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PREFACE

HE University of Calcutta did me the honour early in
1908 to appoint me Reader, and asked me to deliver
a series of lectures upon some subject, preferably electrical,
which would be of use to the lecturers in the outlying colleges
as well as to the more advanced students in Calcutta. It was
a condition of the appointment that the lectures should subse-
quently be published, and it appeared that I could best attain
these ends by attempting to put some of the more important
developments of electromagnetic theory into a connected and
convenient form, It is therefore chiefly in the mode of presen-
tation, rather than in the subject matter, that any originality
which the lectures may possess must be sought.

For the material I am very largely indebted to the writings
of H. A. Lorentz, while some features in the treatment of
vector analysis are taken from the Vector Analysis of E. B.

Wilson.
G T W.

October, 1910,
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CHAPTER L

VECTOR ANALYSIS,

1. WE may divide the quantities that we meet with in
physics into two classes according as they have or have not a
direction associated with them. Quantities of the former type
which obey the parallelogram law, such as velocities and forces,
are called wectors, while those of the latter type, such as time
intervals, masses and temperatures, are called scalars. The
algebra of scalars is that of ordinary real quantities and need
not concern us further.

2. If the straight lines OP, OQ represent two vectors
The addition A, B, we shall define A + B, the geometric sum,
and subtrac- a3 represented by the diagonal OR of the parallelo-

t
v:;o:f.. gram POQR. This is the same as B + A,

R

T

Similarly A—B is the sum of the vectors OP, 0T, where
OT is equal and opposite to 0Q. Thus A — B, the geometric
difference, is represented by the diagonal OS of the parallelogram
TOPS, i.e. by the second diagonal QP of the original parallelo-
gram,

3. We now define i, j, k as vectors of unit length along
rectangular axes 0X, 0Y, 0Z; so that if P be the point (z, 3, 2)

W. 1



2 THE THEORY OF ELECTROMAGNETISM

and PM, PN be perpendiculars to OX and the plane XOY
respectively, the vectors OM, MN, NP will represent iz, jy, kz.

4 /Y

z

<

[ X

‘Now the vector ON, being the sum of the vectors OM, MN,
will represent iz + jy; hence iz + jy +kz will be represented
by the sum of the vectors ON, NP, or OP, which we shall
denote by r. Thus
r=ir+jy+ ke
If I, m, n be the direction cosines of OP we have a=lr,
y=mr, z=nr; 80
r=r({il+jm + kn).
4. Consider a second line OF’ defined by o/, I', m/, n’; and
Iustration  let the angle POP’ be denoted by 6. Since the
5 projection of the vector OP along OF' is equal to
the sum of the projections of the component vectors OM, MN,
NP along that line,
OPcos @ =al' +ym' + 20/,

ie. r cos @ =rll’' + rmm’ + ron/.
Hence 7’ cos 0 = za + yy' + 27
and cos 8 = U' + mm’ + nn’.

6. If r, ¥ be two consecutive vectors OP, OPFP’ at
Diustration  times ¢, ¢+ 8t to a particle P moving with

m velocity v,
el o o
v =limit of —
L1 r—r
= limit of 5
= limit of S_r

&t
=f.
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Similarly if v, v/ be the velocities at the times , £+ 8¢, we
have the acceleration
v—v

&t

f=limit of

6. Taking (r, 6) as the polar coordinates of a point P, let
Dlustration R, T be unit vectors along and at right angles to
alL OP in the directions 7, 6 increasing; then, if @ be
the point (1, #) which lies on OP and remains at unit distance
from O as @ varies,
R = the velocity of the point @
=0T, for its direction is that of T, ie. that of 08, at right
angles to OP.,
Similarly if OS remains of unit length,
T =the velocity of the point S
=—@R, for its direction is that of QO.

P
s
L) R_~Q
[
o
Now r=7R,
.. v=F=7R+7rR
=#R +70T.

Thus the velocity is made up of # along OP and 78 at right
angles to it.

Further

suies i
f=v=7, (iR +76T)

=fR+m+Td%(ré)+ré.'i'

T g s
= (- r).R+= 209).T,



4 THE THEORY OF ELECTROMAGNETISM

giving the usual components along R and T. The acceleration
of a particle whose three-dimensional polar coordinates are
(r, 6, $) may be obtained in a similar manner.

7. Let us consider the functions of the second degree with

which we are concerned in' physics. If a force F

Scalar and ; 5 : :

S act upon a particle moving with velocity u, the

products of  rate at which work is done is the product of the

vectors. % 5 a5
numerical scalar values of F and u, multiplied by

the cosine of the angle between the directions of F and u. This

is a scalar quantity, and so, if we have two vectors

r=iz+ jy+ ke,

v =id +jy + k7,
we give the title of their scalar product to »r'cos @ or
az’ +yy +22. We shall denote it by {rr'} or {r'r}; and when

no ambiguity can arise from the omission of the brackets they
will usually be omitted.

8. On the other hand if a force («'y’Z) be applied at the

point (z, y, z) the couple about the origin has components
Y2 —y'z, 22 —2w, ay —ay.

This is a vector r” of scalar magnitude 77 sin 8, and its direction
is at right angles to r, r/, being that of the axis about which r
must be rotated in the right-handed direction in order to bring
it into coincidence with ¥. If r be due east, and r’ due north,
r” is towards the zenith. The directions r, ¥, r” form a right-
handed system, and it is important to remember that the axes
of reference 0X, 0Y, OZ must always be chosen so as to form
a right-handed system. The vector r” is called the vector
product of r, v/, and is denoted by [rr’], these square brackets
never being omitted. Thus

[rr] =iy — y'z) +j (22 — Zx) + k (wy’ — 2y)

=1, §, k
x, y, z2
«, ¥, 7

=-—[rr]
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9. Its numerical magnitude is the area of the parallel-
ogram whose sides are r, . Thus the scalar
Lemma I.
product
C [AB]=(scalar magnitude of C) x (area of parallelogram
A, B) x (cosine of the angle between C and the
positive normal to A, B)
= volume of the parallelepiped of which three adjacent
edges are A, B, C, being positive when A, B, C
form a right-handed system.
If the components of A be 4,, 4,, 4;, &c., the components
of [AB] being 4,B,— 4,B,, &c., we have

C[ABl=| ¢, ¢, C

'All Am A8
B,, B., B
=A[BC]=B[CA] ......crevvennn 1).
Lemma I. 10. We have
[4[BCl]= s T k
4, , ADINSS, 4

3
Bzos—Bsom Bsol—onay B oz_B 01
=1(B,.{CA} - C,. (BA})+j (B,.{CA} -C;.{BA})

+Xk(B,.{CA} —C,.{BA})
=(iB,+jB, + kB;) CA — (iC, + jC, + kC;) BA

et A s G EN Heh U, e @).
11. Let us denote by V the operator
ad d d
rial
differentia- GGt
o so that, if ¢ be any scalar function of z, 9, z,
dé 4
o B iy dy dz
=R, say.

If the magnitude and direction of R be R and (I, m, n), we

shall have
Ry 86 g B e U

a2 ! <3
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Now if we consider the rate of change of ¢ in the direction
of any unit vector D or (A, u, v) we shall have, on going a small
distance 8s,

5= xas+d"’ pos+ 2 s,

= RIASs + Rm;:.Ss + Rnv8s
= Rcos 88s,
where 6 is the angle between R and D.

d¢

2 Rcos @ =RD and is a maximum when 8 =0, i.e. in

the direction of R. It is zero in a direction perpendicular to R.
Thus R is along the normal to the surface ¢ = constant, and its

d¢

scalar magnitude is I’ where dn is an element of this normal.

We have seen that the rate of change of ¢ in any direction
D is {DV¢}, the component of Z—% along D: hence V¢ is
a vector which is independent of the selection of the axes.

12. Green'’s theorem tells us that for a region in which

Sy any vector u or (u, v, w) is finite, continuous and

theorem. single-valued
du dv
fd ( dy —&;)=—fd8(lu+mv+nw)

where (I, m, n) is the normal N of unit length drawn into the
region.
Thus fdv {Vu} =— [dS {Nu}
=— [{dSu},
if dS be treated as a vector whose direction is N.

13. If u be the velocity of a fluid, — f{dS u} is the rate
The operator 8¢ which fluid leaves the region: thus, applying
‘divergence.’  the theorem to an element of volume, Vu is
the rate at which the fluid expands per unit volume; hence
its name of ‘divergence’ of u. It is usually written divu.
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14. If u=B¢, where B is a vector and ¢ is a scalar,
QGreen’s theorem becomes
Jdv (VBg) = — [(as By).
Now on the left side we may replace VB¢ by
V,Bé + V,B4,

where in the first term V operates on B only, and in the second
on ¢ only: thus it becomes ¢ {VB]+ {BV}$. Hence the
theorem

Jdv(¢pdivB +BV .$)=—[{dSB} ¢ ......... 3).

16. (a) If ¢ be a scalar quantity, integration, as in
Green’s theorem gives

of Grooms
BE paled)
= —[dS (il$ + jme¢ + kng),
. JdvV ¢ =— fdSN¢
oAl . L )
(b) If u be a vector whose components are (u, v, w),
fdv[Val=fdv| i, j, k
I
de’ dy’ dz

u, v, w

Now in integrating we replace fdv (% by — del, &c.; hence

we get
- fd8S) i, i, k|,
I, m n
v, v, w
or — [dS [Nu],
or —f[dS u].
We call [Vu] the ‘rotation’ of u and write it rot u.
Thus
The operator

¢ rotation.’ Jdvrotu=—f[ASu] ....cooevuriirnnns (3).
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16. Putting u= B¢, where B is a vector and ¢ a scalar,
and replacing [VB¢] by [V.B¢p]+[V.B¢l, we obtain

Jdv(prot B~[BV]¢p)=—f[dS Bl & ......... (6).

17. Stokes’ theorem tells us that the line integral

Stokes’ J(udz +vdy + wdz) or [{dsu} round the margin
Abeoper, of any area is equal to the surface integral
over it,
dw dv du  dw dv  du
Js (1 (& -2)+ (@ -2)+(Z- 7).
or fdS{Nrotu}, or [{dSrotul].

We may show that rotu has a meaning independent of
the position of the axes exactly as we did in the case of Vé:
for the line integral round an element of area dS is equal to
the component normal to dS of rotu: and the line integral
is independent of the particular axes selected.

18. It may be of interest to have a proof of Stokes’
theorem in terms of vector analysis.

Proof of Let us consider one only, dS, of the elements
Stokes’ into which the surface S may be divided; and
theorem by e .

vector let r be the vector joining a fixed point P,
yraiyse. in this element to any point P which lies on

its margin. Then if P’ be a consecutive point r+dr, the
area of the triangle P,PP’ will be equal in magnitude and
direction to }[r, dr]. Thus
{dS .rot u} =} f[r, dr] rot u,
the integration being round the margin of dS,
=4 [dr [rot u, r]
=}/ar[[V.u]r),
where V, operates only on u,
=4 fdr (rV}u-V, {ur}).
Now by Taylor’s theorem, if squares of small quantities be

neglected, the value of u at P will exceed its value u, at P, by
rV.u. Thus

fdr {rV}u=fdr (u —u))=fdr.u —u, fdr.
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Also V,{ur} =V {ur} -V, {ur}, where V, operates only
on r; and V,{ur}= V,(ur+vy+wz)=u: thus we find on
substitution ;

dSrotu=4fdr(u—V {ur} + u)— }u,fdr.

Now when integrated round dS the perfect differentials
dr and dr V {ur} will vanish. Hence

dSrotu=/dru=/dsu,
the integral being taken round the margin of dS. Summing
over all the elements dS the line integrals along the internal
ares cut out and we obtain Stokes’ theorem in its usual
form.

19. If in Stokes’ theorem we replace u by B¢ as before,
we obtain

f{ds. B¢} =[{dS[V.B¢]}
=/{dS ([V.. B$]+[ V.. Bo])}.

Thus [{asB} ¢ =[{dS(¢rot B—[BV] $)}...cuevnn. (7).
20. If T be a unit vector along the arc ds whose direc-
Analogne tion is (¥, m/, n’), the direction of the normal
of Stokes’ N to dS being (!, m, n) as before, Stokes’
theorem. Q
theorem is
JdS8{N rotu}=[ds {Tu},
or fds| 1, m, n |[=[ds(Vu+mv+nw)
L B g
de’ dy’ dz
u, v, w

Since this is analytically true for all values of u, v, w, we may
put u=i¢, v=j¢, w=Kke, where ¢ is a scalar function. Then

JdS| 1, §, k |p=[ds(l +jm +kn),

l, m, n
& a4
dz’ dy’ dz

.. JAS[NV] ¢ =[dsT¢,
or S[ASV]p=fA8d..cccvvrrrrrnnnnnnnn (8).
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21. We have
div[AB]={V [AB]],
and we may replace V by V,+ V,, where V,
operates on A only and V, on B only; further if C be any
vector

Lemma III

C[AB]=B[CA]=—A[CB].

Hence div[AB]=B[V,A] - A[V,B]
=BrotA—ArotB ............... (9).
Lemma, IV. 22. In a similar manner
rot [AB] = [V [AB]]
=[V.[AB]] +[V.[AB]]

=({BV,}JA-B{V.A)+(A{V.B} —{AV,]} B)
=BV .A-BdivA+AdivB—AV.B...... (10).

23. We have seen that the operator V, whether operating
on a scalar or vector quantity, has a meaning
independent of the axes of reference; hence the
operator {VV} must also be independent of the axes. We
may obtain the meaning in the following manner :—

Operator V2.

If ¢ be the value of a function at a point (z, y, z) whose
vector from the origin is r, then at a neighbouring point r+ p,
where p or (£, 9, §) is small, the value of the function will, by
Taylor’s theorem, be

p+ (e +nit e e 2D)

+%{f’ﬂ+n’d‘$+§’ﬂ’

A 277; dydz & 2§§ dzd:c + 26 dmdy}
+ higher powers of £, 7, &

Now the mean values of £, #* and &* over the surface of
a sphere of small radius p are each equal to }(£+9*+ ),
or }p*; while the mean of all terms including odd powers of £,
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n or ¢ is zero. Thus the mean value of the function over the
surface is

b+ % V¢ + fourth and higher powers of p:

and we find

Vi =§2 {the excess of the mean value of ¢ over a spherical

surface of small radius p above its value at the
centre}.

We may thus call V3¢ the ‘ dispersion’ of ¢.



CHAPTER IL

APPLICATIONS OF VECTORIAL METHODS TO
MAGNETOSTATICS.

24. THE potential at a point (2, ¥/, 2') due to a magnetic
i e pole of strength p at (z, y, 2) is p/r, or up, where
8 mncuide r=pi={( —of + @ —yF +(Z -

Let us consider a magnetic doublet consisting
of poles — u and + p at P, P’ respectively ; and let the length
PP be p and its direction D, the scalar magnitude of this last
vector being unity. If p and p’ be the reciprocals of the distances
of P and P’ from the point («/, 3, 2), the magnetic potential
there due to the doublet will be up’ — up or u(p’—p). Now p’
differs from p in that it is estimated at a point distant p from
P in the direction D. Hence p'—p is equal, when p is in-
definitely small, to p x (rate of change of p in the direction D)
or p.DV.pby§11. Hence Q=pup.DV.p or M.DV.p, if
while p diminishes indefinitely p increases indefinitely in such
a manner that pp remains equal to M. If the vector MD be
denoted by M, so that M has the moment and direction of
the magnetic doublet, this may be put into the form MV. p.

In an exactly similar mapner it may be shown that the
potential energy of the doublet in a field whose potential is
Qisp(¥=Q)or MV. Q.

25. This analysis shows that a magnetic moment obeys
& oRgaghio the.laws of a vector; and the t{'uth of this is
doublet is obvious from the fact that we can introduce equal
wavesor: and opposite poles +pu and — u at the ends U,
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V of the rectangular components lp, mp, np, and thereby

z
+p
Q
[ mp_ | ey
o /—ﬂ
o
+p
Nl
(o)

X,

completely replace our doublet P@Q of moment M by doublets
PU, UV, VQ of moments IM, mM, nM respectively.

26. Let us consider a magnetised body of which 1 is the
Potentia of  intensity of magnetisation. Due to an element
a maguetised of volume 8v at (z, ¥, 2) of moment 18v the
podyy potential at a point (#/, ¥/, 2') outside the body is
8v.1V.p. Due then to the whole body

= [y INSPpRARE. e i (11)
=—[fdS.NI.p—fdvpdivl, by (3),

=[dSap+ AV pP ceceiieriiininiiiinnns (12),

where c==Nl, p=—=divl .rrrrrerrnnen... (13).

Thus the magnetic potential is the same as that due to
a surface density, equal to the normal outward component of
magnetisation, and a volume density which is minus the di-
vergency of the magnetisation.

27. The potential (11) above found is, strictly speaking,
applicable only at external points, for IV.p is infinite at
internal points. The expression (12) is however finite at
internal as well as external points if o, p are finite. Now the
potential inside a magnet, regarded as made up of doublets,
will change with extreme rapidity as we pass from doublet to
doublet, and we may suppose that the number of doublets in
unit volume is very large. Thus the potential at (=, y, 2) is
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in reality indefinite unless account is taken of the distribution
of doublets in its immediate neighbourhood, and we cannot
specify it in terms of | alone. But we may for convenience
define the value of £ given by (12) as the magnetic potential
within the body ; and in that case, from the ordinary properties
of the potential,
V) + dmp = 0}
(NV.Q); +4m0=0
Now if the magnetic force — VQ be denoted by H these
equations become
—divH —47rdivl=0}
—(NH) —4m (NI)}=0)°
where in the second equation we have written (NI); or
N, + Nyl in order to include cases of contact between two
magnetised bodies.

28. Thus if we introduce a new vector B defined by the -
equation B = H + 4o |, we have
Magnetic
indnction. divB = 0}
(NB) =0
This quantity_is called by Maxwell the magnetic induction,
and its distribution, being like that of the velocity of an
incompressible fluid, may be called solenoidal

29. Since div B vanishes we may, without loss 6f generality,
suppose that the rectangular components of B are
The vector
ol dH_dG dF_dH  dG_dF
oy A e A E T =y
ie. B=curl A, where A=(F, @, H).
Then Stokes’ theorem gives over any surface
J{as Bj=J{ds A},

and in free space, as B = H, the surface integral of normal force
over any area is equal to the line integral of the tangential
component of A round its margin. The name giveu to A by
Maxwell is the vector potential.
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30. Owing to the presence of a magnetic doublet of
moment M at (z, y, z) we shall have at (, ¥/, 2')

Q=MV.p=-MV'.p,
d d

where V -.id I+Jd:l/

+kdd,, and as p is a function of &’ —a,
¥ —y and 2’ —z, we havejﬁ, % g:—ye Zz Zf’__%g
Thus H=V'{MV'}p
=(V.MV' =M.V 7%)p,
for, as p satisfies Laplace’s equation, V'3 =0,
=[V’'[V'M]]p, by Lemma I, paragraph 9,
=—rot' [MV’] p, where rot' C =[V'C].
Hence we may take, as due to the doublet,
A=—-[MV]p=[MV]p.

31. Considering a body of which 1 is the magnetisation

at (w, y, 2), the vector potential at («, 3/, 2) will be
Jav[IV] p;
or, by Green’s theorem,
—[dS[IN]p — fdv[IV,]p,

where in the second term V, must be regarded as operating
on | but not on p.

Thus A=[dS[NI]p+ [fdv[V.l]p

=[dS [N1] p + fdv (rot 1) p,

and the vector potential may be regarded as due to a surface
density [NI] and a volume demnsity rot .

32. Let us express by these methods the mutual energy
St of two simple magnetic shells of moments ¢,
energy of ¢’ per unit area.
two shells. ;

We have seen that the vector potential at
(2, ¥, Z) due to a magnetic particle at (z, y, 2) is
A=-[MV’]p=[MV]p.
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Now the first shell may be regarded as made up of elements
of area dS of which the magnetic moment is ¢dS and direction
¢N dS: thus its vector potential at (#/, ¥/, 2’) will be

A=¢[dS[NV]p
=¢f[as V]p,
and this, by the analogue of Stokes’ theorem, is equal to
$fdsp.

Now, by § 24, for a particle of moment M’ at («, 3/, 2)
the energy of position W is equal to M’V’.Q. Thus for the
two shells, regarding the second as made up of doublets ¢'dSs/,

W=¢' [dS'{N'V'}|Q
—— §'Jlas W)
= — ¢’ [{dS'rot’ A}
=— ¢’ [ds'A, by Stokes’ theorem,
= - ¢¢'[Jas ds'p
=—¢¢' [[dsds cose[r .cocccorunirinnan. (16),
where e is the angle between the directions of ds, ds'.

33. When the magnetising force is extremely small the
Taansad induced temporary magnetisation I, is propor-
magnetisa-  tional to the magnetic force H and is equal to
o kH, where k is the susceptibility. In order that
the analysis may include cases both of temporary magneti-
sation I, and permanent magnetisation 1, we shall suppose
that both may exist together and thus assume that the total
magnetisation | is equal to I+ 1, or kH 4+1,. Thus

B=H + 4ol =H + 4o (kH + 1)
=pH +4m7l,, where p=1+47k ...... @an).
Thus the conditions (15) obtained in § 28, i.e.
divB=0, (NB):=0,
give divpH + 47 divl,=0, {N (uH +4wl,)}i=0.

We now replace H by — V. and denote the permanent
magnetic densities, corresponding to those of (13) in § 25,

by p,, op, ie.
- op=—{NJi, pp=—divly;
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then div uVQ + dp, =0, {NpVOQE+47wo,=0;

L VAQ + drpp =0, (,L %%)’ e e
1
d/dQ\, d/ dQ\ d( dQ
where V. denotes F o (l"%) 4 y (,u Eg) (aos (,u ;l;) and

dn is an element of the normal drawn ¢nto the region of the
corresponding potential.

34. The potential energy of a magnetostatic field may
be obtained by considering the work done in
The potential . . .
emergy of a  gradually and proportionally increasing the
LT strength of all the permanent magnets from
static pole. - . .
zero to their final value; during this process
any iron capable of temporary magnetisation must remain in
its final position, its magnetisation at any time being deter-
mined by the field due to the permanent magnets, At a time
when all the permanent magnetisation is of n times its final
strength the value of the potential and force at any point will
be n times the final value and, as in the case of an electro-
static field, the work done in increasing n from n to n+ 8 will be
Sndnm,Q), where m, is a representative permanent magnetic
pole. Thus the work done in creating the system will be
W=3Zm,Q=31Z {M, V] Q,
where M, is the moment of a representative permanent
magnetic doublet,
=~ 42 {M,H}

== [a {1,1)

o [ i@ uH) K
=+%,fdeH’+§1—rfdeV.n
=§1_’-rfdv,uH’~§l;rde{NB}i.Q—Slw_fvadivB,

by (8) of § 14.
Now, by (15) of § 28, {NB};=0, divB=0: hence

1 1
W=o fd”f‘”’=§r fduyH’.,...........(IQ).

W. 2



CHAPTER IIL

THE THEORY OF MAXWELL AS EXPRESSED BY HERTZ.

35. IN his papers and his classical Treatise on Electricity
and Magnetism Maxwell gave a number of different interpre-
tatiouns of the processes at work, and the interest of these caused
nearly as much importance to be attached to them as to the
final equations to which they led. It was Hertz who pointed
out that however Maxwell’s equations might be interpreted it
was they which in effect constituted Maxwell’s theory, and he
put them into an extremely convenient form.

In the electrostatic-electromagnetic units adopted by Hertz
the energy of the field per unit volume is taken, when the
media are stationary, as gl;(KE’-f-p.H’), where the units are
such that for free space K =1and u=1,and E, H stand for the
electric and magnetic forces.

We adopt the following further symbols:

D = KE = the electric polarisation
= Maxwell’s displacement multiplied by 4ar,
C = the conduction current,
B = the magnetic polarisation
= Maxwell's magnetic induction = uH + 4l *.
Then Hertz’s equations are

(Z—? +47C="VrotH
A e (20).
- VrotE

* Hertz does not explicitly discuss the case of permanent magnetisation.
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36. It follows that over any area

f{ds ("ZlD +4nC) =V [(as rot H]
=VfdsH;

thus the rate of increase of the surface integral of electric
polarisation over any area, together with 47 times the con-
duction current through it, is equal to the line integral of H
round it. Similarly from the second equation it follows that
the rate of diminution of the magnetic polarisation through
any circuit is equal to the line integral of E round it. Thus
the equations (20) express Maxwell’s fundamental relations.

37. Also, taking the divergence of the former equation of
(20),

. (dD
div (%5 +47C) =0;
but, by the definition of the conduction current, div C is the rate
at which charge is conveyed away per unit volume, and must

be equal to —%% , where p is the electric density. Hence

dD dp
div —— = 471-%—0

at all points, and integrating with reference to the time,
div D = 4mp,

the constant of integration vanishing, since p=0 at all points
if D =0 at all points.

Similarly divB =0.

38. In electrostatic fields %%=0, for there is no time

change of any variable. Hence rot E =0, and we may take
E=—V¢, where ¢ is a function given by
4arp =div D = — div (KV¢) = — Vi¢,

4o = {ND}}=— ( zf:)
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Similarly for a magnetostatic field H=— VQ, where Q is
given by
0=divB, 0={NB},
asin § 33, Thus
ViQ + dmp, =0
2 ’
(p, %%) +47o,=0
1
where p,, o, are the volume and surface densities of permanent
magnetism.

389. A surface at which there is a discontinuity between
Surface the physical conditions on the two sides should
conditions.  he regarded as the limit of a thin layer of
continuous transition when the thickness of the layer is inde-
finitely diminished. Now the values of ‘2—?+4ﬂr0, and of
dB
dt
as finite within it also: hence the values of rot H and rot E will
be finite in the layer. But if the axis of Z be taken in the
direction of the normal to the bounding surface at any point
the first of the three rectangular components of rot H will be
diV_ﬂI, where H=(ZL, M, N). Now as i is finite on each
dy dz dy
side of the layer it will be finite within it : hence % will also

, are finite on each side of the layer, and so may be regarded

2
be finite in the layer, and j dz%[ integrated through the
1

layer will be of the same order of small quantities as the
thickness of the layer. Hence when the thickness is in-
definitely diminished the values of M on the two sides will be
the same. In a similar manner the values of L, X, ¥ may be
shown to be the same on the two sides. Thus the tangential
electric and magnetic forces must be continuous across the

surface.

40. It follows from the consideration of adjacent points
in the first medium, and points opposite to them in the second
medium, that the differential coefficients of L, M, X or ¥ with
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respect to z or y will be the same on the two sides*. Hence
in the third of the three Cartesian equations of the former
of (20), i.e. = A
the terms on the right side are continuous. Accordingly the
left side must have the same value on the two sides, i.e. the
total normal electric flow is continuous.

Similarly the normal magnetic flow is continuous,

It must be noted that as the two boundary conditions of
this section are derived from the equations of the field, and
these equations are satisfied throughout each medium, the two
boundary conditions are satisfied when the conditions of § 39
are satisfied. Hence the independent boundary conditions reduce
to the continuity of the tangential components of E and H.

41. 1t follows from ¥, -~ ¥,=0, Z, — Z,=0 that (E,—E,)
must be normal in direction and hence that [N (E,— E,)]
must be zero. Thus the surface conditions may be put into

the form
[NE]Z=0, [NH]?=0..c.ceoocrruern. (21).

* If we take points P, P’ in the first medium such that PP’ is parallel
to OX, and if Q, Q' be the points closest to them in the second medium, such
that the lengths PQ and P'Q’ are of the second order of small quantities,

then in the first medium %is the limit ofﬂg;,;‘lp; and as Mp=»My and
Mp =My this is the same in the limit as M%(_?,MQ or '—id%l in the second

medium,



CHAPTER IV.

HERTZ'S EQUATIONS FOR MOVING MEDIA.

42. WE have next to consider the case in which the
material media in which electromagnetic processes are at work
are in motion, and we shall suppose that the velocity at any
point is u, a continuous function of the coordinates.

The most natural extension of the two fundamental laws
of Maxwell is to suppose that they apply to a circuit moving
with the velocity u of the medium. Now the rate of change of
the surface integral of any vector R is made up of two parts,
one due to the change in R and the other to the motion of the
surface. The former part is fds ‘—idl:—;
by considering the cylindrical element of volume v whose ends
88, 88’ are formed by the area 8S in its
positions at the time ¢ and the time ¢+ &t 68y
The total surface integral of the component st
of R along the inward normals to the
element of volume is by Green’s theorem
equal to — Svdiv R, or — [§S u 8t} divR.

Now the contribution to the surface integral from the two
faces &S, 8S’ will be

the latter may be obtained

R8&S-RSS,
where R’ is the value of R at the face §S’. Also the tubular

surface may be regarded as made up of parallelograms of which
adjacent sides are elements of arc &s (bounding §'S) and lines
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udt: thus by § 9 the contribution to the surface integral from
the tubular surface will be

—[{R[8sudt]} or & f&s[Ru]
or 8t {&Srot[Ru]}.
Hence Green’s theorem gives
—{ud8s} dtdivR=RES—R' 8 + 8t {8S rot [Rul};
thus R’ 8S'—R 8S =8t {8S (udiv R + rot [Ru])}.

Accordingly the rate of change of R &8'S due solely to the motion
is R, 8'S, where

R, §S={8S (udiv R + rot [Ru))},
and so Ry=udivR 4 rot [Ru] .ceooeunnennnnn (22).

43. If then we decide to make the assumption that the
polarisations D, B are, in spite of the motion, equal to KE,
#H + 471, where E, H are the electric and magnetic forces
acting in the moving media, we shall have, instead of the

equation
f {ds (%% + 470)} it f (dS rot H},

the modified equation

[ {dS (&5 -+ udiv D+ rot [Du] + 47:'0)} =V [{asrot )
and since this is true for all circuits &S we shall have

tfi—? +udivD +rot[Dul+4mC="VrotH...... (23).

Similarly the second fundamental equation becomes

%?-+udiv B+rot[Bu]=— VrotE......... (24).

On expanding rot [Du] the former equation becomes

%?+uv.D+Ddivu—DV.u+47rC=Vrot H,

or, if the time-rate of change in the value of a function at
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a point moving with the medium be denoted by ;t—,, so that

©,03.008,
:li—t,+Ddivu—DV.u+47rC=VrotH ...... (25).
Similarly the second fundamental equation becomes
“ilt,+Bd1vu BV.u=-VrotE......... (26).

These are Hertz’s equations for moving media.

44. At a point in the boundary between two media,
Boundary regarded as the limit of a region of very rapid

conditions. transition from one medium to the other, we have
daB
e +Bdiva—-BV.u,
dD
and wFt Ddiva—DV.u+47C,

are finite*®, provided that u and its differential coefficients are
finite, ie. provided that there is no discontinuity in the
velocity of the two media at the interface. In that case,
by (25) and (26), rot E and rot H will be finite in the region
of transition, and as in §§ 89, 41 it follows that

[NEJ;=0, [NH];=0.

45. In order to decide definitely whether the Hertzian
Blondlot's theory for moving media is in accordance with
rim; o4
::;!;eo 7 H“::;}' facts, Blondlot took two pa‘ralle.l plates,say z= ta,
theory for and made a field of magnetic force L, parallel

moving medls. ¢, ¥ between them. He then sent a current

* It might at first sight appear legitimate to suppose that in (23)
aD k
7 +udivD+4xC

is finite at the interface; and to deduce that the tangential components of

H DL [Du] were continuous. This is not however justifiable, ford— gives the

time-change at a stationary point, and while ‘gm finite 'Z—Ifxs infinite unless

the value of K on the two sides is the same or the velocity u is parallel to the
interface.
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of air with velocity v parallel to OY between the plates.
According to Hertz's theory this would create opposite charges
on the two plates and hence on reversing L or v there would
be a current along a wire joining the plates: this was not found
and the theory must therefore be incorrect.

In order to obtain the charges we shall suppose that L, v
are constant and that the conditions have become steady so that

dit =0; further the charges on the infinite plates being constant,

there will be no current in the wire. As the air is uncharged

p =0, and in equation (24) ——=0 both in the air and the
metal, .. rot [Bu]=— Vrot E in both media.
- ot (E + %,[Bu]) ey e ey 4 @).
Hence we may put in the air,
E+ %, [Bul =—Vé...correreiireris @),
where ¢ is given by the condition p =0, or
divD =4mp=0.
Now from (27")
M Lapy b g G0 W
SV ST e Pt A
Thus, as divD =0, -V =0,

and we take as the appropriate solution
¢=A+ Bz + Cy+ Dz
Now as the velocity v is parallel to the plates we have

dt +ud1vD and E—+ud1vB finite in both media, and so

finite in the interface®. Thus rot (E + T,[Bu]) will be finite,

and it follows at once that X, ¥ will be continuous across the
surface of the metal.

* See the footnote of the previous page.
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But as there is no current in the plates when the conditions
are steady X, ¥ will there vanish. Hence B=0, C=0 and

¢=A4 + Dz

In order to determine D we shall utilise the fact that, from
(27), the integral over the surface bounded by any circuit

fds rot (E + 4, [Bu]) = 0

or the line integral of E+%,[Bu] round the circuit vanishes.

Let the circuit consist of a line PP’ parallel to OZ in the air
from the first plate to the second, a line thence in the second
plate from P’ to the end of the wire, thence along the wire to
the first plate and thence to the point P to complete the eircuit.
Along the whole of this circuit, except the straight line PP’
E=0and u=0. Hence along PP’ the component parallel to

0Z of E+ Il,[Bu] must vanish.

Hence the line integral of Z+ va-, or ——D+1—)I—£, must

vanish: and D= 1%—

Thus the value of Z within the metal being zero, the surface
charge o on the plate z = a will be given by

= 4o,

sl : vl :
Similarly on z=— a the charge will be ~ 4 ber unit area.

Thus on reversing » or L there will be a current in the wire,
and its amount can be caleulated for comparison with experi-
ment.

46. Another test which may be applied to Hertz’s theory
The influence 1S that of finding the influence of motion in the
‘vlgl%’:i:;”of medium upon the velocity of light propagated
light. along the direction of motion.
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For a medium moving with uniform velocity u parallel
to OX the equations are

x(F @) (G-3)

K )y (8-,

(2 080) - (-2,
FamT (G -%)
%+u%=—l’(g—%).

Thus if the velocity of propagation be U, and we take

= ket g b
we find
K({U-u)E=0
K(U—u)n=+Vv} 5
(T—-w)r=0
(U—u)ﬂ-=-V§}-
UT-wyr=4+Vy

Hence £ and A vanish, and E and H lie in the wave front:
and as A4 un+ v¢ vanishes, E and H are at right angles.

Further, eliminating pu, ¢,
K(U—-up=V:=KV",
if V” be the velocity of light in the medium at rest. Hence

U=utV'.

47. According to this theory then the velocity u of the
medium is superposed on that of the light, a result which is
contradicted by experimental determinations: the latter show
that the velocity of light along a current of air is only affected
by a small fraction of the velocity of the air.



CHAPTER V.

SOME EFFECTS DUE TO THE MOTION OF CHARGED
PARTICLES THROUGH A STATIONARY AETHER.

48. BEFORE conmsidering Lorentz’s theory, in which all
phenomena are interpreted in terms of electrons moving
through aether at rest, it is of interest to examine some
simple cases of this type in which a complete solution can be
effected.

Let us consider the case in which electricity of density p
per unit volume is moving with velocity u through stationary
aether, the only restriction on u being that it shall be a finite
and continuous function of the coordinates. If we consider
a circuit fixed in the aether the convection current will be pu
and the fundamental laws give

dt +4mpu="VrotH

d
dH
>y =—Vrot E,

Now, as Maxwell pointed out, the electric force E’ acting
on a conductor moving with velocity u is not the same as E
the force when the conductor is at rest: and as E is the same
whether the result of it be to set up a conduction current, to
act on a charged particle, or to cause polarisation in a dielectric,
we shall suppose that E’ is the same whatever be the nature of
the effect produced on the moving body. Let us consider a
circuit of which u is the velocity at any point. The rate of
increase of the surface integral of electric force E will be

de( +udiv E + rot [Eu])

......... veerer(28).
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and there will be no convection current through the circuit
as the velocity of the charge relative to the circuit is zero.
Thus if we apply the first fundamental law to the moving
circuit we get

de (%—I?- +udiv E 4+ rot [Eu]) =Vfd$ rot H',

where on the right side we have H’, not H, since it is the
magnetic force on a moving circuit which is considered.

Hence (fit +4mpu + rot [Eu] =V rot H ......... (28"),

and similarly from the second law
cﬁlt +rot[Hu]l=—=VrotE'......cuu..u (29).
On comparing these with (28) we find
rot [Eu] =V rot (H'— H),
and so we take H'=H+ %,[Eu] .................. (30).

Similarly from the second equations

R ) J— (31).

49. On expanding rot[Eu] as
Edivu~EV.u—udivE +uV .E,

Boundary
conditions. g5 4 replacing (%+ uV by dit" we get from (28")
dl; +Ediva—-EV.u=VrotH ......... (32),
and similarly from (29)
‘fl: +Hdiva—HV.u=-VrotE'......... (83).

Now at a surface which separates two media we shall have,
if w be continuous at the surface, the left sides of (32) and (83)
finite within the region of rapid transition which replaces the
surface of discontinuity: thus the right sides will be finite, and
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the condition at the surface, as in § 44, will be that the tan-
gential components of E’, H’ shall be the same in the two
regions, ie. that

[NEJi=0, [NH]i=0.

650. We shall now consider in slightly greater detail the
Al case in which electric charges of density p are
with constant moving through empty space with velocity u
Thesyr: which is uniform and constant.

The equations of the field referred to moving circuits will
be, from (32) and (33),

(;—E =V rot H’
e S 1 (34).
P ~VrotE

Also HVE =4dmp, divH=0 .coevevennn.e, (35),

’ 1 i 1
E'=E+3[uH], H=H-3[aE] ... (36).
In (34),since the conditions are steady, there are no changes
in quantities estimated at points moving with velocity u, and
40
Ci7aal
Thus rot E’=0, rot H'=0; and we may put
E=-V®, H=-VQ,
where @, 2 may be called the electric and magnetic convection
potentials,

Also by (36)
&iv B = div E 4 (Hrobu—urot H) .....(37).
Now
rot H=rot (H’ +—1- [uE])
14
=rot H Il,(udiv E—-uV.E+EV.u—-Edivu)

=%(udiv E—-uV.E),
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for rot H' =0, and u is independent of the coordinates, being
uniform. Thus

urot H =‘£47rp —Lav.ue

14 o Py
Also as u[uH] =0,
wE =uE'=—uV.o,
Thus (37) becomes
@Vy s

—V"b:‘lﬂrp—-—IuT:‘ivrp— ~V—’

or ( - (uV)) D +4mp (l —ﬁ) =01t (38).

51. If u=(x 0,0) and 1 _T’;_:= I

'3 2
‘z:: L S S Tt S (39),

s0 that if we put @ =I§, y=1, z=¢{, we have
d’¢> d"<1> d (]
dE’ d{ 3
and @ is the potential at (E. 7, §) due to charges represented
by pl*dEdnd¢ within an element of volume dEdpd¢.

Thus at (¢, ¥/, 7)
@ =fffpldxdydz
o 2
where ri= (& = Y[+ (= y) + (& — 2,
or P=[3 2,
n

+4mplt=0,

where ¢ is a representative charge in the original system,
In an exactly similar manner, as div H =0,
d’Q °Q  dQ
Pttt
and as there is now no volume density Q=0: hence H' =0,
and by (36)

=0,

H== [uE]
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Thus when u is unrestricted as to direction,
— V& =E' =+ [aH]
= E 45 [u[E]]
=E +1—},;(u.uE—u’. E)S
2 —%“) E+35.0E == V.
When u=(y, 0, 0) this gives

d® 1d® 1dd
it Y=—l_“_dy’ Z=-3%,
u dd u dd
o T g M=T’l—’$’ N=—Vl373/"

52. Due to a point-charge ¢ moving along OX past the
origin ® = le/r, and if w*/V? be neglected r,=r, the distance
from the origin. Thus the electric forces will be the same as
those due to a fixed charge, and, in addition,

u ez

L=0, M=—V-F, N=



CHAPTER VI.

THE ELECTRON THEORY OF LORENTZ APPLIED TO
STATIONARY MEDIA.

63. WE have seen that the Maxwell-Hertz theory of
moving media is contradicted by experience, and it becomes
necessary to adopt hypotheses different from those on which
that theory was based. It was there supposed that if E were
the electric force acting upon a circuit moving with the
medium, the polarisation of the medium was KE; so that if
the medium were a greatly rarefied gas the polarisation in
the gas would be K times the electric force acting on the
moving gas. But in the limit when the gas is evanescent in
density the polarisation becomes that of the aether only, and
the force tending to produce the polarisation is dependent on
the velocity, for, as Maxwell pointed out, the electric force on

a moving body exceeds that on a stationary body by -Il,[uH]:

thus the assumption that the polarisation within a moving
medium is X times the electric force at & moving point really
involves the hypothesis that the aether is carried along with
the velocity of the medium. In Lorentz’s theory the aether
is supposed to be stationary and it is only the electrons (minute
particles, either with or without ordinary mass, carrying electric
charges) which are supposed to move through it with the
velocity of the material medium : the interpretation of electrical
phenomena in terms of electrons has received very strong con-
firmation from the facts of electrolysis, the discharge of gases,
kathode and Rontgen rays, radio-activity, electrical conductivity
and various optical phenomena. Further as the distributions of
W. 3
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electrons which are required to explain electric and magnetic
polarisation, and conduction currents, are probably very com-
plicated, it becomes desirable for the sake of simplicity to
consider separately the explanation of each of these phenomena;
when they occur simultaneously we can suppose that the effect
may be obtained by adding their separate effects.

64. In the Hertzian electrostatic-electromagnetic units
the force between electric charges e, ¢ is Kee'[r®
and that between magnetic poles m, m’ is pmm'[r%,
where K, p are unity in free space. The units of ¢ and m are
modified by Lorentz in such a manner that the forces become
Ke¢/[4arr® and pmm/ [47rr*. Thus two units of charge in a vacuum
repel with force 1/4arr* and the potential due to a charge ¢ in a
medium K is Kef4wr. The unit charge of electricity is 1/24/m
times the ordinary electrostatic unit and for Gauss's equation
we have ({dS E} = the surface integral of inward force = — the
total charge inside. Hence if ¢ be the potential,

Vid+p=0, (KZ;:):+0=0,

Units.

and for an electrostatic field,
W= «}fdvp¢+§fd8¢r¢
~—4[wg Vi1 [as (K PE)'s
= f @K EL,

55. Let us suppose that the unit of length is very small
and that the closeness of examination is such

The electro- :
statics of that the space occupied by an electron may be
e considered as finite: we may then suppose that

there is no outer surface of discontinuity bounding
an electron, but that there is gradual trapsition from the
electron to the empty aether. We shall denote by p the
density of the electricity within an electron, and by e, h the
electric and magnetic forces at any point in this highly magnified
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consideration of the conditions. If u be the velocity within
the electron the Maxwell-Hertzian equations will be

de

dt+pu—Vroth
dh

m_—Vrote

with dive=p,
and on taking the divergence of the former of (40),

dt P + div (pu)=0.

56. Let us consider a small volume containing a group
of electrons for which the total charge, [pdv, vanishes. We
may then call the electric moment of the volume the integral
Jprdy, where r is the radius-vector from an origin within the
volume to any point where the deunsity is p : if ¥’ is the radius-
vector from a second origin whose radius-vector referred to the
first origin is r,, we have r=r,+’, and

Sprdv=fpr,dv + [pr'dv=r, [pdv + fpr'dv=[pr'dy,
for f[pdv=0. Thus the electric moment of the volume so
defined is, as it should be, independent of the position of the
origin within the volume.

Further, the time-change of the moment will be fprdv, or
fpudy, the value of which per unit volume iz the electric current
due to the motion of the charges.

57. If then in the dielectric the electric moment per unit
volume, when averaged over an element of volume containing
many groups of electrons, is D', and if this is changing at
a rate D', the current due to this will be D’. The equations
(40) of the field, which referred to dimensions small compared
with the dimensions of an electron, may now be averaged over
an element of volume of the size usual in mathematical physics,
i.e, containing many groups of electrons : the result is

‘%(E+ D)=V rot H

dH
e Vrot E
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If the specific inductive capacity be K, and the total polarisation
(E + D) be denoted, as before, by D, we know, by comparison
with Maxwell’s theory, that D= KE, and so D'=(K -1)E:
this is closely analogous with the corresponding total magnetic
polarisation
B=H+(g—1)H,

where (u—1) H is in these units kH, the moment per unit
volume of the induced magnetism, k being the susceptibility.

The equation of continuity for a volume containing a number
of groups of electrons is

f dvidd%=rate of flow of electricity into the volume

=f{ds.b'}=—fdvdivl5’;

hence, as the volume is arbitrary,

dp . dD’
(—i? = —div 7{ .
Now let us integrate with respect to the time, and remember
that the dielectric was uncharged at the time when D'=0

and there were no electric forces,
s p=—div D’

68. This theorem is the analogue of the corresponding
expression (13) for the density in magnetostatics and may be
stated in the following manner:

If over each molecule or group of electrons fpdvy =0, then
over a region, taken at random and large enough to contain
a large number of molecules or groups, the charge per unit
volume is —div D/, where D’ is the mean value per unit volume
of fpr dv.

It is clear that if the boundary were drawn deliberately,
with infinite precision, in such a manner as never to cut
through any group and so to contain only entire groups, the
total charge and so the density would be zero. But when we
speak of —div D’ as the density we mean the density in any
element of volume taken at random.
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Regarding this as a purely analytical theorem its applica-
tion may be generalised in the following manner. If ¢ be any
scalar quantity such that f¢dv vanishes over each group of
electrons, then the mean value of ¢ over an element of volume
taken at random and containing a large number of groups is
—div A, where A is the mean value per unit volume of the
integral fduér.

59. Let us assume that over a small volume containing

o one group of electrons [dvp =0, and [dvpr=0,
tion of a where r=(x,y,2); so that the medium has no
ot electric charge or polarisation. Further, let us
medium, assume that

[dvpa?, Jdvpy?, Jdvpz?,

[dvpyz, Jdvpza, Jdvpzy
are all independent of the time. We shall then denote by m
or (p, ¢, ) the integral E!I—,fdvp [rt], where the region of in-

tegration includes the group of electrons: we shall later see
that m is the magnetic moment of the group. In virtue of
the assumptions just made we shall have zero time rates of
the quantities [dvpa?®, &c., so that

Jdvpiz =0, [dvp(zy+ ay)=0; &e.
Thus Jdvpzy =4 [dvp (2y — xy) =— V7,
Jdvpiz =1 [dvp (dz — xz) =Vy.
Further we have, on substituting p# in the generalised theorem

of the previous section, that the mean current parallel to 0.X,
Le. the value per unit volume of {dvp4, is equal to

where P, Q, R are the values per unit volume of
Jdvpawz, [dvpzy, [dvps.

From any group of electrons the contribution will be

d d dr dq\ .
—@(—- Vr)—(—i;(Vq) or V(@— ‘E),
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and so the component current parallel to OX per unit area
5 d
will be V(Eg - (—(il—z- , where 4, B, C are the sum totals per unit

volume of p, ¢, 7. Thus if we denote (4, B, ') by G’, the electric
current, expressed as a vector, is ¥ rot G'.

60. Let us consider a stationary medium in which there
SEI is electric density p in addition to, and apart

ma.g't::tlc g from, any effect of the polarisation D’, and also
T . . .
o Stationary @ conduction current C. The equations (41) will

medinm. now become

(%(E+D’)+ VrotG'+C=VrotH

d
d—t(H)=- Vrot E
with
div E = total densities=—div D’ +p, i.e, div(E+ D")=p;

and div H=0, for we have no strictly magnetic matter, having
merely electrons.

Let us now introduce a new quantity H, defined by
H=H, +G’;

then the equations become
%(E +D’)+ C="VrotH,
d
(—i—t(H‘+ G)=—Vrot E

with div(E+D)=p, div(H,+G)=0......... (44).

But these are the ordinary Maxwell-Hertz equations in these
units, H, being Maxwell’s magnetic force and G’ the magnetic
moment; H or (H, + G’) is Maxwell’s magnetic induction. We

have therefore justified the interpretation of —217, dvp [r7],

or §}7 (moment of electric momentum) as the magnetic moment

of the group of electrons.
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61. Returning to the minute scale of examination adopted
in § 55, the force acting upon a stationary charge
Energy in th .
nele;?;,d m,a of volume density p when the electric force is e
o ilng will be pe: if the charge be moving with velocity
u the electric force acting upon it will be

+ 5 [um],
which we shall denote by f, and the ponderomotive force per
unit volume will be p times this, or pf.
Now over any stationary volume
s ram=fa(o 122
= [dv{e(V roth — pu) — hV rot e}, by (40),
=V [dv(erot h — hrot e) — [dvpeu
=—V {dv div [eh] — [dvpuf,
by (9), and because

uf=u(e+%,[uh])=ue

- d%fdva}(e’+h’)=Vf{dS[eh]}—fdvpuf.

Thus the rate at which potential energy increases in any
volume, after providing for the rate at which work is done
on the moving charges, is equal to the rate of flow into that
volume of the vector ¥ [eh] across the bounding surface. This
quantity is the Poynting flow of energy and may be denoted
by p.

62. Let us now examine the question of whether the
Porcesina  iDterpretation in § 60 of magnetisation as due to
magneto- the movements of electrons in small orbits will
BRUECS give the same ponderomotive forces as the ordinary
theory of magnetic matter.

Continuing with the minute scale of examination of the
previous section we have as the resultant force acting on a

group of electrons fdv P (e + Tl,— [i‘h]) , where r is, as before, the

vector to the point from an origin within the group, Now we
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are here concerned not with the electric and magnetic forces
due to the other electrons of the group but with those due to
an external field which we may denote by E, H. If E, H be
used to denote the forees at the origin those at the point r
will be, to the first approximation, E+rV .E, H+rV.H and
the resultant force on the group will be

fdvp(E+rV.E+T1,—[i-,H+rV.H]).

Now fdvp =0, [dvpr=0, [dvpt=0,
since the magnetic medium is supposed to have no charge and
no electric polarisation. Thus the resultant becomes

1 5 1 .
T,—fdvp [t,*V .H] or vfdvp [t.rV, H]

Now we saw in § 59 that
fdvpsz =0, [dvpdy=~ Vr, [dvpiz= Vg,
80 that the operator

) s e d d
fdva.rv —-V<q &;—Td_y)'
and accordingly
Jdvpi {rV} = fdvp (i3 + jy + ki) {rV}

=V|i j k
PEUG
d 4 d
de dy dz
=V 8. SR e o (45).

Hence
5 1dup[#.5V, H] =[mV]H]
=V.mH-m.VH
=V .mH,
for div H=0, as the H is due to an external field.
Now the force according to Mazwell’s theory is mV . H and

mV.H -V . mH =~ [m[VH]], by (2),
1=0,
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for [VH]=rot H=0,
as H is due to currents or magnetisation away from the origin.

Hence the resultant force is mV . H as in Maxwell’s theory.

63. The couple acting on the group of the previous
section will be, omitting terms in E which ob-
Couples in L 4
& magneto- viously vanish,

static fleld. f do5 [r, % (&, (H+rV. H)]] ............ (46).

Now fdvp [r% [i-H]i‘ =—Il7fdvp(i'.rH —ri.H),

and as in (45),
fdvpt {rH} =V [mH],
while [dvpir=0, for {dvpxi =0, &c.

Harios f b l:r, 7 [i-H]] — [mH],

and the contribution to the couple from rV.H in (H + rV.H)
of (46) will, since r is very small, be negligible in comparison
with that from H which we have evaluated. Thus the couple
is [mH] as in Maxwell’s theory.

64. The force acting on any particle whose charge is ¢ is

gf, and the stress inside a material medium made

Siresses™™  up of such particles will be determined by the

ordinary laws of mechanics, just as the stresses

due to gravity are determined by such forces as mg upon
particles of mass m.

Inasmuch as we have no means of measuring stresses in
the aether it does not appear that much is gained by obtaining
stresses in the aether to explain the force ¢f exerted upon
particles imbedded in it. There is however some interest in

such an interpretation of the phenomena and we may proceed
ag follows.

65. The resultant force exerted over any volume is

fdvp (e+%, [an]),
3—5
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or, as p=dive and d_e +pu=Vroth,

fdv(edwe+ Vl_(Vroth——gz) h]).

On adding to this the contribution

Vfdu[ ( +Vrote)] + [dvndivn,

which vanishes in virtue of the second equation of (40) and
divh =0, we obtain

f dv(edive-+hdivh —[e, rot 6] — [h, rot 1])

o ([fe.4] + [ 2)).
Now by (2),

[e, rot e] =[e[Ve]]= V,.ee —eV.¢,
where the suffix of the operator V, indicates that it acts upon
the first e of ee only;
.~ [e,rote]=3V.e*—eV.e.
Hence
Jdv(edive —[e,rot e]) =fdv(e. Ve +eV.e—-1V.e)
=fdv(Ve.e—}V.e),
the V operating in the usual manner on the terms which
follow it, j
=—{dS(Ne.e—{N.e?),
where N is, as before, a unit vector along the inward normal.
Thus the force is F, + F,, where
F,=—[dS(Ne.e—}N.e’+ Nh.h— }N.h?),

1 d
Fg————jdva-i [eh]
ik f dvgy
p being V[eh], the Poynting flow.

66. Accordingly if the field be purely electrostatic, and
the components of e are (X, Y, Z), we shall have F,=0 and the
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force in the direction of OX may be interpreted as due to a
force per unit area upon the surface amounting to

—(X+mY+nZ) X +31(X*+ Y+ 29,
where N = (I, m, n).
Thus on a rectangular parallelepiped with its edges parallel

to the planes of reference we have forces per unit area parallel
to the axis 0X:

(a) on the face parallel to Y0Z, for which
N=(=1,0,0), }(X:— Y- 2%);
(b) on the face parallel to ZOX, for which
N=(0,-1,0), XT;
(c) on the face parallel to XOY, for which
N=(0,0 —-1), ZX.
We have accordingly tensions {e* along lines of force and

pressures }e? at right angles to them. This system agrees with
Mazwell’s stresses in the aether.



CHAPTER VIL

THE ELECTRON THEORY OF LORENTZ APPLIED TO
MOVING MEDIA.

67. LET us first of all consider a medium capable of electric

: but not of magnetic polarisation. Let us take an
ase of a non- . &

conducting  ordinary element of volume w containing a number

Qﬁ“;{;‘i’;‘ S ot groups of electrons, and within that element an

polarisation  origin moving with the velocity u of the medium.

,bf:g::&';?m_ Then for each group the integral fdvp =0, while
ceptibility.  [dypr, the electric moment, is the contribution
towards wD’, the moment of the element of volume w.

Now since the algebraic sum of the charges in any group is
zero we may suppose that when D’ is zero all the electrons in a
group are superposed at the origin within the group, and that
the polarisation of the medium is effected by moving these
electrons from the origin to their final positions. Owing to

this movement only, —3; f dvpi, the component of D’ along 0X,
is, as in § 56, the rate of flow of electricity per unit area across
a plane perpendicular to OX; and hence ;;— f dvpz, the com-

ponent of D’ along OX, may be regarded as the quantity of
electricity which has flowed through a plane perpendicular to
OX, per unit area.

Thus D’ is a vector of the type considered in §42, and its
rate of change through a circuit moving with the velocity u of
the medium is made up of

u div D’ + rot [D'u],

owing to the velocity of the medium, and %lz—owing to time

changes independent of that.
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Now, since the coordinate of an electron of charge g is r
referred to an origin which moves with the medium, the con-
vection current due to the electron will be ¢F relative to that
origin. If then we take a circuit whose linear dimensions are
of the first order of small quantities and which has at each
point the velocity u of the medium at that point, the flow of
electricity through the circuit will be that obtained by summing
over it the effects of such terms as g¥. On the other hand the
surface integral of D’ over the circuit will be changing at a rate
which is due to the same terms gf. Thus the flow of electricity
through a circuit moving at each point with the velocity u of
the medium will, as when the medium is stationary, be equal
to the rate of change of the surface integral of D’ over the
circuit: the flow will, accordingly, be

ddli +u div D’ + rot [D'u].

Further, as in § 43, the rate of change of the surface integral
of E over the moving circuit per unit area will be the com-
ponent perpendicular to it of

(fl::"' u div E + rot [Eu].

68. Let us now counsider the equations obtained by applying
the two fundamental relations to a circuit moving with the
velocity u of the medium. If E’, H’ be the electric and
magnetic forces at a point moving with the medium we have

‘3—‘;: +udiv E + rot [Eu] + %‘%— +u div D’ + rot [Du]
= Iirot H’,
and similarly, (7).
dH /
y —=—+u div H + rot {Hu] =—Vrot E
These equations may be written in the form
dD+Dd1vu DV.u="Vrot H |
dt
G e PR TS 13 L e e (48)
s +Hdiva —HV.u=— Vrot E/
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69. Owing to the magnetisation of moment G’ which
by e resulted from the movement of electrons we had,
magnetic when the medium was stationary, an electric con-
medtum, vection current of amount Vrot G, and the
magnetic moment of a group of electrons was the integral

through it of dvp [rf]. If the medium be moving instead

of stationary and the circuit through which the flow is con-
sidered be either stationary or moving with the medium, the
electric current due to the magnetisation will be still V rot G’:
for owing to its physical dimensions a term due to the con-
vection of electrons with velocity f relative to a medium whose
velocity is u may involve either u or # to the first power, or
differentials of these with respect to the coordinates, but
cannot involve squares or products of u and . We may
thus equate the current to ¢ () + Y~ (u), where ¢, ¥ are
linear operators. Now putting u=0 we have

¢ ()= Vrot G';

and 4 (u)=0, for it is zero when ¥=0 and there is no mag-
netisation. Thus the current in any case is ¥ rot G

70. If then we consider the general case in which we
General case  superpose the effects of electric and magnetic

el polarisation, together with a conduction current
C, we have
Zt’-'_ Ddivu—DV.u+ Vrot G’+C= Vrot H l
il ...(49),
dt+Hd1vu HV.u =—"Vrot E/
with div D=p, divH=0.
Further, on replacing H'— G’ by H//, we obtain
((iilt)’_'- D divu—DV.u+C= Vrot H/
(50).
L+Hdlvu HV.u =-=VrotE’

dt
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71. If we treat the surface of discontinuity as the limiting
Boundary cage of a thin region of continuous transition we
conditions. find, as before, the velocity being continuous, that
the tangential components of E’, H,’ are continuous, or

[NET:=0, [NH/=0.

72. Let us determine the result of applying the two

Equations fundamental relations to a stationary circuit
:;::1;94 instead of to one moving with the medium.

stationary Let us consider, as in § 42, the cylindrical
eiroutt. element of volume 8v whose ends 8S, 88’ are
formed by the area 8'S at the times ¢ and (£ + 8t) respectively.
If we regard 8'S as fixed and &S’ as moving with the medium,
having started from &S at the time ¢, the electrons which have
crossed the fixed surface 8S during the time & will be made
up of those which are in the volume 8v together with those
which have escaped during the time & through the moving
surface 8S’ or the tubular surface. The convection currents
or rates of flow at the surfaces 8S, §S’ and the tubular surface
being denoted by F, F/, P respectively, the total charge which
has flowed into the volume v across the ends will, as in § 42,
be 8tF8S — 8t F'8S’; the volume density iuside Sv being
—divD’ the total charge then will be — &vdivD’ or
— {6Susdt} divD. On comparison with §42 it will be seen
that the flow in the time 8 due to P will be of the order
(8t)? 88, for the quantity which has flowed across the surface
per unit area will be P&t and the area itself is of length u &t;
hence the contribution from the tubular surface is negligible by
comparison with the other terms. The resulting equation is
thus
8t F8S—8tF 88 =—25t.udSs divD'

Now 8¢’ will differ by 8S by quantities of the order §S8t
and, omitting quantities infinitely small by comparison with
those retained, we may replace 8§S’ by &S in this equation:
thus the flow F through a fixed surface is connected with the
flow F’ through a moving surface by the relation

B FLE T QLva DT oo 5oerobissd (51).
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Expressed in non-analytical language the difference between
F’ and F consists merely in the convection current due to the
volume density —div D".

Now F = %lPt— +u div D’ + rot [D"u]
and so, by (51),
dD
F = .Et— +-rat PRAY s tanates der o (52).

If there be a volume density p of electricity in addition to
any effects of the polarisation D', we shall have due to that alone

A magnetic polarisation due to electrons will have, by § 59,
no volume density of electricity, and so will not give rise to
any difference between F and F. Hence, using (52) and
(58) instead of (49), we shall have, as the general equations
referred to a fixed origin,

ﬁi;+do +rot [D'u]+ pu+ Vrot G'+ C = Vrot H

. .(54).
dH
Far Vrot E
On replacing H by (H, + G’) we get
Of;[_? +rot [D'u]+udivD+C=Vrot H,
. (B5).

‘%(H,+G’)=-— Vrot E

73. If we subtract (54) from (49) we get, using p =div D,
0=divH,
uV.D+Ddivu—DV.u—u divD —rot [D'u]
= Vrot (H'—H)
uV.H+H diva—HV.u—udivH = Vrot (E—E) }
Hence by (10)
rot [Eu]= Vrot (H' — H)
rot [Hu]=— V'rot (E'— )}
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and we have, as before,

S
E'=E+ 5, [uH]
H' = H + = [Eu]
e
Henos also ST R 12— 7).

74. We shall first of all consider a slight extension of
Lorentz’s transformation theorem. Let us suppose
Effects of N . .
motion that material media are moving through the
troughthe  gether with constant velocity uw, a function
neither of the coordinates nor the time. The
equations referred to moving axes will be, if there are no
media with magnetic susceptibility, so that H,=H, and
Hl’ = H’:

dD ;
Pl +C=7Vrot H &
dH S e a y

where D=E +(K—1)E,, divD=p, divH=0,
, 1 A 1
E'=E+[uH] H=H-[uE],

and C =AE’, A being the conductivity.
At boundaries [NE']}=0, [NH]}=0
These equations must now be transformed by the intro-
duction of new variables, distinguished by double dashes:
a'=a, Y=y 2=z t'=t-—(uz+tovy+wz)/V
Then we shall have
d d d _d wd d d v d

AR i e TR T e iy
: R
ie. V=V"- S % 7 TR ERN N (59).

Thus ViVH]=V[V"H] - —117 [11 Z—:’:] )
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3 , T s [
ie. Vrwot H = V rot” H — var [uH]
- Vinok B (E'—E)
dt// »

if squares of u/V may be neglected.
Hence the first equation of the field, in (58), becomes

dD T A
d—t,,+C=Vrot H —(—z_tﬁ(E —E),
or dit" (KE)+C =7V rot” H".
Similarly the second equation of the field becomes
dH’ " ’
W = —V rot” E'.

Let us now transform the equations
divD=p, divH=0.
We have, by equations (59),
Vp-v'D- L {u dD},

VR de
ie. div D =div" D = -5, {u (V rot H'— C)}.
Now div[uH’]=H’ rot u —u rot H’,
1 1. /
and so —-T7{u rot H’}=T,d1v [uH’]
1 ol r
g div” [uH’]

if squares of u/V be neglected,
= div” (E'— E).

Hence p=div"(D+E —E)+ ‘117, {ucC]}
—div’ (RE') + —,1,- {uC}
and div" (KE') =p =, (aC}.

Similarly div’ H'=0.
As boundary conditions we shall have that [NE’}? and
[NH]} shall vanish.
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75. Hence the former equations become, neglecting squares
of u/V,

4 (RE)+C=Vrot" W
M) =-VrrE
with div’ (KE')=p L. (uC},

Ve
div’ H'=0, C=2X\E"
At boundaries [NE’]} and [NH’]} will vanish.

But these are the ordinary equations for the electric and
magnetic forces E’, H’ of the same distribution of material
media when t” is the time, the media now being stationary
and the current being AE’, Ohm’s law still holding. Also the
usual boundary conditions will be satisfied, and the only change
is that the new volume density div (X E’) will be

1

76. Hence it follows that the path of a ray remains on
transformation a possible path of a ray and that if squares of
u/V be neglected all optical experiments made with sources of
light and apparatus fixed with regard to the earth, which moves
through the aether with velocity u, would lead to the same
results as if the earth were stationary. Thus such experiments,
in which there are no conduction currents to cause a change in
p» cannot, if squares be neglected, lead to any determination of
the value of w

If however the source of light be outside the earth the
effects of the motion will become apparent. We shall consider
as an example Airy’s ‘ water telescope’ experiment in which
the effect of aberration was found to be the same when a
telescope tube was filled with water as when it was empty.

For the light coming from a star in the direction n or
(!, m, n) the electric and magnetic forces in the free aether
may be taken as proportional to ¢ #(Vé+iztmytns) op gis (Fe+0T), the
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axes of reference being fixed in the aether: here s =2m/(wave
length).

If the origin be now taken at a point moving with the
velocity u of the earth, and z', ¥, 2, ¢ be the velocity and
time referred to the new system, we shall have t=¢, z =2' +ut/,
y=1y +vt, z=2+wt. The forces will then be proportional to
e#V'+nT) where V'=7V + un.

Now let us apply the transformation theorem and substitute
", ", y", 2’ given by
V=t—ur/V3, o’'=a y'=y ==z
The exponential factor then becomes e#(V'#"+V'ur/Viar
which we may write as e " (V'#+0"s")  ywhere

OV 1+ uV VR mt oV VR nwV [V
3 = ”-VTI/ = l” = mll X n/l D

Hence, omitting squares of small quantities, each portion is
equal to (14+2V'un/V*} or 1+ V'un/V?or 1+un¥V or V'/V.
Hence V"=V, as we should expect from the fact that the
equations satisfied are those for axes at rest. Further

l” mn n”

I¥uV - m¥e/V ntw/V

We know that rays of light in the actual will correspond
with rays of light in the transformed system. Hence if we
consider the rays which come to a focus at a particular point
of the observer’s eye in the actual and transformed systems, we
find that the rays from the star in the actual system will come
to the same focus as those which, if the earth were at rest,
would have emanated from a star in the direction (I”, m”, n”).

This is what Airy found, for the direction is that of the
resultant of (V7, Vm, Vn) and of (v, v, w). Further the period
is quickened in the ratio of s to s or of (V' + un) to V, which is
in accordance with Dppler’s law.

),
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