical dimensions a term due to the con-

vection of electrons with velocity r relative to a medium whose

velocity is u may involve either u or f to the first power, or

differentials of these with respect to the coordinates, but

cannot involve squares or products of u and r. We may
thus equate the current to

<f> (f) + -^ (u), where
<f>, ty are

linear operators. Now putting u = Q we have

<(r)=FrotG';

and
i/r (u)

= 0, for it is zero when f = and there is no mag-
netisation. Thus the current in any case is Frot G'.

70. If then we consider the general case in which we

General case superpose the effects of electric and magnetic
of motion.

polarisation, together with a conduction current

C, we have

dD
+ D divu-DV.u + Frot G' + C= Frot H'

^ + H divu-HV.u = -Frot E'

...(49),

with div D = p, div H = 0.

Further, on replacing H' G' by H/, we obtain

-J77
+ D div u DV.u + C = Frot H/

^ 4- H divu-HV.u =-FrotE'
at

...(50).
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71. If we treat the surface of discontinuity as the limiting

Boundary case of a thin region of continuous transition we
condition*. fi^ as before, the velocity being continuous, that

the tangential components of E', H/ are continuous, or

72. Let us determine the result of applying the two

Equations fundamental relations to a stationary circuit

obtained instead of to one moving with the medium.

stationary Let us consider, as in 42, the cylindrical
circuit- element of volume Bv whose ends $S, $S' are

formed by the area S at the times t and (t + Bt) respectively.

If we regard &S as fixed and &S' as moving with the medium,

having started from #S at the time t, the electrons which have

crossed the fixed surface &S during the time Bt will be made

up of those which are in the volume Bv together with those

which have escaped during the time St through the moving
surface &S' or the tubular surface. The convection currents

or rates of flow at the surfaces S, S S' and the tubular surface

being denoted by F, F', P respectively, the total charge which

has flowed into the volume Bv across the ends will, as in 42,

be Bt F$S - Bt F'SS'; the volume density inside Bv being
div D' the total charge then will be Bv div D' or

(&S u Bt} div D'. On comparison with 42 it will be seen

that the flow in the time Bt due to P will be of the order

(Bt)
2 SS, for the quantity which has flowed across the surface

per unit area will be PBt, and the area itself is of length uBt;

hence the contribution from the tubular surface is negligible by

comparison with the other terms. The resulting equation is

thus

Now SB' will differ by S by quantities of the order

and, omitting quantities infinitely small by comparison with

those retained, we may replace #S' by $S in this equation:

thus the flow F through a fixed surface is connected with the

flow F' through a moving surface by the relation

F = r-udiv D' .....................(51).
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Expressed in non-analytical language the difference between

F' and F consists merely in the convection current due to the

volume density div D'.

Now F' = -TT + u div D' + rot [D'u]
cLt

and so, by (51),

''u] ........................(52).

If there be a volume density p of electricity in addition to

any effects of the polarisation D', we shall have due to that alone

F=F' + pu ...........................(53).

A magnetic polarisation due to electrons will have, by 59,

no volume density of electricity, and so will not give rise to

any difference between F and F'. Hence, using (52) and

(53) instead of (49), we shall have, as the general equations
referred to a fixed origin,

On replacing H by (Hj + G') we get

~ + rot [D'u] + u div D + C = F rot H x

..-(55).

73. If we subtract (54) from (49) we get, using p = div D,

divH,

uV.D + D divu-DV.u-udivD-rot [D'u] \

= Frot(H'-H) I.

uV.H + H divu-HV.u-udivH = Frot(E-E') j

Hence by (10)

rot [Eu]= Frot(H'-H) )

rot [Hu] = - Frot (E'
-

E)J
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and we have, as before,

Hence also H/= HJ+ p.[Eu] (57).

74. We shall first of all consider a slight extension of

Lorentz's transformation theorem. Let us suppose

motion that material media are moving through the

aetner with constant velocity u, a function

neither of the coordinates nor the time. The

equations referred to moving axes will be, if there are no

media with magnetic susceptibility, so that H x
= H, and

HI' = H',

where D = E + (K- 1) E', div D = p, div H = 0,

E'=E +
^[uH], H'=H-l[uE],

and C = XE', X being the conductivity.

At boundaries [NE']* = 0, [NH']? = 0.

These equations must now be transformed by the intro-

duction of new variables, distinguished by double dashes :

x" = x, y" = y, z' = z, t" = t'
'-

(ux + vy + wz)\V\

Then we shall have

d _ d d _ d u d d _ d v d'~" ~~ n~*" ~~'~* " '

Thus
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Le. Frot H' = V rot" H' - ^ JL [uH
7

]

= Frot" H'-^(E'-E),
if squares of u/F may be neglected.

Hence the first equation of the field, in (58), becomes

or - (KE
r

) -f C = F rot" H'.

Similarly the second equation of the field becomes

Let us now transform the equations

div D = p, div H = 0.

We have, by equations (59),

i.e. div D = div" D - -
{u (Frot H'-C)}.

Now div [uH'J = H' rot u - u rot H',

and so ~
y- (

u rot H
'}
=
y^ [uH/]

if squares of u/F be neglected,

= div"(E'-E).

Hence p = div" (D + E x - E) + {uCJ

and di

Similarly div" H' = 0.

As boundary conditions we shall have that [NE'JJ and

[NH'jJ shall vanish.
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75. Hence the former equations become, neglecting squares

ofu/F,

=Frot"H'

(H') = -Frot"E'

with di

div"H'=0, C=XE'.

At boundaries [NE']* and [NH'J? will vanish.

But these are the ordinary equations for the electric and

magnetic forces E', H' of the same distribution of material

media when t" is the time, the media now being stationary

and the current being \E', Ohm's law still holding. Also the

usual boundary conditions will be satisfied, and the only change
is that the new volume density div(KE') will be

76. Hence it follows that the path of a ray remains on

transformation a possible path of a ray and that if squares of

u/Fbe neglected all optical experiments made with sources of

light and apparatus fixed with regard to the earth, which moves

through the aether with velocity u, would lead to the same

results as if the earth were stationary. Thus such experiments,

in which there are no conduction currents to cause a change in

p, cannot, if squares be neglected, lead to any determination of

the value of u.

If however the source of light be outside the earth the

effects of the motion will become apparent. We shall consider

as an example Airy's
' water telescope

'

experiment in which

the effect of aberration was found to be the same when a

telescope tube was filled with water as when it was empty.

For the light coming from a star in the direction n or

(I, m, ri) the electric and magnetic forces in the free aether

may be taken as proportional to eWt+te+my+ns) or e it
(FH-nr^ the
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axes of reference being fixed in the aether : here s = 2-7r/(wave

length).

If the origin be now taken at a point moving with the

velocity u of the earth, and x, y, z', t' be the velocity and

time referred to the new system, we shall have t = t'
,
x = x + ut',

y = y' + vt', z=z' + wt'. The forces will then be proportional to

gtMF^+nr^ where F' = 7 + un.

Now let us apply the transformation theorem and substitute

t", x", y", z" given by

*"='-ur/F2
, *"=*, y" = y, z" = z.

The exponential factor then becomes 6 w{r<"+F-iir/Fi+iir")
j

which we may write as e *"(F"*"+n"r")
}
where

s
"
_ y _l. + u V'IV*_ m + vV'/V2_ n + wV'/V*

s'

~
V" I" m" n"

Hence, omitting squares of small quantities, each portion is

equal to (1 + 2F'un/F2
)* or 1 + Fun/7 2 or 1 + unF or F'/F.

Hence V" V, as we should expect from the fact that the

equations satisfied are those for axes at rest. Further

I" m" n"

We know that rays of light in the actual will correspond
with rays of light in the transformed system. Hence if we

consider the rays which come to a focus at a particular point

of the observer's eye in the actual and transformed systems, we

find that the rays from the star in the actual system will come

to the same focus as those which, if the earth were at rest,

would have emanated from a star in the direction (I", m", n").

This is what Airy found, for the direction is that of the

resultant of (VI, Vm, Vn) and of (u, v, w). Further the period
is quickened in the ratio of s" to s or of (F+ un) to F, which is

in accordance with Db'ppler's law.
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