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PREFACE .

It is probable that almost every teacher of advanced calculus feels the
need of a text suited to present conditions and adaptable to his use. To
write such a book is extremely difficult, for the attainments of students
who enter a second course in calculus are different, their needs are not
uniform, and the viewpoint of their teachers is no less varied. Yet in
view of the cost of time and money involved in producing an Advanced
Caleulus, in proportion to the small number of students who will use it,
it seems that few teachers can afford the luxury of having their own
text; and that it consequently devolves upon an author to take as un-
selfish and unprejudiced a view of the subject as possible, and, so far as
in him lies, to produce a book which shall have the maximum flexibility
and adaptability. It was the recognition of this duty that has kept the
present work in a perpetual state of growth and modification during
five or six years of composition. Every attempt has been made to write
in such a manner that the individual teacher may feel the minimum
embarrassment in picking and choosing what seems to him best to meet
the needs of any particular class.

As the aim of the book is to be a working text or laboratory manual
for classroom use rather than an artistic treatise on analysis, especial
- attention has been given to the preparation of numerous exercises which
should range all the way from those which require nothing but substi-
tution in certain formulas to those which embody important results
withheld from the text for the purpose of leaving the student some
vital bits of mathematics to develop. It has been fully recognized that
for the student of mathematics the work on advanced calculus falls in-
a period of transition, — of adolescence, — in which he must grow from
close reliance upon his book to a large reliance upon himself. More-
over, as a course in advanced calculus is the wltima Thule of the
mathematical voyages of most students of physics and engineering, it
is appropriate that the text placed in the hands of those who seek that

goal should by its method cultivate in them the attitude of courageous
ii



iv PREFACE

explorers, and in its extent supply not only their immediate needs, but
much that may be useful for later reference and independent study.

With the large necessities of the physicist and the growing require-
ments of the engineer, it is inevitable that the great majority of our
students of calculus should need to use their mathematics readily and
vigorously rather than with hesitation and rigor. Hence, although due
attention has been paid to modern questions of rigor, the chief desire
has been to confirm and to extend the student’s working knowledge of
those great algorisms of mathematics which are naturally associated
with the calculus. That the compositor should have set “vigor” where -
“rigor” was written, might appear more amusing were it not for the
suggested antithesis that there may be many who set rigor where vigor
should be.

As I have had practically no assistance with either the manuscript
or the proofs, I cannot expect that so large a work shall be free from
errors; I can only have faith that such errors as occur may not prove
seriously troublesome. To spend upon this book so much time and
energy which could have been reserved with keener pleasure for vari-
ous fields of research would have been too great a sacrifice, had it not
been for the hope that I might accomplish something which should be
of material assistance in solving one of the most difficult problems of
mathematical instruction, — that of advanced calculus.

EDWIN BIDWELL WILSON
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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ADVANCED CALCULUS

INTRODUCTORY REVIEW

CHAPTER 1
REVIEW OF FUNDAMENTAL RULES

1. On differentiation. If the function f(x) is interpreted as the
curve y=f(x),* the quotient of the increments Ay and Ax of the
dependent and independent variables measured from (z, y,) is

y—-yo=eg!=Af(m)=f(a:o+Ax)—f(a:o)’ 1)
Ax

z—z, Az Ax

and represents the slope of the secant through the points P(x,, y,) and
P'(x,+ Az, y,+ Ay) on the curve. The limit approached by the quo-
tient Ay/Az when P remains fixed and Az =0 is the slope of the
tangent to the curve at the point P. This limit,

: Ay_ i f(xo"'AI) _f(xo)_ '
Jim 72 = lim A =f'(=), @
is called the derivative of f(x) for the value z ==, As the derivative
may be computed for different points of the curve, it is customary to
speak of the derivative as itself a function of x and write

lim 27 = Jim SEHED 2SO _ g1, 3)

Az =0 AL Az=o

There are numerous notations for the derivative, for instance
d x) dy

* Here and throughout the work, where figures are not given, the reader should draw
graphs to illustrate the statements. Training in making one’s own illustrations, whether
graphical or analytic, is of great value.

1



2 . INTRODUCTORY REVIEW

The first five show distinctly that the independent variable is , whereas
the last three do not explicitly indicate the variable and should not be
used unless there is no chance of a misunderstanding.

2. The fundamental formulas of differential calculus are derived
directly from the application of the definition (2) or (3) and from a
few fundamental propositions in limits. First may be mentioned

a=@d—, where 2= ¢ (y) and y=r(z). . “

SIONE (5)

dy dy df(x) dy

dx dx
D(u + v) = Du & Dv, D (uv) = uDv + vDu. (6)
D <15) _ vDu ;; uDv * D(a") = nan1. o)

It may be recalled that (4), which is the rule for differentiating a function of a
function, follows from the application of the theorem that the limit of a product is

the product of the limits to the fractional identity Az _ Az Ay ; whence
Ar Ay Az
lim E— lim Az . lim Av_ ]imfﬁ- lim — Ay

Ax=0 AT Ax= oAy Ax=0 AT Ay=0 AY Az= oAx

which is equivalent to (4). Similarly, if ¥ = f(x) and if x, as the inverse function
of y, be written z =f-1(y) from analogy with y =sinz and z =sin-1y, the
relation (5) follows from the fact that Az/Ay and Ay/Ax are reciprocals. The next
three result from the immediate application of the theorems concerning limits of
sums, products, and quotients (§ 21). The rule for differentiating a power is derived
in case n is integral by the application of the binomial theorem.

Ay _(x+ Az)n—an . n(n—1 _
e e T

and the limit when Az=0 is clearly nz»-!. The result may be extended to rational
»

values of the index n by writing n = —fl—), y =49, y7=z» and by differentiating
both sides of the equation and reducing. To prove that (7) still holds when n is
irrational, it would be necessary to have a workable definition of irrational numbers
and to develop the properties of such numbers in greater detail than seems wise at
this point. The formula is therefore assumed in accordance with the principle of
permanence of form (§178), just as formulas like ama» = am+n of the theory of
exponents, which may readily be proved for rational bases and exponents, are
assumed without proof to hold also for irrational bases and exponents. See, how-
ever, §§ 18-25 and the exercises thereunder.

* It is frequently better to regard the quotient as the product u - v—1 and apply (6).
t For when Az =0, then ay =0 or ay/ax could not approach a limit.
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3. Second may be mentioned the formulas for the derivatives of the
trigonometric and the inverse trigonometric functions.
e

Dsinx =cosx, Dcosx =—sinux, : ®
or Dsinz=sin(x+ }m), Dcosx=cos(x+}m), &)
Dtanx = sec’x, D cot x = — cscla, 9)
Dsecx =secx tanw, D escx = — cscx cot x, @10y

Dversx=sinx, where versz=1—cosxz=2sin’}x, (11)
+1 J’ + in quadrants I, IV,

O S- =
D s~z = Vi =« “ 11, 111, a2
+1 (— in quadrants I, II
-1 = ’ 9
Dcos™lx = m, i+ “ “ 1L, IV, 13)
1 1
Dtan~lx = ]—-+—m2a Deot g =— m) (14)
+1 in quadrants I, III
Dsec-lp = + in quadrants I, III,
o1 {Te™ nw, @)
D oesc—lz = +1 , — in quadrants I, III, 16
xVat—1 + o« “ II, IV, 16)
D vers—lo — +1 , + in quadrants I, II, an

V2o —a -« eI

It may be recalled that to differentiate sinz the definition is applied. Then

Asinz _sin(z + Az) —sinz _ sinAr 1—cosAzx- .
= = cosz — sinz.
Az Ar Ax

It now is merely a question of evaluating the two limits which thus arise, namely,

. sinAx . 1l—cosAx
lim and lim —————.
az=0 Ar Ax=0

(18)

From the properties of the circle it follows that these are respectively 1 and 0.
Hence the derivative of sinz is cosx. The derivative of cosz may be found in
like manner or from the identity cosx =sin (} # — ). The results for all the other
trigonometric functions are derived by expressing the functions in terms of sinz
and cosz. And to treat the inverse functions, it is sufficient to recall the general
method in (5). Thus

if y = sin—1z, then siny = 2.

Differentiate both sides of the latter equation and note that cosy = + V1 — sin?y
=4 V1— 22 and the result for D sin—1x is immediate. To ascertain which sign to
use with the radical, it is sufficient to note that + v'1— 22 is cosy, which is positive
when the angle ¥ = sin—1z is in quadrants I and IV, negative in II and IIIL.
Similarly for the other inverse functions.



4 INTRODUCTORY REVIEW

EXERCISES *

1. Carry through the derivation of (7) when n = p/g, and review the proofs of
typical formul#® selected from the list (5)-(17). Note that the formulas are often
given as Du* = nu*—1Du, Dysinu = cosu Dzu, - -+, and may be derived in this
form directly from the definition (3).

2. Derive the two limits necessary for the differentiation of sin z.

3. Draw graphs of the inverse trigonometric functions and label the portions
of the curves which correspond to quadrants I, II, III, IV. Verify the sign in
(12)-(17) from the slope of the curves.

4. Find Dtanz and D cotz by applying the definition (3) directly.

utv . u—v
+ sin
2

— d (8).
wan()

5. Find D sinz by the identity sinu — sin v = 2 cos

6. Find D tan-1z by the identity tan—-1u — tan—1v = tan—1 lu
7. Differentiate the following expressions :

(@) esc2z —cot 2z, (B) }tandz —tanz + 2, (y) €cos—lz —V1— z2,

(8) sec—1 , (5) *Va* — 2% + a?sin-1 g,

1 z

—  (¢) sin"l ——
V1—z2 ) V14 a2
(n) avers-lz-v2ax—:cz, () cot-lzf‘u

x
— 2 tan-1-
P

What trigonometric identities are suggested by the answers for the following :
1

Vi © e 1 + '

8. In B.O. Peirce’s ** Short Table of Integrals’’ (revised edition) differentiate the

right-hand members to confirm the formulas: Nos. 31, 45-47, 91-97, 125, 127-128,
131-135, 161-163, 214-216, 220, 260-269, 294-298, 300, 380-381, 386-394.

9. If z is measured in degrees, what is D sinz ?

() sec?z, (%) @ o?

4. The loganthmlc, exponential, and hyperbollc functions. The
next set of formulas to be cited are

Dlog,x = %, Dlog,z = 1°§"", (19)
De* = ¢, Da* = «* log,a.t (20)

It may be recalled that the procedure for differentiating the logarithm is

x
Aloger_loga(et 80 —logax_ 1oy 280 L (1, 20V

Az Arx Ar z

* The student should keep on file his solutions of at least the important exercises;
many subsequent exercises and considerable portions of the text depend on previous
exercises.

t As is customary, the subscript e will hereafter be omitted and the symbol log will
denote the logarithm to the base e; any base other than e must be specially designated
as such. This observation is particularly necessary with reference to the common base
10 used in computation.
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If now x/Az be set equal to h, the problem becomes that of evaluating

lim (1 + %)": = 2.71828. .. * logyge = 0.434294 . . .; @1)
and hence if e be chosen as the base of the system, D logx takes the simple form
1/xz. The exponential functions ez and a* may be regarded as the inverse functions
of logz and logez in deducing (21). Further it should be noted that it is frequently
useful to take the logarithm of an expression before differentiating. This is known
as logarithmic differentiation and is used for products and complicated powers and
roots. Thus

if Y = 2%, then logy = zlogz,
and %y’=1+loga: or y = z*(1 + logx).

It is the expression y’/y which is called the logarithmic derivative of y. An especially
noteworthy property of the function y = Ce= is that the function and its derivative
are equal, ¥ =y ; and more generally the function y = Ce¥= is proportional to its
derivative, y’ = ky.

5. The hyperbolic functions are the hyperbolic sine and cosine,

e -i‘- e~ (22)

H
2

. e —e "
sinhx = Te, coshz =

and the related functions tanhx, cothwx, secha, cschx, derived from
them by the same ratios as those by which the corresponding trigono-
metric functions are derived from sinz and cosx. From these defini-
tigns in terms of exponentials follow the formulas:

cosh’x — sinh?z =1, tanh?x + sech?z =1, (23)
sinh (x + ») = sinh  cosh y + cosh x sinh y, 24
cosh (x + y) = cosh z cosh y 4 sinh z sinh y, (25)

coshg=+,"’°s}’++1, sinhg=i,f°—"s’$, (26)
D sinh x = cosh z, D coshz =sinha, 27
D tanh x = sech®x, D cothax = — csch’e, (28)

D sechx = —sechx tanhx, D cschax=—cschxcotha. (29)

The inverse functions are expressible in terms of logarithms. Thus

2y
Y= sinh"’z, X = Sil]h:l/ = 8_‘)_‘;1. )
eV —2zxe? —1=0, e/=x+ V1.

* The treatment of this limit is far from complete in the majority of texts. Reference
for a careful presentation may, however, be made to Granville’s ** Calculus,” pp. 31-34,
and Osgood’s ** Calculus,” pp. 78-82. See also Ex. 1, (8), in § 165 below.



6 INTRODUCTORY REVIEW

Here only the positive sign is available, for ¢¥ is never negative. Hence

sinh-'z = log(x 4+ Va* +1), » any x, (30)
cosh='z = log(x + Va?—1), o >1, 31)
_ 1 1+« )
tanh l.23="2'10g1_w, a:’<1, (32)
R _' 1 xz4+1
coth: 1x=élogx_1, 2 >1, (33)
sech~!z = lo, 1:!: l—--1 ?<1 34
g\ s ’ ) (34)
X ) : 1 1 .
Lo csch~!'z = log (5 + = + 1), any z, (35)
. +1 +1
Dsinh~'z = ——— Decosh g = —— 36
) Vel V-1 @
Dtanh~ 'z = 13 =D coth~'z = j i) c)
+1 -1
Dsech 'z = ——=——3 Decsch'z = ———- 38
eVi—z * x V14 a? (38)

EXERCISES

1. Show by logarithmic differentiation that
wovw
D(uvw...),_(;{..i.;.i.a.l. ...)(u,mo...),

and hence derive the rule: To differentiate a product differentiate each factor
alone and add all the results thus obtained.

2. Sketch the graphs of the hyperbolic functions, interpret the graphs as those
of the inverse functions, and verify the range of values assigned to z in (30)-(35).

3. Prove sundry of formulas (23)-(29) from the definitions (22).

4. Prove sundry of (30)-(38), checking the signs with care. In cases where
double signs remain, state when each applies. Note that in (81) and (34) the
double sign may be placed before the log for the reason that the two expressions
are reciprocals.

5. Derive a formula for sinhu 4 sinhv by applying (24) ; find a formula for
tanh } x analogous to the trigonometric formula tan } z = sinz/(1 4 cosz).

6. The gudermannian. The function ¢ = gd z, defined by the relations
sinhz =tan¢, ¢ =gdz =tan-lsinhz, —ir<o¢<+im,
is called the gudermannian of . Prove the set of formulas:
coshz =sec¢, tanhz =sing, cschx =cot¢, etc.;
Dgdz =sechx, z=gd-1¢ =logtan(}¢ + }n), Dgd-1¢ =sece.
7. Substitute the functions of ¢ in Ex. 6 for their hyperbolic equivalents in
(23), (26), (27), and reduce to simple known trigonometric formulas.
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8. Differentiate the following expressions =

(@ @+1)*@+2)"2@x+3)~4 () 2\, (7) logz(z +1),
(8) z + logcos(x — } ), (¢) 2tan—lex, (¢) z— tanhuz,
e (@ sin mx — mcosmz)

() ztanh-1z + } log (1 — 2?), ®

m? + a?
9. Check sundry formulas of Peirce’s ** Table,’’ pp. 1-61, 81-82.

6. Geometric properties of the derivative. As the quotient (1) and
its limit (2) give the slope of a secant and of the tangent, it appears
from graphical considerations that when the derivative is positive the
function is increasing with z, but decreasing when the derivative is
negative.* Hence to determine the regions in which a function is in-
creasing or decreasing, one may find the derivative and determine the
regions in which it is positive or negative.

One muét, however, be careful not to a.pplly this rule too blindly ; for in so
simple a case as f(z) = logz it is seen that f“(x) = 1/z is positive when z > 0 and
negative when z < 0, and yet log  has no graph when ¢ < 0 and is not considered
as decreasing. Thus the formal derivative may be real when the function is not
real, and it is therefore best to make a rough sketch of the function to corroborate
the evidence furnished by the examination of f’(z).

If z, is a value of x such that immediately t upon one side of x =z,
the function f(«) is increasing whereas immediately upon the other
side it is decreasing, the ordinate y,=f(x,) will be a maximum or_
minimum or f(x) will become positively or negatively infinite at
If the case where f(x) becomes infinite be ruled out, one may say that \/
the function will have a minimum or maximum at x, according as the
derivative changes from negative to positive or from positive to negative
when x, moving in the positive direction, passes through the value x,.
Hence the usual rule for determining maxima and minima is to jmd
the roots of f'(x) =0.

This rule, again, must not be applied blindly. For first, f*(x) may vanish where
there is no maximum or minimum as in the case y = 23 at * = 0 where the deriva-
tive does not change sign ; or second, f’(z) may change sign by becoming infinite
as in the case y = zt at z = 0 where the curve has a vertical cusp, point down, and
a minimum ; or third, the function f(x) may be restricted to a given range of values
a =z = b for z and then the values f(a) and f(b) of the function at the ends of the
interval will in general be maxima or minima without implying that the deriva-
tive vanish. Thus although the derivative is highly useful in determining maxima
and minima, it should not be trusted to the complete exclusion of the corroborative
evidence furnished by a rough sketch of the curve y = f(x).

* The construction of illustrative figures is again left to the reader.

t The word *‘immediately ”’ i8 necessary because the maxima or minima may be
merely relative; in the case of several maxima and minima in an interval, some of
the maxima may actually be less than some of the minima.
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7. The derivative may be used to express the equations of the tangent
and normal, the values of the subtangent and subnormal, and so on.

Equation of tangent, y—y,=y,(x—x,), 39
Equation of normal, (y —y,) ¥, + (x — ;) =0, (40)
TM = subtangent =y, /y;, MN = subnormal =y, y,, (41)
OT = z-intercept of tangent =2z, —y,/y,, ete. (42)

The derivation of these results is sufficiently evi-
dent from the figure. It may be noted that the
subtangent, subnormal, etc., are numerical values
for a given point of the curve but may be regarded
as functions of x like the derivative.

In geometrical and physical problems it is frequently necessary to
apply the definition of the derivative to finding the derivative of an
unknown function. For instance if 4 denote the Y
area under a curve and measured from a fixed
ordinate to a variable ordinate, 4 is surely a func-
tion A(x) of the abscissa « of the variable ordinate.
If the curve is rising, as in the figure, then [0 AT X

MPQ'M' < AA < MQP'M', or yAx < AAd < (y+ Ay) Ax.

Divide by Az and take the limit when Az = 0. There results

lim y = lim a4 = lim (y + Ay).
Ax T azzo

Az =0 Az =0
. AA d4A
Hence }il;loa ==Y ' (43)

Rolle’s Theorem and the Theorem of the Mean are two important
theorems on derivatives which will be treated in the next chapter but
may here be stated as evident from their geometric interpretation.
Rolle’s Theorem states that: If a function has a derivative at every

VAR) ~Iz—X OI
Fie. 1 Fi16. 2 Fre. 8

point of an interval and if the function vanishes at the ends of the in-

terval, then there is at least one point within the interval at which the

derivative vanishes. This is illustrated in Fig. 1, in which there are
two such points. The Theorem of the Mean states that: If a function
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has a derivative at each point of an interval, there is at least one point
in the interval such that the tangent to the curve y = f(x) is parallel to
the chord of the interval. This is illustrated in Fig. 2 in which there
is only one such point.

Again care must be exercised. In Fig. 8 the function vanishes at 4 and B but
there is no point at which the slope of the tangent is zero. This is not an excep-
tion"or contradiction to Rolle’s Theorem for the reason that the function does not
satisfy the conditions of the theorem. In fact at the point P, although there is a
tangent to the curve, there is no derivative ; the quotient (1) formed for the point P
becomes negatively infinite as Az =0 from one side, positively infinite as Az =0
from the other side, and therefore does not approach a definite limit as is required
in the definition of a derivative. The hypothesis of the theorem is not satisfied and
there is no reason that the conclusion should hold.

EXERCISES

1. Determine the regions in which the following functions are increasing or
decreasing, sketch the graphs, and find the maxima and minima :

(@ 3z —22+2, (B @+ F@—5y3, (v) log (a2 — 4),
(®) @—2Vz—1, () —@+2)ViZ—a, () 2*+az+b.

2. The ellipse is r =Va? + y2 = e(d + «) referred to an origin at the focus.
Find the maxima and minima of the focal radius r, and state why D,r = 0 does
not give the solutions while Dyr = 0 does [the polar form of the ellipse being
r=k(l1— ecos¢)-1].

3. Take the ellipse as z2/a? + »2/b% = 1 and discuss the maxima and minima of
the central radius r =vz? + y2. Why does D,r = 0 give half the result when 7 is
expressed as a function of z, and why will D,r = 0 give the whole result when
x = acos\, y =bsin\ and the ellipse is thus expressed in terms of the eccentric
angle ?

4. If y = P(z) is a polynomial in 2 such that the equation P (z) = 0 has multiple
roots, show that P’ (x) = 0 for each multiple root. What more complete relationship
can be stated and proved ?

5. Show that the triple relation 2742 + 4 a® = 0 determines completely the nature
of the roots of x8 + ax + b = 0, and state what corresponds to each possibility.

6. Define the angle 8 between two intersecting curves. Show that

tand = [f7(zg) — ¢ (%) ] + [1 + 17 (o) 9’ (%0)]

if y =f(z) and y = g (x) cut at the point (z,, ¥,).

7. Find the subnormal and subtangent of the three curves

(a) ¥* = 4pz, (B) #* = 4py, ) 2+t =dm

8. The pedal curve. The locus of the foot of the perpendicular dropped from

a fixed point to a variable tangent of a given curve is called the pedal of the given

curve with respect to the given point.” Show that if the fixed point is the origin,
the pedal of y = f(x) may be obtained by eliminating z,, y,, 6 from the equations

V=Y =¥ @—2), wWo+2=0, yp=S(Z) ¥o=S(%)-
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Find the pedal (@) of the hyperbola with respect to the center and (8) of the
parabola with respect to the vertex and (y) the focus. Show (3) that the pedal of
the parabola with respect to any point is a cubic.

9. If the curve y = f(z) be revolved about the z-axis and if V (z) denote the
volume of revolution thus generated when measured from a fixed plane perpen-
dicular to the axis out to a variable plane perpendicular to the axis, show that
D,V = my2.

10. More generally if A4 (z) denote the area of the section cut from a solid by
a plane perpendicular to the z-axis, show that D,V = 4 (z).

11. If A (¢) denote the sectorial area of a plane curve r = f(¢) and be measured
from a fixed radius to a variable radius, show that Dy 4 = § r2,

12. If p, h, p are the density, height, pressure in a vertical column of air, show
that dp/dh =— p. If p = kp, show p = Ce—*h,

13. Draw a graph to illustrate an apparent exception to the Theorem of the
Mean analogous to the apparent exception to Rolle’s Theorem, and discuss.

14. Show that the analytic statement of the Theorem of the Mean for f(z) is
that a value z = { intermediate to @ and b may be found such that

FO) =S(@) =1 ¢ ©—a), a<§<d
15. Show that the semiaxis of an ellipse is a mean proportional between the
z-intercept of the tangent and the abscissa of the point of contact.

16. Find the values of the length of the tangent (a) from the point of tangency
to the z-axis, (8) to the y-axis, (y) the total length intercepted between the axes.
Consider the same problems for the normal (figure on page 8).

17. Find the angle of intersection of (a) y2=2mz and 2% + y2 = q?,

8a? z? ¥ for 0<A<D
22+ a2’ M awtiEe=! adb<ir<a

18. A constant length is laid off along the normal to a parabola. Find the locus.

B) 22 =4ay and y =

19. The length of the tangent to at + y* =qt intercepted by the axes is constant.

20. The triangle formed by the asymptotes and any tangent to a hyperbola has
constant area.

21. Find the length PT of the tangent to z =V¢? — y2 4 ¢ sech—1(y/c).

22. Find the greatest right cylinder inscribed in a given right cone.

23. Find the cylinder of greatest lateral surface inscribed in a sphere.

24. From a given circular sheet of metal cut out a sector that will form a cone
(without base) of maximum volume.

25. Join two points 4, B in the same side of a line to a point P of the line in
such a way that the distance PA + PB shall be least.

26. Obtain the formula for the distance from a point to a line as the minimum
distance.

2%7. Test for maximum or minimum. (a) If f(z) vanishes at the ends of an inter-
val and is positive within the interval and if f’(z) = 0 has only one root in the
interval, that root indicates a maximum. Prove this by Rolle’s Theorem. Apply
it in Exs. 22-24. (B) If f(x) becomes indefinitely great at the ends of an interval
and f’(x) = 0 has only one root in the interval, that root indicates a minimum.



FUNDAMENTAL RULES 11

Prove by Rolle’s Theorem, and apply in Exs. 25-26. These rules or various modi-
fications of them generally suffice in practical problems to distinguish between
maxima and minima without examining either the changes in sign of the first
derivative or the sign of the second derivative ; for generally there is only one
root of f”(x) = 0 in the region considered.

28. Show that z-1sinz from z=0toz =} steadily decreases from 1 to 2/m.

29. Ifo<z<1, show(a)0<z—log(l+z)< zz (ﬂ) ; <z—log(l+z).

30. If0>z>—l show that = z’<z—log(l+z)<li:

8. Derivatives of higher order. The derivative of the derivative
(regarded as itself a function of x) is the second derivative, and so on
to the nth derivative. Customary notations are:

z) d
1) =5 = = D27 = Dy =y = DY = DYy,
v . dby d* d
f"'(a:),f (x), ...,f()(x); W, %?{, ceey d;{,
The nth derivative of the sum or difference is the sum or difference of
the nth derivatives. For the mnth derivative of the product there is a
special formula known as Leibniz’s Theorem. It is

D*(wv =D"u-v+nD"‘1uDv+MD""uD’v+---+uD"v. 44
2!

This result may be written in symbolic form as

Leibniz’s Theorem D" (uv) = (Du + Dv)", (44"
where it is to be understood that in expanding (Du + Dv)" the term
(Du)t is to be replaced by D« and (Du)® by D°w=w. In other words
the powers refer to repeated differentiations.

A proof of (44) by induction will be found in §27. The following proof is
interesting on account of its ingenuity. Note first that from

D (wv) = uDv + vDu, DZ(uv) = D (uDv) + D (vDu),

and so on, it appears that D? (uv) consists of a sum of terms, in each of which there
are two differentiations, with numerical coefficients independent of u and v. In like
manner it is clear that

Dn(uv) = CyDu-v + C;D"~1uDv + - . - + Cp_y DuDr—1v 4 CruDmy

is a sum of terms, in each of which there are n differentiations, with coefficients C
independent of u and v. To determine the C’s any suitable functions u and v, say,

u=e%, v=ex, uy=eltaz Dreaxr = gkeax,
may be substituted. If the substitution be made and e(1+a)= be canceled,
e~taxDr(up) =1+ a)=Cy+ Cia+---+ Co_yar-1 + Cpan,

and hence the C’s are the coefficients in the binomial expansion of (1 + a)».
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Formula (4) for the derivative of a function of a function may be
extended to higher derivatives by repeated application. More generally
any desired change of variable may be made by the repeated use of (4)
and (5). For if x and y be expressed in terms of known functions
of new variables % and v, it is always possible to obtain the deriva-
tives D,y, D2y, --- in terms of D,v, D2v, ---, and thus any expression
F(z, y, ¥, ¥", ---) may be changed into an equivalent expression
®(u, v, v', v", ---) in the new variables. In each case that arises the
transformations should be carried out by repeated application of (4)
and (5) rather than by substitution in any general formulas.

The following typical cases are illustrative of the method of change of variable.
Suppose only the dependent variable y is to be changed to z defined as y=f(z). Then

dy d (dy) d (dz dy) d’z dy  dz (d dy)

dr? dz\dz) dz\dz dz) " de? dz T dz \dz dz
_d?z dy dz (d dy dz) ﬁ dy (tZ)’ d’y
Tdx?dz " dz\dzdz dz)  datdz  \dz) df

As the derivatives of y = f(z) are known, the derivative d2y/dz? has been expressed
in terms of z and derivatives of z with respect to . The third derivative would be
found by repeating the process. If the problem were to change the independent
variable z to z, defined by = = f(2),

d_y dy dz dy(dz)l tﬂ d[dy(dz) ]

dz dzdz dz\dz) ' dz® dzldz\az

dy _ d’y dz (d:c)-l dy( ) 2 dz d2x [d’y d_:c d2x @] . <da:)3

dz?  dz? dz \dz dz \dz dz dz? dz? dz  dz? dz] \dz

The change is thus made as far as derivatives of the second order are concerned. If
the change of both dependent and independent variables was to be made, the work
would be similar. Particularly useful changes are to find the derivatives of y by
when y and z are expressed parametrically as functions of ¢, or when both are ex-
pressed in terms of new variablesr, ¢ as * = r cos ¢, ¥y = rsin ¢. For these cases
see the exercises.

9. The concavity of a curve y = f(x) is given by the table:

it f"(x,) >0, the curve is concave up at =,
if f"(x,) <0, the curve is concave down at x =z,
if f"(z,)=0, an inflection point at z =x,. (?)

Hence the criterion for distinguishing between maxima and-<ninima :
if f'(x)=0 and f"(x,)>0, a minimum at z =z,
if f'(z)=0 and f"(x,)<0, a maximum at z =2z,
if f'(x)=0 and f"(z)=0, neither max. nor min. (?)
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The question points are necessary in the third line because the state-
ments are not always true unless f""'(z,) # 0 (see Ex. 7 under § 39).

It may be recalled that the reason that the curve is concave up in case f* (z,) >0
is because the derivative f’(x) is then an increasing function in the neighborhood
of x =z, ;. whereas if f”(x,) <0, the derivative f’(z) is a decreasing function and
the curve is convex up. It should be noted that concave up is not the same as
concave toward the z-axis, except when the curve is below the axis. With regard
to the use of the second derivative as a criterion for distinguishing between maxima
and minima, it should be stated that in practical examples the criterion is of rela-
tively small value. It isusually shorter to discuss the change of sign of f*(z) directly,
—and indeed in most cases either a rough graph of f(z) or the physical conditions
of the problem which calls for the determination of a maximum or minimum will
immediately serve to distinguish between them (see Ex. 27 above).

The second derivative is fundamental in dynamics. By definition the
average velocity v of a particle is the ratio of the space traversed to the
time consumed, v =s/t. The actual velocity v at any time is the limit
of this ratio when the interval of time is diminished and approaches
zero as its limit. Thus

and v = lim 2= (45)

In like manner if a particle describes a straight line, say the x-axis, the
average acceleration f is the ratio of the increment of velocity to the
increment of time, and the actual acceleration f at any time is the limit
of this ratio as A¢ = 0. Thus
- Av Av _dv _dx
= E and f— Blnoxt' E = W . (46)
By Newton’s Second Law of Motion, the force acting on the particle is
equal to the rate of change of momentum with the time, momentum
being defined as the product of the mass and velocity. Thus

_d (mz ) _ d’ .
dt —mf moa C)
where it has been assumed in differentiating that the mass is constant,
as is usually the case. Hence (47) appears as the fundamental equa-
tion for rectilimear motion (see also §§ 79, 84). It may be noted that
dv _d (1 \ dT .
F=mv T dz<2mv>—dx’ 47
where T = } mv? denotes by definition the kinetic energy of the particle.
. For comments see Ex. 6 following.
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EXERCISES

1. State and prove the extension of Leibniz’s Theorem to products of three or
more factors. Write out the square and cube of a trinomial.

2. Write, by Leibniz’s Theorem, the second and third derivatives:
(@) e*sinz, (B) coshz cosz, () z%=logz.

3. Write the nth derivatives of the following functions, of which the last three
should first be simplified by division or separation into partial fractions.

(@) vV +1, (8) log(az + b), T @E+)E+1)78,
(8) cosaz, (¢) e=sinz, ¢) 1—2)/(1+2),
1 Brz+1 az + 1

() 0 =, (£
4. If y and z are each functions of ¢, show that
Gy _dy %
dly dtder dt ar z’y"— v’
dz? dz\8 s
@
ﬂ _ @Yy —yr)— 8z (Y’ — y'x) .
dz® x5

5. Find the inflection points of the curve z =4 ¢ — 2sing, y = 4 — 2 cos ¢.

6. Prove (47). Hence infer that the force which is the time-derivative of the
momentum mv by (47) is also the space-derivative of the kinetic energy.

7. If A denote the area under a curve, as in (43), find d4/d# for the curves
(@) y=a(l—cosh), z=a(f —sinf), (B) x=acosf, y=>bsind.

8. Make the indicated change of variable in the following equations:

d2%y 2z dy Yy _ _ d y
(a) dz2+l+:v1d—z (1+z‘~’)2_0’ z =tanz. Ans. — +y=0.
(8) (1—z2)[—_-(d”)] e ¥ L y=0, y=e, =sinu.
y \dz, dr d v
Ans. — + 1=
9. Traanonna,timw polar coordinates. Suppose thatz:rcos¢,y=r sm¢. Then
de dr dy dr
s %cos¢—rsm¢, @ d¢sm¢+rcos¢,

dzy %+ 2(Dgr)® — rDjr
dz? ~ (cos ¢ Dyr — reing)®

10. Generalize formula (5) for the differentiation of an inverse function. Find
d2x/dy? and d3z/dy®. Note that these may also be found from Ex. 4.

and so on for higher derivatives. Find d—- and —

11. A point describes a circle with constant speed. Find the velocity and
acceleration of the projection of the point on any fixed diameter.

d%y (dv
—

d2y dv
1 —— =2uvd 4 40
2. vaedz uvd + ( ) Tz \g

> fz=-1-, Y = uv.
v
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10. The indefinite integral. To integrate a function f(x) is to find
a function F(x) the derivative of which is f(x). The integral F(x) is
not uniquely determined by the integrand f(x); for any two functions
which differ merely by an additive constant have the same derivative.
In giving formulas for integration the constant may be omitted and
understood ; but in applications of integration to actual problems it
should always be inserted and must usually be determined to fit the
requirements of special conditions imposed upon the problem and
known as the initial conditions.

It must not be thought that the constant of integration always appears added to the -
function F(z). Itmay be combined with F(z) so as to be somewhat disguised. Thus

logz, logz+ C, logCz, log(z/C)

are all integrals of 1/z, and all except the first have the constant of integration C,
although only in the second does it appear as formally additive. To illustrate the
determination of the constant by initial conditions, consider the problem of finding
the area under the curve y = cosz. By (48)

DA = y=coszx and hence A =sinz + C.

If the area is to be measured from the ordinate £ = 0, then A = 0 whenz = 0, and
by direct substitution it is seen that C = 0. Hence A = sinz. But if the area be
measured from z=—}r, then 4 =0 when z=—}= and C =1. Hence A=1+sinz.
In fact the area under a curve is not definite until the ordinate from which it is
measured is specified, and the constant is needed to allow the integral to fit this
initial condition.

11. The fundamental formulas-of integration are as follows :

1 1 .
f‘;=logz, fx"=n+1z" if ne=—1, (48)
fe’:e", fa’:a’/loga, (49)
f sinx = — cos z, f cos ¢ = sinz, (50)

f tan z = — log cos x, f cot z = log sin z, (51)
f sec’z = tan z, f csc?e = — cot z, (52)
f tan x sec x = secz, f cotx csc x = — cscx, (83)

with formulas similar to (50)~(53) for the hyperbolic functions. Also

1 1
f it tan—'z or — cot'x, f m=tanh‘lm or coth~'z, (54)
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. f —1];362=3in-1x or —cos™lz, f —,1%}3—2 =+ sinh~'z, (85)

’ 1 +1
———=sec lz or —csc” 'z ——==—— = F sech™! 56
fac\/x*—l ’fzx/l—zz no 08)

+1 _ +1 _
_:z‘\/—z—t_I = 4 cosh™lz, fm =F cschlz, (87).

f -Ec\/_lT_x‘ = vers~lx, f secx = gd~'x = log tan <;’1—T + g) (8)

For the integrals expressed in terms of the inverse hyperbolic functions, the
logarithmic equivalents are sometimes preferable. This is not the case, however,
in the many instances in which the problem calls for immediate solution with

regard tox. Thusify = f (1 + 2%)~} =sinh-1z + C, then & =sinh (y—C), and the

solution is effected and may be translated into exponentials. This is not so easily
accomplished from the form y =log (z + V1 + x2) + C. For this reason and
because the inverse hyperbolic functions are briefer and offer striking analogies
with the inverse trigonometric functions, it has been thought better to use them
in the text and allow the reader to make the necessary substitutions from the table
(80)—(85) in case the logarithmic form is desired.

12. In addition to these special integrals, which are consequences
of the corresponding formulas for differentiation, there are the general
rules of integration which arise from (4) and (6).

f(zc+v—w)=fu+fv—fw, ) (60)
uv=fuv’+fu'v. ' (61)

Of these rules the second needs no comment and the third will be treated later.
Especial attention should be given to the first. For instance suppose it were re-
quired to integrate 2 log z/x. This does not fall under any of the given types; but

2 d(logz)2 dlogz dz dy

Zlogg=—22 7 "7 7,

z %% dlogz dx  dydz
Here (logz)? takes the place of z and logz takes the place of y. The integral is
therefore (logz)? as may be verified by differentiation. In general, it may be
possible to see that a given integrand is separable into two factors, of which one
is integrable when considered as a function of some function of z, while the other
is the derivative of that function. Then (59) applies. Other examples are :

f €inz cos , f tan-1z/(1 + 22?), f a? sin (25).
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In the first, z = ev is integrable and as y = sinz, ¥’ = cosz ; in the second, 2z =y is
integrable and as y = tan—1z, ¥’ = (1 4+ z%)-1; in the third z = siny is integrable
and as y = 23, ¥’ = 822. The results are

esinz, } (tan—1z)?, — % cos (z%).

This method of integration at sight covers such a large percentage of the cases
that arise in geometry and physics that it must be thoroughly mastered.*

EXERCISES

1. Verify the fundamental integrals (48)—(58) and give the hyperbolic analogues
of (50)-(58).

2. Tabulate the integrals here expressed in terms of inverse hyperbolic func-
tions by means of the corresponding logarithmic equivalents.

3. Write the integrals of the following integrands at sight :

(@) sin a:c, (B) cot(ax + D), (y) tanh 3z,
® oo © —\/;?a @ ﬁ
1
™) 7oz ® 5 O
(x) xsx/a—a:?_b, (\) tanz sec?z, (») tanzlogsinz,
() (z_1:1)5' ©) ta.ln_h;lzz’ ‘ () 2 +;ogx,
(p) al+einzcosz, (o) \;:_;1)%, () _—\/1__71_ Sin‘lx.

4. Integrate after making appropriate changes such as sin?z =} — } cos2z
or sec2z =1 4 tan2z, division of denominator into numerator, resolution of the
product of trigonometric functions into a sum, completing the square, and so on.

(a) cos? 2z, (B) sintz. (v) tantz,
1 — sin:
() 2 + 31:1; +25 () 2::21 ’ ) vers’zz'
2% J ex
O T O @ © v
(x) sinbzcos2zx + 1, (A) sinhmz sinh nz, (w) cosxcos2xcos3z,
(») sechztanz —V2z, (o) Ef—;dﬁ’ @) — m—f:_l—_l—w.

* The use of differentials (§ 35) is perhaps more familiar than the use of derivatives..

dz dy f
dx dz = 2y pldey ay dy =2[y @)].

Then f; loga:dz=f2 log dlog z = (log x)2.

The use of this notation is left optional with the reader; it has some advantages and
some disadvantages. The essential thing is to keep clearly in mind the fact that the
problem is to be inspected with a view to detecting the function which will differentiate
into the given integrand.

z2(x) =
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5. How are the following types integrated ?

(a) sin™z cos*z, m or n odd, or m and n even,
(B) tan*z or cot*z when n is an integer,

() sec*z or csc*z when n is even,

(3) tan™z sec*z or cot™zx csc*z, n even.

6. Explain the alternative forms in (54)-(56) with all detail possible.

7. Find (a) the area under the parabola y2 =4 pz fromz=0toz =a; also
(B) the corresponding volume of revolution. Find (y) the total volume of an ellip-
soid of revolution (see Ex. 9, p. 10).

8. Show that the area under y = sin mx sin nz or y = cos mz cos nz from z = 0
to z =  is zero if m and n are unequal integers but } «r if they are equal.

9. Find the sectorial area of r = @ tan ¢ between the radii ¢ = 0 and ¢ = } .
10. Find thearea of the (a) lemniscate r2=a2 cos 2 ¢ and (8) cardioid r=1—cos¢.

11. By Ex. 10, p. 10, find the volumes of these solids. Be careful to choose the
parallel planes so that 4 (z) may be found easily.

(a) The part cut off from a right circular cylinder by a plane through a diameter
of one base and tangent to the other. Ans. 2/3 7 of the whole volume.

(8) How much is cut off from a right circular cylinder by a plane tangent to its
lower base and inclined at an angle @ to the plane of the base ?

(y) A circle of radius b < a is revolved, about a line in its plane at a distance a
from its center, to generate a ring. The volume of the ring is 2 7w2ab2.

(5) The axes of two equal cylinders of revolution of radius r intersect at right
angles. The volume common to the cylinders is 1673/3.

12. If the cross section of a solid is 4(z) = ayz® + a,7% + a,x + ag, a cubic in z,
the volume of the solid between two parallel planes is 3 (B + 4 M + B’) where
is the altitude and B and B’ are the bases and M is the middle section.
z4c
l—cz

13. Show that fl -::cﬂ = tan-!

13. Aids to integration. The majority of cases of integration which
arise in simple applications of calculus may be treated by the method
of §12. Of the remaining cases a large number cannot be integrated
at all in terms of the functions which have been treated up to this

1 .
————————in terms
f\/(1—x2)(1—a2x2) '
of elementary functions. One of the chief reasons for introducing a
variety of new functions in higher analysis is to have means for effect-
ing the integrations called for by important applications. The dis-
cussion of this matter cannot be taken up here. The problem of
integration from an elementary point of view calls for the tabula-
tion of some devices which will accomplish the integration for a

point. Thus it is impossible to express
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wide variety of integrands integrable in terms of elementary functions.
The devices which will be treated are:

Integration by parts, Resolution into partial fractions,
Various substitutions, Reference to tables of integrals.

Integration by parts is an application of (61) when written as

f uy’ = uv — f u’v. (61)

That is, it may happen that the integrand can be written as the product uv’ of two
factors, where v is integrable and where uv is also integrable. Then uv’ is integrable.
For instance, log z is not integrated by the fundamental formulas; but

flogz=flog:c-1=zlogz—fz/z=a:loga:—a:.
—

Here log z is taken as » and 1 as v’, so that v is z, w’is 1/z, and w’v =1 is immedi-
ately integrable. This method applies to the inverse trigonometric and hyperbolic
functions. Another example is

fzsinz =—2xCoST +fcosa:= sing — z cosz.

Here if £ = u and sinz = v, both v" and u’v = — cosz are integrable. If the choice
sin z=u and z=1" had been made, v’ would have been integrable but u’v=4 22 cos =
would have been less simple to integrate than the original integrand. Hence in
applying integration by parts it is necessary to look ahead far enough to see that
both v" and u’v are integrable, or at any rate that v” is integrable and the integral
of w’v is simpler than the original integral.*

Frequéntly integration by parts has to be applied several timesinsuccession. Thus

f:c’e¢=z2e=—f2xe¢ if u=2a2 v=e,
=z’e¢—2[zer—fe¢] ifu=z, vV=e
= a%* — 2ze* + 2%,

Sometimes it may be applied in such a way as to lead back to the given integral
and thus afford an equation from which that integral can be obtained by solution.
For example,

fe“cosz:etcosz+fetsinz if u=cosz, v = e,
=e"cosx+[e¢sinz-—fe"cosz] if u=sinz, v =%,
= e*(cosx + sinz)-—-fef COSZ.

Hence fe= cosz = } ex(cosz + sinz).

* The method of differentials may again be introduced if desired.
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14. For the integration of a rational fraction f(z)/F (x) where f and F are poly-
nomials in z, the fraction is first resolved into partial fractions. This is accom-
plished as follows. Firstif f is not of lower degree than F, divide F into f until the
remainder is of lower degree than F. The fraction f/F is thus resolved into the
sum of a polynomial (the quotient) and a fraction (the remainder divided by F)
of which the numerator is of lower degree than the denominator. As the polyno-
mial is integrable, it is merely necessary to consider fractions f/F where f is of
lower degree than F. Next it is a fundamental theorem of algebra that a poly-
nomial F may be resolved into linear and quadratic factors

Fay=k@E@x—a)@—0bB&—c)Y.. (2% + mx + n)» (2 + pz + q)*- - -,

where a, b, ¢, - - - are the real roots of the equation F(z)= 0 and are of the respec-
tive multiplicities a, 8, v, - - -, and where the quadratic factors when set equal to
_zero give the pairs of conjugate imaginary roots of F = 0, the multiplicities of the
imaginary roots being u, », - --. It is then a further theorem of algebra that the
fraction f/F may be written as
f) __ A, 4, Aa B, Bg
F@) z—a (:c-—a)2+.”+(z—a)¢+m+”.+(a:—b)ﬂ
Mz + N, Mz + N, bt Mux + Ny
22+me+n (2 + mx+ n)2 (*2 + mx + n)w

+.-.

vy

where there is for each irreducible factor of F a term corresponding to the highest
power to which that factor occurs in F and also a term corresponding to every
lesser power. The coefficients 4, B, ..., M, N, ... may be obtained by clearing
of fractions and equating coefficients of like powers of z, and solving the equations;
or they may be obtained by clearing of fractions, substituting for  as many dif-
ferent values as the degree of F, and solving the resulting equations.

When f/F has thus been resolved into partial fractions, the problem has been
reduced to the integration of each fraction, and this does not present serious
difficulty. The following two examples will illustrate the method of resolution
into partial fractions and of integration. Let it be required to integrate

f 22 +1 and 228 4+ 6
zE—1)(@E—2)@2+z+1) (xz—1)2@x—3)
The first fraction is expansible into partial fractions in the form
2241 _4 + B n C D+ E
zEe—-1)@—2)@+z+1) =z z—1 z—2 a24z41
Hence 22+4+1=A@x—-1)@—2)@2+x+1)+Br(x—2)@*+x+1)
+Cr(x—1)@2+z+1)+ (Dx+ E)xz(x—1)(x— 2).
Rather than multiply out and equate coefficients, let 0, 1, 2, — 1, — 2 be substi-
tuted. Then

1=24, 2=—38B, 5=14C, D—E=1/21, E—2D=1/1,

22 41 _ri 2 5 4z 45
fa:(x-l)(z-2)(z2+a:+1)"fﬁ_fs(z—l) +f14(z—2) 21(x2 4+ x +1)
2z+1.
V3

= %logz——glog(x-—l) + 1% log(z —2)— %log(a:2 +x+1)— %tan-l
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In the second case the form to be assumed for the expansion is
228+ 6 A B C D E
E—)fw—8p -1 G- @—98 -3 w_39
202 +6=A@x—1)(—8)*+ Bz —8)%+ C(x—1)2(x — 3)*
+D@x—1)2@x—3)+ E(x—1)>%
The substitution of 1, 3, 0, 2, 4 gives the equations
8 =— 8B, 60 =4E, 94 4+3C-D+12=0,
A-C+D+6=0, A+3C+3D=0.
" The solutions are — 9/4, — 1, + 9/4 — 3/2, 15, and the integral becomes
228 4+ 6
@12 @—97

log(z 1)+ :c—-l-—l + glog(z—?»)
3 15
2(z—8) 2(@—3)7
The importance of the fact that the method of partial fractions shows that any
rational fraction may be integrated and, moreover, that the integral may at most con-
sist of a rational part plus the logarithm of a rational fraction plus the inverse
tangent of a rational fraction should not be overlooked. Taken with the method
of substitution it establishes very wide categories of integrands which are inte-
grable in terms of elementary functions, and effects their integration even though
by a somewhat laborious method.
15. The method of substitution depends on the identity

[ra=[reag  # z=sw, (5

which is allied to (59). To show that the integral on the right with respect to y
is the integral of f(z) with respect to « it is merely necessary to show that its
derivative with respect to z is f(x). By definition of integration,

d dx dx
r fy flew)] @ =/le@]g,

and af f[¢(i/)] f[¢(y)]d—“° W Flew)

by (4). The identity is therefore proved. The method of integration by substitu-
tion is in fact seen to be merely such a systematization of the method based on
(59) and set forth in § 12 as will make it practicable for more complicated problems.
Again, differentials may be used if preferred.

Let R denote a rational function. To effect the integration of

+

f sinz R (sin%z, cosz), let cosz =y, then f —RQA-9%¥);
y

f cosz R (cos?z, sinx), let sinx =y, then f R(1-19%179);
v

sin _ R(y) .
fR( ) fR(tana:), let tanz =y, then j;1+y2,

2 1—y3 2

fR (sinz, cosz), let tanZ = Y, then fR( v, ¥ )___
2 v \1+3* 1+9°/1+9*

The last substitution renders any rational function of sin x and cos x rational in

the variable y; it should not be used, however, if the previous ones are applicable
— it is almost certain to give a more difficult final rational fraction to integrate.
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A large number of geometric problems give integrands which are rational in z
and in some one of the radicals Va2 + 22, Va2 — z2, V3 — a2. These may be con-
verted into trigonometric or hyperbolic integrands by the following substitutions:

fR(:c, Vaz-—:ce) z = asiny, fR(asiny, acosy)acosy;
y

z=atany, fR(atany,asecy)asec‘*’y

2 = asinhy, fR (a sinhy, a coshy)a coshy;

fR(:c, m) <|[
L

T = asecy, fR(asecy,atany)asecytany
fR(:c, Va2 — a?) v

z = a coshy, f R (a cosh y, a sinh y) a sinh y.
v

It frequently turns out that the integrals on the right are easily obtained by
methods already given; otherwise they can be treated by the substitutions above.

In addition to these substitutions there are a large number of others which are
applied under specific conditions. Many of them will be found among the exer-
cises. Moreover, it frequently happens that an integrand, which does not come
under any of the standard types for which substitutions are indicated, is none the
less integrable by some substitution which the form of the integrand will suggest.

Tables of integrals, giving the integrals of a large number of integrands, have
been constructed by using various methods of integration. B. O. Peirce’s ** Short
Table of Integrals’’ may be cited. If the particular integrand which is desired does
not occur in the Table, it may be possible to devise some substitution which will
reduce it to a tabulated form. In the Table are also given a large number of
reduction formulas (for the most part deduced by means of integration by parts)
which accomplish the successive simplification of integrands which could perhaps
be treated by other methods, but only with an excessive amount of labor. Several
of these reduction formulas are cited among the exercises. Although the Table is
useful in performing integrations and indeed makes it to a large extent unneces-
sary to learn the various methods of integration, the exercises immediately below,
which are constructed for the purpose of illustrating methods of integration, should
be done without the aid of a Table.

EXERCISES
1. Integrate the following by parts: .
(a) f z cosh z, 8) f tan—lz, ) f zmlog z,

(B)fsm z ()f(1+z)2 ® fz(aﬁ

2. If P(z) is a polynomial and P’(z), P”(z), - - - its derivatives, show
1 1 1
P(x)erx = Zeax| P p—— — P (x)—.-. ],
@ [PE)ew= e[ P -1 P@) + Py =]

1. 1, 1 5 .
(ﬂ)fP(z)cosax_asma.z[P(z)—-EZP’(J:)-}-G—‘P‘ (x) ]
+§cosaa:[£1"(z)—-al—8P"'(z)+alst(;c)_...],

and (y) derive a similar result for the integrand P (z) sin ax.
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3. By successive integration by parts and subsequent solution, show

. eax (q 8in b — bcosb:c)
(@) fe“= sinbe = e
(B) [eo= costa = e=(b s":l '_n++b2a cosbz)

(r) f:ce“ cosZ = s 2[5z (sinz + 2 cosz) — 4sinx — 8 cosz].

4. Prove by integration by parts the reduction formulas
sinm+1z cosn -1z
m+n
tanm—1z secrz

m4n—1 m + n—1

. 1 1 z

wxﬁﬁ+ﬁy=2m_nﬁhﬁ+ﬁyq+@nfmf@;;g;ﬂ»
™ am+1 m+1 zm

(a)f(logz)"_ (mn—1)(logz)n-1  n-—1 (logz)"-l.

. n—1 .
(a) f sinmz costx = + f sinmg cosn -2z,
. m+4n

(8) ftan"‘:c secrr = ftan" 2z sechz,

5. Integrate by decomposition into partial fractions :

—3z+38 1 1'
()f( -N@-2) (ﬂ)faf zt’ (")f1+x4’

422 — 3z +1 1
(6)f(x+2)2(z+1)’ ()f 225 + a8 (r)fx(1+x2)2.

6. Integrate by trigonometric or hyperbolic substitution :

(@ [Va—7, o [vVE-a, o [VETa,
Va? — a? (a§L — a;&)%
(6)f(a—m2)§ (0 =, © [ )
7. Find the areas of these curves and their volumes of revolution :
@ad+d=d,  @ev=ce-s o)+ (g)*= 1.

8. Integrate by converting to a rational algebraic fraction:

sin3x cos3x sin2x
(@ )fa,2 cos?x + besintz’ @ fa2 cos?z + b2sinZz ) faz cos?z + B2sin?z’
1 : 1— cosz
é _— B S
( )fa+bcos:r, e)fa+bcosac+csm:t: (r)f1+smz

9. Show that f R (x, Va + bx + cx?) may be treated by trigonometric substitu-
tion; distinguish between %2 — 4 ac = 0.

n
10. Show that fR (a:, 1\ /‘:::3) is made ra.mona.l by y* = gj——:z Hence infer
that f R(x, V(x — a) (@ — B)) is rationalized by y2 = : —B. This accomplishes
— a .

the integration of R(x, Va + bz + cx?) when the roots of a + bz + cz? = 0 are
real, that is, when b2 — 4ac > 0.
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11. Show that f R [z, (Z—:z)“. (g{_(li))”' ], where the exponents m, n,

... are rational, is rationalized by y* = :—:—H if k is so chosen that km, kn, . . . are

integers.
12. Show that f (a + by)ry? may be rationalized if p or ¢ or p + ¢ is an integer.
By setting z» = y show that f zm(a + bx)P may be reduced to the above type and

- m+1 m+1 -
hence is integrable when + or p or + + p is integral.

13. If the rootsof @ + bx + cx? = 0 are imaginary, fR (z, Va + bz + cx?) may
be rationalized by y =Va + bx 4+ cx? F 2 Ve.

14. Integrate the following.

) x3 14+Vz z
@ f -1 (ﬁ)fl-ﬁ/i’ (7)fi/1+z—\/1+w’
e2x x4 1
) —_— € —_—— 4
”f'r“ ()f\/(l_zz)a (r)f(z_d) ——
1 222 + x8 V1—28
-, 0 | ———» .
ks @SR af i

15. In view of Ex. 12 discuss the integrability of :

. ) ; Zm let z = ay®
a fsmmzcos":c let sinz =\/17 B f— -
(a) d ’ ® Var —z2 LOr \/a,c_z2=zy.

16. Apply the reduction formulas, Table, p. 66, to show that the final integral for
1

17 s o= i - Jo=

according as m is even or odd and positive or odd and negative.

" 17. Prove sundry of the formulas of Peirce’s Table.

18. Show that if R(z, Va® — %) contains z only to odd powers, the substitu-
tion 2 =Va? —2? will rationalize the expression. Use Exs. 1 () and 6 (e) to
compare the labor of this algebraic substitution with that of the trigonometric or
hyperbolic.

16. Definite integrals. If an interval from z = a to x =) be divided
into n successive intervals Ax,, Ax,, ---, Az, and the value f(¢) of a
function f(x) be computed from some point £ in each interval Az; and
be multiplied by Ax;, then the limit of the sum

Jim [A6) Ay +7(6) -+ £(&) ) = 7@z (62)

n=ow
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when each interval becomes infinitely short and their number n be-
comes infinite,is known as the definite integral of f(x) from a to b, and
is designated as indicated. If y=f(x) be graphed, the sum will be
represented by the area under
a broken line, and it is clear Y
that the limit of the sum, that
is, the integral, will be repre-
sented by the area under the
curve y=f(x) and between
the ordinates * =a and x=5. '
Thus the definite integral, de- §
fined arithmetically by (62), & agl '
may be connected with a geo-
metric concept which can serve to suggest properties of the integral
much as the interpretation of the derivative as the slope of the tan-
gent served as a useful geometric representation of the arithmetical
definition (2).

For instance, if a, b, ¢ are successive values of x, then

S 7@de+ [ r@de=[ fa)de (63)

is the equivalent of the fact that the area from a to ¢ is equal to the
sum of the areas from a to b and & to c¢. Again, if Az be considered
positive when x moves from a to b, it must be considered negative
when x moves from b to a and hence from (62)

[f@de=—[Fa)de. (64)

Finally, if M be the maximum of f(x) in the interval, the area under
the curve will be less than that under the line y = Af through the
highest point of the curve; and if m be the minimum of f(x), the
area under the curve is greater than that under y =m. Hence

g

etk e e

Pry| .
el e e 4

©

f a 0 X

mb—a)< [ fx)dz < M(b—a). " (65)

There is, then, some intermediate value m < pe<< M such that the inte-
gral is equal to u(b—a); and if the line y = p cuts the curve in a
point whose abscissa is ¢ intermediate between a and b, then

b
Jor@dz=p—a)=0-ar@. (65)
This is the fundamental Theorem of the Mean for definite integrals.
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The definition (62) may be applied directly to the evaluation of the definite in-
tegrals of the simplest functions. Consider first 1/z and let a, b be positive with a
less than b. Let the interval from a to b be divided into n intervals Az; which are
in geometrical progression in the ratio r so that z; = a, 23 = ar, - - -, Ty 41 = ar®

and Axy=a(r—1), Axg=ar(r—1), Azg=ar?(r—1), --., Az, =arm-1(r—1);
whence b—a=Az, +Azo+---+ Axp=a(m™—1) and rm=b/a.

Choose the points £; in the intervals Az; as the initial points of the intervals. Then

Az, | Axg Az, _a(r—1)  ar(r—1) arm-1(r —1)
a2 S s S T W P AT A it —-1).
& + & +0 4+ . e T totTo n(r—1)
But r=- b/a or n=log(b/a)~+ logr.
Hence Aﬂ+é£_.2+...'+ﬁ=n(r—1)=logé.r_l 1 b h

—_— =g -
& 123 En a logr ga log (1 + A)

Now if n becomes infinite, » approaches 1, and & approaches 0. But the limit; of
log (1 + k)/h as h =0 is by definition the derivative of log (1 + &) when z =0 and
is 1. Hence

a X n=o

n[A_z_l. AI’ ...+%

b
=log- =logb — loga.
& s,.] B =80T8

As another illustration let it be required to evaluate the integral of cos?z from
0 to 3 r. Here let the intervals Az; be equal and their number odd. Choose the §’s
as the initial points of their intervals. The sum of which the limit is desired is

0 =1c0820.Ax + cos? Ar - Az 4 cos22Ax - Az + - - -
+ cos? (n — 2) Az - Ax + cos? (n — 1) Az - Ax.

But nAx =3}m, and n—1)Ax =} 7 — Ar, (n—2)Az =}{m —2Azx, .-,
and cos(yr—y)=siny and sin?y + cos?y=1.
Hence o = Az[c0s?0 + 082 Az + CO822 AZ + - - - + 8in? 2 AZ + sin? Az]

n—1
=Ax|1l .
[+ 2]

s
Ience f’cosﬂzdx: lim [} nAz + } Az] = lim (} 7 + } AZ) = } .
0 Ax=0 Ax =0

Indications for finding the integrals of other functions are given in the exercises.
It should be noticed that the variable x which appears in the expression of the
definite integral really has nothing to do with the value of the integral but merely
serves as a symbol useful in forming the sum in (62). What is of importance is
the function f and the limits a, b of the interval over which the integral is taken.

[r@as=[rou=[1wda=[ o)

The variable in the integrand disappears in the integration and leaves the value of
the integral as a function of the limits @ and b alone.
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17. If the lower limit of the integral be fixed, the value

[r@a=20)

of the integral is a function of the upper limit regarded as variable.
To find the derivative ®'(4), form the quotient (2),

ey — [r@as

® (b + AD) — @ (b) =f,,
Ab

Ad
By applying (63) and (65"), this takes the simpler form
b+ Aab
) d.
op+an—o@ J TO® 4

Ab Ab =25 [(©)4%

where ¢ is intermediate between b and b4 Ab. Let Ab=0. Then ¢
approaches a and f(¢) approaches f(a). Hence

YO =5 [ 1@ i==s0). - (66)

If preferred, the variable b may be written as x, and .

2@ = [ e Y@= [T@da=r@. 6

This equation will establish the relation between the definite integral
and the indefinite integral. For by definition, the indefinite integral
F(x) of f(z) is any function such that F'(x) equals f'(z). As®'(x)=f(x)

- it follows that z
[ r@ia=r@+c. (67)

Hence except for an additive constant, the indefinite integral of f is
the definite integral of f from a fixed lower limit to a variable upper
limit. As the definite integral vanishes when the upper limit coincides
with the lower, the constant C is — F(a) and

[ (e do = F(5)— F(a). (67"

Hence, the definite integral of f(x) from a to b is the difference between
the values of any indefinite integral F (x) taken for the upper und lower
limits of the definite integral ; and if the indefinite integral of f is
known, the definite integral may be obtained without applying the
definition (62) to f
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The great importance of definite integrals to geometry and physics
lies in that fact that many quantities connected with geometric figures
or physical bodies may be expressed simply for small portions of the
figures or bodies and may then be obtained as the sum of those quanti-
ties taken over all the small portions, or rather, as the limit of that sum
when the portions become smaller and smaller. Thus the area under a
curve cannot in the first instance be evaluated ; but if only that portion
of the curve which lies over a small interval Az be considered and the
rectangle corresponding to the ordinate f(£) be drawn, it is clear that
the area of the rectangle is f(§) Az, that the area of all the rectangles is
the sum 3/ (£) Az taken from a to b, that when the intervals Ax approach
zero the limit of their sum is the area under the curve ; and hence that
area may be written as the definite integral of f(z) from a to b.*

In like manner consider the mass of a rod of variable density and suppose the
rod to lie along the z-axis so that the density may be taken as a function of z.
In any small length Az of the rod the density is nearly constant and the mass of
that part is approximately equal to the product pAz of the density p(z) at the
initial point of that part times the length Az of the part. In fact it is clear that
the mass will be intermediate between the products mAz and MAx, where m and
M are the minimum and maximum densities in the interval Az. In other words
the mass of the section Az will be exactly equal to p ({) Az where ¢ is some value of
« in the interval Az. The mass of the whole rod is therefore the sum Zp(¢)Az
taken from one end of the rod to the other, and if the intervals be allowed to
approach zero, the mass may be written as the integral of p(x) from one end of
the rod to the other.t

Another problem that may be treated by these methods is that of finding the
total pressure on a vertical area submerged in a liquid, say, in water. Let w be the
weight of a column of water of cross section 1 sq. unit and
of height 1 unit. (If the unit is a foot, w = 62.5 1b.) Ata
point & units below the surface of the water the pressure is
wh and upon a small area near that depth the pressure is
approximately whA4 if A be the area. The pressure on the
area A is exactly equal to wtd if £ is some depth interme-
diate between that of the top and that of the bottom of
the area. Now let the finite area be ruled into strips of height Ah. Consider the
product whb (k) Ak where b(k) = f(h) is the breadth of the area at the depth A. This

* The ¢’s may evidently be so chosen that the finite sum Zf (§) Az is exactly equal to
the area under the curve ; but still it is necessary to let the intervals approach zero and
thus replace the sum by an integral because the values of { which make the sum equal
to the area are unknown.

t This and similar problems, here treated by using the Theorem of the Mean for
integrals, may be treated from the point of view of differentiation as in § 7 or from that
of Duhamel’s or Osgood’s Theorem as in §§ 34, 35. It should be needless to state that in
any particular problem some one of the three methods is likely to be somewhat preferable
to either of the others. The reason for laying such emphasis upon the Theorem of the
Mean here and in the exercises below is that the theorem is in itself very important and
needs to be thoroughly mastered.
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is approximately the pressure on the strip as it is the pressure at the top of the strip
multiplied by the approximate area of the strip. Then w¢b (§) Ak, where £ is some
value between h and h 4+ Ah, is the actual pressure on the strip. (It is sufficient to
write the pressure as approximately whb (k) Ak and not trouble with the £.) The
total pressure is then Swéb (§) Ak or better the limit of that sum. Then

P =lim zweb(s) dh = f "whb (k) dh,

where a is the depth of the top of the area and b that of the bottom. To evaluate
the pressure it is merely necessary to find the breadth b as a function of 2 and
integrate.

EXERCISES

. b b
1. If k is a constant, showf kf(:c)d.z:kf f(z)dz.
a a
b b b
. St h de = vdz.
2 Slowtatfa(u:tv) faud.z:hj;

b 1] b
3. If, from a to b, ¥ (z) < f(z) < ¢ (z), show f ¥ (@) dz < f f@)ydz < f # (@) dz.

4. Suppose that the minimum and maximum of the quotient Q (z) = f(z)/¢ (x)
of two functions in the interval from a to b are m and M, and let ¢ () be positive
so that

m<Q(z)=';%)S<M and M(z)<f(:c)<M¢(z)
are true relations. Show by Exs. 8 and 1 that
[rea [ 1@ p
<ab—<“[ and —nb——=p,= Q(E)=¢((§)),
[ o@a [e@a

where ¢ is some value of  between a and b.

5. If m and M are the minimum and maximum of f(z) between a and b and if
¢ (x) is always positive in the interval, show that

' 1nj;°¢(x)dz <f“'if(x)¢(x)d.z<}[j;b¢(z)dz

and fa " @) b (2)dz = u f(. "6 (@) dz = £§) j; *6 () d.

Note that the integrals of [M — f(x)] ¢ (r) and [f(x) — m]¢ (x) are positive and
apply Ex. 2.

6. Evaluate the following by the direct application of (62) :

b 12— a2 b
4 xdr = ’ L = —_ .
(@ [ 5 @ [etz=o-e
Take equal intervals and use the rules for arithmetic and geometric progressions.
b 1 b 1
7. Evaluate (a xmdy = bhm+1 — gm+1), cxdx = cb — ca),
@ f el Cy) ogs @

In the first the intervals should be taken in geometric progression with m = b/a.
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8. Show directly that (a) f "sintedz = § 7, (B) f "cosnadz = 0, if n is odd.
0 0

9. With the aid of the trigonometric formulas
cosx + co82x + « - + cos(n — 1)z = § [sinnzx cot } x — 1 — cosnz],
sinz + sin2z + - .- + sin (n — 1) = } [(1 — cosnr) cot }  — sin nx],

b b
show (a) f coszde = sinb — sina, B) f sinzdz = cosa — cosb.
10. A function is said to be even if f(— ) = f(2) and odd if f(— z) = — f(z),
+a a +a
Show (a) j: f@)dz =2 j; f(z)dz, feven,  (8) f_ f(@)dz = 0, fodd.

11. Show that if an integral is regarded as a function of the lower limit, the
upper limit being fixed, then :

L, d b — . _rt
¥(a)= — j; f@)dz = —f(a), if ®(a)= j; () dz.
12. Use the relation between definite and indefinite integrals to compare
b
‘/; f@)de=(b—a)f(¢) and F(@®)— F(a)=(b— a)F'(),

the Theorem of the Mean for derivatives and for definite integrals.

13. From consideration of Exs..12 and 4 establish Cauchy's Formula

AF _ F () — F(a) _ F'(§)
22 @()—2(a) @@
which states that the quotient of the increments AF and A% of two functions, in
any interval in which the derivative #’(x) does not vanish, is equal to the quotient
of the derivatives of the functions for some interior point of the interval. What
would the application of the Theorem of the Mean for derivatives to numerator
and denominator of the left-hand fraction give, and wherein does it differ from
Cauchy’s Formula ?

a<E<b,

14. Discuss the volume of revolution of y = f(x) as the limit of the sum of thin
cylinders and compare the results with those found in Ex. 9, p. 10.

15. Show that the mass of a rod running from a to b along the z-axis is
3 k(b2 — a?) if the density varies as the distance from the origin (k is a factor of
proportionality). :

16. Show (a) that the mass in a rod running from a to b is the same as the area
under the curve y = p (z) between the ordinates « = a and z = b, and explain why
this should be seen intuitively to be so. Show (8) that if the density in a plane slab
bounded by the z-axis, the curve y = f(x), and the ordinatesz =a and x =b is a

b
function p (x) of x alone, the mass of the slab is f yp (z)dx ; also (v) that the mass
b
of the corresponding volume of revolution is f my%p (x)dz.
a

17. An isosceles triangle has the altitude a and the base 2b. Find (a) the mass
on the assumption that the density varies as the distance from the vertex (meas-
ured along the altitude). Find (8) the mass of the cone of revolution formed by
revolving the triangle about its altitude if the law of density is the same.
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18. In a plane, the moment of inertia I of a particle of mass m with respect to a
point is defined as the product mr2 of the mass by the square of its distance from the
point. Extend this definition from particles to bodies.

(a) Show that the moments of inertia of a rod running from « to b and of a
circular slab of radius a are respectively

. .
I= f 2%p(z)dz and I= f “2arp(r)dr,  p the density,
a 0

if the point of reference for the rod is the origin and for the slab is the center.
(B) Show that for a rod of length 21 and of uniform density, I = { MB with
respect to the center and I = $ M with respect to the end, M being the total mass
of the rod. )
(v) For a uniform circular slab with respect to the center I = } Ma?2.
(8) For a uniform rod of length 21 with respect to a point at a distance d from
its center is I = M (} {2 + d?). Take the rod along the axis and let the point be
(a, B) with d2 = a? + 2.

19. A rectangular gate holds in check the water in a reservoir. If the gate is
submerged over a vertical distance H and has a breadth B and the top of the
gate is @ units below the surface of the water, find the pressure on the gate. At
what depth in the water is the point where the pressure is the mean pressure
over the gate ?

20. A dam is in the form of an isosceles trapezoid 100 ft. along the top (which
is at the water level) and 60 ft. along the bottom and 30 ft. high. Find the pres-
sure in tons. St

21. Find the pressure on a circular gate in a water main if the radius of the
circle is r and the depth of the center of the circle below the water level isd=r.

22. In space, moments of inertia are defined relative to an axis and in the for-
mula I =mr2, for a single particle, r is the perpendicular distance from thee
particle to the axis. ’

(a) Show that if the density in a solid of revolution generated by y = f(z) varies
only with the distance along the axis, the moment of inertia about the axis of

[
revolution is I = f 1wytp (x)dx. Apply Ex. 18 after dividing the solid into disks.

(8) Find the moment of inertia of a sphere about a diameter in case the density
is constant ; I = § Ma? = ¢ wpas.

(v) Apply the result to find the moment of inertia of a spherical shell with
external and internal radii ¢ and b;.J = 3 M (a® — b%)/(a® — b%). Let b =a and
thus find I = § Ma? as the moment of inertia of a spherical surface (shell of negli-
gible thickness).

(8) For a cone of revolution I = #; Ma? where a is the radius of the base.

23. If the force of attraction exerted by a mass m upon a point is kmf(r) where
r is the distance from the mass to the point, show that the attraction exerted at
the origin by a rod of density p (x) running from a to b along the z-axis is

b
4= j; kf(z)p (x)dz, andthat A =kM/ab, M=p(— a),

is the attraction of a uniform rod if the law is the Law of Nature, that is,
f(r)y=1/r2
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24. Suppose that the density p in the slab of Ex. 16 were a function p (z, y) of
both z and y. Show that the mass of a small slice over the interval Ax; would be
of the form

b y=S(x
a

Azfoﬂf(e)p(:c, y)dy = ® () Az and that j;°q>(x)A_z=f [fo

would be the expression for the total mass and would require an integration with
respect to y in which = was held constant, a substitution of the limits f(z) and 0
for y, and then an integration with respect to z from a to b.

o (@, 1) dy]dz

25. Apply the considerations of Ex. 24 to finding moments of inertia of
() a uniform triangle y = mz, y = 0, = a with respect to the origin,
(B) a uniform rectangle with respect to the center,

() a uniform ellipse with respect to the center.

26. Compare Exs. 24 and 16 to treat the volume under the surface z = p (z, ¥)
and over the area bounded by y = f(z), ¥ =0, x = a, = b. Find the volume

() under z = zy and over y2 = 4pz, y =0,z =0,z = b,

(B) underz=x%+ y?andoveraz? + y?=a* y=0.2=0,2 = Q,

® g

22 $2 1/2
(v) undera—2+b2+c—2=1andover§+l§=1,y=0,z=0,x:a.

27. Discuss sectorial area f r2d¢ in polar codrdinates as the limit of the sum
of small sectors running out from the pole.
28. Show that the moment of inertia of a uniform circular sector of angle a
a;
and radius a is } paa*. Hence infer I = }p f 'rid¢ in polar codrdinates.
L)
29. Find the moment of inertia of a uniform (a) lemniscate r2 = a2 cos?2 ¢

and () cardioid r = a (1 — cos ¢) with respect to the pole. Also of (y) the circle
r = 2acos ¢ and (3) the rose r = a sin2 ¢ and (¢) the rose r = a sin 3 ¢.



CHAPTER 1I
REVIEW OF FUNDAMENTAL THEORY*

18. Numbers and limits. The concept and theory of real number,
integral, rational, and irrational, will not be set forth in detail here.
Some matters, however, which are necessary to the proper understand-
ing of rigorous methods in analysis must be mentioned ; and numerous
points of view which are adopted in the study of irrational number
will be suggested in the text or exercises.

It is taken for granted that by his earlier work the reader has become familiar
with the use of real numbers. In particular it is assumed that he is accustomed
to represent numbers as a scale, that is, by points on a straight line, and that he
knows that when a line is given and an origin chosen upon it and a unit of measure
and a positive direction have been chosen, then to each point of the line corre-
sponds one and only one real number, and conversely. Owing to this correspond-
ence, that is, owing to the conception of a scale, it is possible to interchange
statements about numbers with statements about points and hence to obtain a
more vivid and graphic or a more abstract and arithmetic phraseology as may be

" desired. Thus instead of saying that the numbers x,, z,, - - - are increasing algebra-
ically, one may say that the points (whose codrdinates are) z,, zz, - - - are moving
in the positive direction or to the right ; with a similar correlation of a decreasing
suite of numbers with points moving in the negative direction or to the left. It
should be remembered, however, that whether a statement is couched in geometric
or algebraic terms, it is always a statement concerning numbers when one has in
mind the point of view of pure analysis.t

It may be recalled that arithmetic begins with the integers, including 0, and
with addition and multiplication. That second, the rational numbers of the
form p/q are introduced with the operation of division and the negative rational
numbers with the operation of subtraction. Finally, the irrational numbers are
introduced by various processes. Thus V2 occurs in geometry through the
necessity of expressing the length of the diagonal of a square, and /3 for the
diagonal of a cube. Again, = is needed for the ratio of circumference to diameter
in a circle. In algebra any equation of odd degree has at least one real root and
hence may be regarded as defining a number. But there is an essential difference
between rational and irrational numbers in that any rational number is of the

* The object of this chapter is to set forth systematically, with attention to precision
of statement and accuracy of proof, those fundamental definitions and theorems which
lie at the basis of calculus and which have been given in the previous chapter from an
intuitive rather than a critical point of view.

t Some illustrative graphs will be given; the student should make many others.
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form 4+ p/q with ¢ # 0 and can therefore be written down explicitly ; whereas
the irrational numbers arise by a variety of processes and, although they may be
represented to any desired accuracy by a decimal, they cannot all be written
down explicitly. It is therefore necessary to have some definite axioms regulating
the essential properties of irrational numbers. The particular axiom upon which
stress will here be laid is the axiom of continuity, the use of which is essential
to the proof of elementary theorems on limits.

19. Axrom oF ConTINUITY. If all the points of a line are divided into
two classes such that every point of the first class precédes every point of
the second class, there must be a point C such that any point preceding
C is in the first class and any point succeeding-C is in the second class.
This principle may be stated in terms of numbers, as: If all real num-
bers be assorted into two classes such that every number of the first class
is algebraically less than every number of the second class, there must be
a number N such that any number less than N is in the first class and
any number greater than N is in the second. The number N (or point C)
is called the frontier number (or point), or simply the frontier of the
two classes, and in particular it is the upper frontier for the first class
and the lower frontier for the second.

To consider a particular case, let all the negative numbers and zero constitute
the first class and all the positive numbers the second, or let the negative numbers
alone be the first class and the positive numbers with zero the second. In either
case it is clear that the classes satisfy the conditions of the axiom and that zero is
the frontier number such that any lesser number is in the first class and any
greater in the second. If, however, one were to consider the system of all positive
and negative numbers but without zero, it is clear that there would be no number
N which would satisfy the conditions demanded by the axiom when the two
classes were the negative and positive numbers ; for no matter how small a posi-
tive number were taken as N, there would be smaller numbers which would also
be positive and would not belong to the first class; and similarly in case it were
attempted to find a negative N. Thus the axiom insures the presence of zero in
the system, and in like manner insures the presence of every other number —a.
matter which is of importance because there is no way of writing all (irrational)
numbers in explicit form.

Further to appreciate the continuity of the number scale, consider the four
significations attributable to the phrase *‘the interval from a to b.”” They are

a=x =D, a<z =D, a=z<b, a<z<b.

That is to say, both end points or either or neither may belong to the interval. In
the case a is absent, the interval has no first point ; and if b is absent, there is no
last point. Thus if zero is not counted as a positive number, there is no least
positive number ; for if any least number were named, half of it would surely be
Jess, and hence the absurdity. The axiom of continuity shows that if all numbers
be divided into two classes as required, there must be either a greatest in the first
class or a least in the second — the frontier — but not both unless the frontier is
counted twice, once in each class.
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20. DeriNITION OF A Limit. If x is a variable which takes on succes-
sive values T, @y, -+, Xy Ljy -+, the variable x is said to approach the con-
stunt | as a limit if the numerical difference between x and I ultimately
becomes, and for all succeeding values of x remains, e
less than any prec?ssigm?d number no matter how g th' l’"‘ PN
small. The numerical difference between x and !

is denoted by |z —!| or [l —x|and is called the absolute value of the
difference. The fact of the approach to a limit may be stated as

|z —{| < e for all 2’s subsequent to some
or x=1+47, |y|<e foralla’ssubsequent to some «,

where € is a positive number which may be assigned at pleasure and
must be assigned before the attempt be made to find an x such that
for all subsequent «’s the relation |« — /| < € holds.

So long as the conditions required in the definition of a limit are satisfied there
is no need of bothering about how the variable approaches its limit, whether from
one side or alternately from one side and the other, whether discontinuously as in
the case of the area of the polygons used for computing the area of a circle or
continuously as in the case of a train brought to rest by its brakes. To speak
geometrically, a point £ which changes its position upon a line approaches the
point ! as a limit if the point z ultimately comes into and remains in an assigned
interval, no matter how small, surrounding l.

A variable is said to become infinite if the numerical value of the
variable ultimately becomes and remains greater than any preassigned
number K, no matter how large.* The notation is x = oo, but had best
be read “ « becomes infinite,” not *“ « equals infinity.”

Turorem 1. If a variable is always increasing, it either becomes
infinite or approaches a limit.

That the variable may increase indefinitely is apparent. But if it does not
become infinite, there must be numbers K which are greater than any value of
" the variable. Then any number must satisfy one of two conditions: either there
are values of the variable which are greater than it or there are no values of the
variable greater than it. Moreover all numbers that satisfy the first condition are
less than any number which satisfies the second. All numbers are therefore
divided into two classes fulfilling the requirements of the axiom of continuity, and
there must be a number N such that there are values of the variable greater than
any number N —e which is less than N. Hence if ¢ be assigned, there is a value of
the variable which lies in the interval N — e <x = N, and as the variable is always
increasing, all subsequent values must lie in this interval. Therefore the variable
approaches N as a limit. :

* This definition means what it says, and no more. Later, additional or different
meanings may be assigned to infinity, but not now. Loose and extraneous concepts in
this connection are almost certain to introduce errors and confusion.
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EXERCISES

1. If &y, g, -+ Zny *** Tutpy - - - iS & sUite approaching a limit, apply the defi-
nition of a limit to show that when e is given it must be possible to find a value of
n 80 great that [T, + , — T, <e for all values of p.

2. If 2;, xo, - - - is a suite approaching a limit and if ¥y, ys, - - - is any suite such
that |y, — &, | approaches zero when n becomes infinite, show that the y’s approach
a limit which is identical with the limit of the z’s.

3. As the definition of a limit is phrased in terms of inequalities and absolute
values, note the following rules of operation :

(@) If a>0 and c¢>b, then >- and

B) la+ b+t | =[al+[ol+[c|+ -y () [abe---|=[a]-[]-[e]-,
where the equality sign in (8) holds only if the numbers a, b, ¢, - - - have the same
sign. By these relations and the definition of a limit prove the fundamental
theorems :

If imz=X and limy=Y, then lim(z+») =X+ Y and limzy = XY.

SRS
IS

4. Prove Theorem 1 when restated in the slightly changed form : If a variable
z never decreases and never exceeds K, then z approaches a limit N and N = K.
Illustrate fully. State and prove the corresponding theorem for the case of a
variable never increasing.

5. If x4, @,, - - - and ¥y, Y2, - - - are two suites of which the first never decreases
and the second never increases, all the y’s being greater than any of the «’s, and if
when ¢ is assigned an n can be found such that y, — 2, <, show that the limits
of the suites are identical.

6. If xy, 2,, - - - and yy, ¥s, - - - are two suites which never decrease, show by Ex. 4
(not by Ex. 3) that the suites x; + 1, %2 + ¥3, - -+ and z,¥1, Z2¥2, - - - approach
limits. Note that two infinite decimals are precisely two suites which never de-
_crease as more and more figures are taken. They do not always increase,for some
of the figures may be 0.

7. 1f the word **all”’ in the hypothesis of the axiom of continuity be assumed to
refer only to rational numbers so that the statement becomes: If all rational
numbers be divided into two classes. .., there shall be a number N (not neces-
sarily rational) such that -..; then the conclusion may be taken as defining a
number as the frontier of a sequence of rational numbers. Show that if two num-
bers X, Y be defined by two such sequences, and if the sum of the numbers be
defined as the number defined by the sequence of the sums of corresponding terms
as in Ex. 6, and if the product of the numbers be defined as the number defined by
the sequence of the products as in Ex. 6, then the fundamental rules

X+Y=Y+2X, AY =YX, (X+Y)Z=XZ+YZ
of arithmetic hold for the numbers X, Y, Z defined by sequences. In this way a
complete theory of irrationals may be built up from the properties of rationals
combined with the principle of continuity, namely, 1° by defining irrationals as
frontiers of sequences of rationals, 2° by defining the operations of addition, multi-
plication, - .. as operations upon the rational numbers in the sequences, 3° by
showing that the fundamental rules of arithmetic still hold for the irrationals.
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8. Apply the principle of continuity to show that there is a positive number
such that 22 = 2. To do this it should be shown that the rationals are divisible
into two classes, those whose square is less than 2 and those whose square is not
less than 2 ; and that these classes satisfy the requirements of the axiom of conti-
nuity. In like manner if a is any positive number and n is any positive integer,
show that there is an z such that z* = a.

21. Theorems on limits and on sets of points. The' theorem on
limits which is of fundamental algebraic importance is

TrEOREM 2. If R(x, y, 2, - - -) be any rational function of the variables
x, ¥, %, ---, and if these variables are approaching limits X, ¥, Z, ...,
then the value of R approaches a limit and the limit is R(X, Y, Z, -- ),
provided there is no division by zero.

As any rational expression is made up from its elements by combinations of
addition, subtraction,-multiplication, and division, it is sufficient to prove the
theorem for these four operations. All except the last have been indicated in the
above Ex. 3. As multiplication has been cared for, division need be considered
only in the simple case of a reciprocal 1/x. It must be proved that if limz = X,
then lim (1/z) = 1/X. Now

1 |z — X|

1
-_—— = ’ b E .3 b .
lz X' X y Ex. 8 (v) above

This quantity must be shown to be less than any assigned e. As the quantity is
complicated it will be replaced by a simpler one which is greater, owing to an
increase in the denominator. Since z = X, x — X may be made numerically as
small as desired, say less than ¢, for all z's subsequent to some particular z. Hence
if ¢ be taken at least as small as }| X |, it appears that |z | must be greater than
1| X|. Then

le—X| [z—X|_ ¢ .

2l X] ~ 4X]P 4 X

by Ex. 8 (a) above,

and if ¢’ be restricted to being less than 4| X |2, the difference is less than e and
the theorem that lim (1/z) = 1/X is proved, and also Theorem 2. The necessity
for the restriction X 7 0 and the corresponding restriction in the statement of
the theorem is obvious.

THeorEM 3. If when e is given, no matter how small, it is possible
to find a value of » so great that the difference |, ., —,| between x,
and every subsequent term z,,, in the suite x,, x,, ---, 2,, --- is less
than ¢, the suite approaches a limit, and conversely.

The converse part has already been given as Ex. 1 above. The theorem itself is
a consequence of the axiom of continuity. First note that as|Zs4p, — &s| < e for
all z's subsequent to z,, the z's cannot become infinite. Suppose 1° that there
is some number ! such that no matter how remote x, is in the suite, there are
always subsequent values of x which are greater than ! and others which are less
than I. As all the «'s after x, lie in the interval 2 e and as l is less than some z's
and greater than others, ! must lie in that interval. Hence |l — 2, ,| < 2e for all
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a’s subsequent to z,. But now 2 e can be made as small as desired because e can be
taken as small as desired. Hence the definition of a limit applies and the z's
approach [ as a limit.

Suppose 2° that there is no such number !. Then every number k is such that
either it is possible to go so far in the suite that all subsequent numbers z are
as great as k or it is possible to go so far that all subsequent z's are less than k.
Hence all numbers k are divided into two classes which satisfy the requirements of
the axiom of continuity, and there must be a number N such that the z's ultimately
come to lie between N — ¢ and N + ¢/, no matter how small ¢ is. Hence the z’s
approach N as a limit. Thus under either supposition the suite approaches a limit
and the theorem is proved. It may be noted that under the second supposition the
2’s ultimately lie entirely upon one side of the point N and that the condition
|Zn + p — Zn| < € is not used except to show that the z’s remain finite.

22. Consider next a set of points (or their correlative numbers)
without any implication that they form a suite, that is, that one may
be said to be subsequent to another. If there is only a finite number
of points in the set, there is a point farthest to the right and one
farthest to the left. If there is an infinity of points in the set, two
possibilities arise. Either 1° it is not possible to assign a point K so
far to the right that no point of the set is farther to the right —in
which case the set ‘is said to be unlimited above— or 2° there is a
point K such that no point of the set is beyond K —and the set is
said to be limited above. Similarly, a set may be limited below or un- -
Uimited below. If a set is limited above and below so that it is entirely
contained in a finite interval, it is said merely to be limited. If there
is a point C such that in any interval, no matter how small, surround-
ing C there are points of the set, then C is called a point of condensa-
tion of the set (C itself may or may not belong to the set).

THEOREM 4. Any infinite set of points which is limited has an
upper frontier (maximum ?), a lower frontier (minimum ?), and at
least one point of condensation. ’

Before proving this theorem, consider three infinite sets as illustrations :
(@) 1, 1.9, 1.99, 1.999, - - -, B) =2 -+, —1.99, — 1.9, — 1,
(7) _17_'121_'&5"'11'7 %71'

In (@) the element 1 is the minimum and serves also as the lower frontier ; it is
clearly not a point of condensation, but is isolated. There is no maximum ; but 2
is the upper frontier and also a point of condensation. In (8) there is a maximum
—1 and a minimum — 2 (for — 2 has been incorporated with the set). In (y) there
is a maximum and minimum ; the point of condensation is 0. If one could be sure
that an infinite set had a maximum and minimum, as is the case with finite
sets, there would be no need of considering upper and lower frontiers. It is clear
that if the upper or lower frontier belongs to the set, there is a maximum or
minimum and the frontier is not necessarily a point of condensation; whereas
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if the frontier does not belong to the set, it i3 necessarily a point of condensation and
the corresponding extreme point is missing.

To prove that there is an upper frontier, divide the points of the line into two
classes, one consisting of points which are to the left of some point of the set, the
other of points which are not to the left of any point of the set — then apply the
axiom. Similarly for the lower frontier. To show the existence of a point of con-
densation, note that as there is an infinity of elements in the set, any point p is such
that either there is an infinity of points of the set to the right of it or there is not.
Hence the two classes into which all points are to be assorted are suggested, and
the application of the axiom offers no difficulty.

EXERCISES

1. In a manner analogous to the proof of Theorem 2, show that
z—1 1 3z—1_5 2241

li ==, lim = lim =—1.
(a)zl.g(l)z—2 2 @ z=2 +5 T ™ =123 —1
2. Given an infinite series S = u; + ug + ug + - - - . Construct the suite

Si=u, Sg=ur+u, Ss=w+us+us, oo, Sizurtug -+ wp, --o,
where S; is the sum of the first ¢ terms. Show that Theorem 3 gives: The neces-
sary and sufficient condition that the series S converge is that it is possible to find
an n so large that | S, 4, — S, | shall be less than an assigned e for all values of p.
It is to be understood that a series converges when the suite of S’s approaches a limit,
and conversely.

3. If in a series u; — ug + ug — uy + - - - the terms approach the limit 0, are
alternately positive and negative, and each term is less than the preceding, the
series converges. Consider the suites S;, S, S;, - - - and Sg, Sy, Sg, -+ -

4. Given three infinite suites of numbers

Il’zz’.-.’xu’...; yl,yz’...’y”,~-.; zl’ze,...,zn,..-
. of which the first never decreases, the second never increases, and the terms of the
third lie between corresponding terms of the first two, z, = 2z, = y,. Show that
the suite of 2’s has a point of condensation at or between the limits approached by
the z’s and by the y’s; and that if lim x = lim ¥ = [, then the 2’s approach [ as a.
limit.

5. Restate the definitions and theorems on sets of points in arithmetic terms.

6. Give the details of the proof of Theorem 4. Show that the proof as outlined
gives the least point of condensation. How would the proof be worded so as to give
the greatest point of condensation ? Show that if a set is limited above,it has an
upper frontier but need not have a lower frontier.

7. If a set of points is such that between any two there is a third, the set is said
to be dense. Show that the rationals form a dense set ; also the irrationals. Show
that any point of a dense set is a point of condensation for the set.

8. Show that the rationals p/q where ¢ < K do not form a dense set — in fact
are a finite set in any limited interval. Hence in regarding any irrational as the
limit of a set of rationals it is necessary that the denominators and also the numer-
ators should become infinite.
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9. Show that if an infinite set of points lies in a limited region of the plane,
say in the rectangle a =z =D, ¢ = y = d, there must be at least one point of
condensation of the set. Give the necessary definitions and apply the axiom
of continuity successively to the abscissas and ordinates.

23. Real functions of a real variable. If x le a variable which
takes on a certain set of values of which the totality may be denoted
by [x] and if y is a second variable the value of which is yniquely
determined for each x of the set [x], then y is said to be a function of
x defined over the set [x]. The terms * limited,” ** unlimited,” ** limited
above,” “unlimited below,” --.are applied to a function if they are
applicable to the set [y] of values of the function. Hence Theorem 4
has the corollary :

TaeoreM 5. If a function is limited over the set [x], it has an
upper frontier M and a lower frontier m for that set.

If the function takes on its upper frontier Af, that is, if there is a
value «, in the set [x] such that f(x ) = f, the function has the abso-
lute maximum M at x ; and similarly with respect to the lower
frontier. In any case, the difference M — m between the upper and
lower frontiers is called the oscillation of the function for the set [x].
The set [x] is generally an interval.

Consider some illustrations of functions and sets over which they are defined.
The reciprocal 1/z is defined for all values of z save 0. In the neighborhood of 0
the function is unlimited above for positive z’s and unlimited below for negative x’s.
It should be noted that the function is not limited in the interval 0 <z = a but is
limited in the interval e = z = a where ¢ is any assigned positive number. The
function +\/ z is defined for all positive z's including 0 and is limited below. It
is not limited above for the totality of all positive numbers; but if K is assigned,
the function is limited in the interval 0 =z = K. The factorial function z! is de-
fined only for positive integers, is limited below by the value 1, but is not limited
above unless the set [z] is limited above. The function E (z) denoting the integer
not greater than z or ** the integral part of z’’ is defined for all positive numbers
—for instance E (3) = E (w) = 3. This function is not expressed, like the elemen-
tary functions of calculus, asa ** formula ’ ; it is defined by a definite law, however,
and is just a3 much of a function as 22 + 3z + 2 or }sin?2z + logz. Indeed it
should be noted that the elementary functions themselves are in the first instance
defined by definite laws and that it is not until after they have been made the
subject- of considerable study and have been largely developed along analytic lines
that they appear as formulas. The ideas of function and formula are essentially
distinct and the latter is essentially secondary to the former.

The definition of function as given above excludes the so-called multiple-valued
functions such as vz and sin-1z where to a given value of z correspond more than
one value of the function. It is usual, however, in treating multiple-valued func-
tions to resolve the functions into different parts or branches so that each branch
is a single-valued function. Thus + vz is one branch and —Vz the other branch
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of Vz;in fact when z is positive the symbol V'z is usually restricted to mean
merely + V' and thus becomes a single-valued symbol. One branch of sin—1z con-
sists of the values between — } 7 and + } w, other branches give values between
jmand j7 or — jx and — §, and so on. Hence the term ** function” will be
restricted in this chapter to the single-valued functions allowed by the definition.

2. If x=a is any point of an interval over which f(x) is defined,
the function f(x) is said to be continuous at the point x = a if

lim f(x) = f(a), no matter how x = a.’

The function is said to be continuous in the interval if it is continuous
at every point of the interval. If the function is not continuous at the
point a, it is said to be discontinuous at a; and if it fails to be con-
tinuous at any one point of an interval, it is said to be discontinuous
in the interval.

TueoreM 6. If any finite number of functions are continuous (at a
point or over an interval), any rational expression formed of those
functions is continuous (at the point or over the interval) provided no
division by zero is called for.

TueorEM 7. If y=f(x) is continuous at x, and takes the value
y,=JS(x,) and if z=¢(y) is a continuous function of y at y =y, then
z=¢[f(x)] will be a continuous function of x at x

In regard to the definition of continuity note that a function cannot be con-
tinuous at a point unless it is defined at that point. Thus e-1/ is not continuous
at z = 0 because division by 0 is impossible and the function is undefined. If, how-
ever, the function be defined at 0 as f(0) = 0, the function becomes continuous at
2 = 0. In like manner the function 1/z is not continuous at the origin, and in this
case it is impossible to assign to f(0) any value which will render the function
continuous ; the function becomes infinite at the origin and the very idea of be-
coming infinite precludes the possibility of approach to a definite limit. Again, the
function E (z) is in general continuous, but is discontinuous for integral values
of z. When a function is discontinuous at x = a, the amount of the discontinuity is
the limit of the oscillation M — m of the function in the interval a —d <z <a + &
surrounding the point @ when § approaches zero as its limit. The discontinuity
of E(z) at each integral value of z is clearly 1; that of 1/x at the origin is infi-
nite no matter what value is assigned to f(0).

In case the interval over which f(x) is defined has end points, say ¢ =z =b,
the question of continuity at x = ¢ must of course be decided by allowing z to
approach a from the right-hand side only ; and similarly it is a question of left-
handed approach to b. In general, if for any reason it is desired to restrict the
approach of a variable to its limit to being one-sided, the notations z = a+ and
z = b~ respectively are used to denote approach through greater values (right-
handed) and through lesser values (left-handed). It is not necessary to make this
specification in the case of the ends of an interval ; for it is understood that z
-shall take on only values in the interval in question. It should be noted that
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lim f(x) =f(xo) when z = zot in no wise implies the continuity of f(z) at zo; a
simple example is that of E (z) at the positive integral points.
The proof of Theorem 6 is an immediate corollary application of Theoremn 2. For
lim R[f(z), ¢ (¢) - - -] = R [lim f(z), lim ¢ (2), - - -] = R[f(lim z), ¢ (limZ), - - -],
and the proof of Theorem 7 is equally simple.

TueoreM 8. If f(x) is continuous at x =«, then for any positive
e which has been assigned, no matter how small, there may be found a
number § such that | f(x) —f(«)|<e in the interval |z— a[.< 8, and
hence in this interval the oscillation of f(x) is less than 2e. And
conversely, if these conditions hold, the function is continuous.

This theorem is in reality nothing but a restatement of the definition of conti-
nuity combined with the definition of a limit. For *‘lim f(z) = f(a) when z = q,
no matter how ’’ means that the difference between f(x) and f(a) can be made as
small as desired by taking z sufficiently near to a; and conversely. The reason
for this restatement is that the present form is more amenable to analytic opera-
tions. It also suggests the geometric picture which corre-

sponds to the usual idea of continuity in graphs. For the % —
theorem states that if the two lines y = f(a) + e be drawn,

€
the graph of the function remains between them for at least e
the short distance & on each side of x = a; and as ¢ may be / sls
assigned a value as small as desired, the graph cannot exhibit —5 a X

breaks. On the other hand it should be noted that the actual

physical graph is not a curve but a band, a two-dimensional region of greater or
less breadth, and that a function could be discontinuous at every point of an
interval and yet lie entirely within the limits of any given physical graph.

It is clear that 8, which has to be determined subsequently to ¢, is in general
more and more restricted as e is taken smaller and that for different points it is
more restricted as the graph rises more rapidly. Thusif f(z) = 1/ and € = 1/1000,
& can be nearly 1/10 if xo = 100, but must be slightly less than 1/1000 if zo = 1, and
something less than 10— 8 if x is 10—3. Indeed, if z be allowed to approach zero, the
value & for any assigned e also approaches zero; and although the function
f(x) = 1/z is continuous in the interval 0 <z =1 and for any given zo and ¢ a
number & may be found such that | f(x) — f(2o)| < e when |z — 2| < 8, yet it is not
possible to assign a number § which shall serve uniformly for all values of z,.

25. TueoreM 9. If a function f(r) is continuous in an interval
«=x =0 with end points, it is possible to find a & such that
S (@) = f(xo)|< e when |2 — x| <8 for all points xo; and the function
is said to be uniformly continuous.

The proof is conducted by the method of reductio ad absurdum. Suppose e
is assigned. Consider the suite of values }, }, },---, or any other suite which
approaches zero as a limit. Suppose that no ome of these values will serve as a §
for all points of the interval. Then there must be at least one point for which }
will not serve, at least one for which 1 will not serve, at least one for which 1 will
not serve, and so on indefinitely. This infinite set of points must have at least one
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point of condensation C such that in any interval surrounding C there are points for
which 2—#% will not serve as §, no matter how large k. But now by hypothesis f(z)
is continuous at C and hence a number § can be found such that |f(z) — f(C)|< 3} e
when |2 — xo| < 25. The oscillation of f(z) in the whole interval 43 is less than e.
Now if zo be any point in the middle half of this interval, |[€o— C|<&; and if x
satisfies the relation | — 20| < §, it must still lie in the interval 4 and the differ-
ence |f(z) — f(xo) | <e, being surely not greater than the oscillation of fin the whole
interval. Hence it is possible to surround C with an interval so small that the
same & will serve for any point of the interval. This contradicts the former con-
clusion, and hence the hypothesis upon which that conclusion was based must have
been false and it must have been possible to find a § which would serve for all
points of the interval. The reason why the proof would not apply to a function
like 1/x defined in the interval 0 <2 =1 lacking an end point is precisely that
the point of condensation C would be 0, and at 0 the function is not continuous
and |f(z) — f(C)| < }e |z — C|< 25 could not be satisfied.

THeorEM 10. If a function is continuous in a region which includes
its end points, the function is limited.

TueoreM 11. If a function is continuous in an interval which includes
its end points, the function takes on its upper frontier and has a maxi-
mum J; similarly it has a minimum .

These are successive corollaries of Theorem 9. For let e be assigned and let &
be determined so as to serve uniformly for all points of the interval. Divide the
interval b — a into n successive intervals of length & or less. Then in each such
interval f cannot increase by more than e nor decrease by more than e. Hence f
will be contained between the values f(a) + ne and f(a) — ne, and is limited. And
J(x) has an upper and a lower frontier in the interval. Next consider the rational
function 1/(M — f) of f. By Theorem 6 this is continuous in the interval unless
the denominator vanishes, and if continuous it is limited. This, however, is impos-
sible for the reason that, as M is a frontier of values of f, the difference M — f
may be made as small as desired. Hence 1/(M — f) is not continuous and there
must be some value of x for which f = M.

Tueorem 12. If f(r) is continuous in the interval ¢ = = with end
points and if f(«) and f () have opposite signs, there is at least one
point £ a < ¢ <, in the interval for which the function vanishes.
And whether f(«) and £ () have opposite signs or not, there is a point
¢, a < £ < b, such that f(¢) = u, where p is any value intermediate be-
tween the maximum and minimum of f in the interval.

For convenience suppose that f(a) < 0. Then in the neighborhood of z = a the
function will remain negative on account of its continuity ; and in the neighbor-
hood of b it will remain positive, Let £ be the lower frontier of values of z which
make f(x) positive. Suppose that f(§) were either positive or negative. Then as
[ is continuous, an interval could be chosen surrounding ¢ and so small that f re-
mained positive or negative in that interval. In neither case could § be the lower
frontier of positive values. Hence the contradiction, and f(¢) must be zero. To
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prove the second part of the theorem, let ¢ and d be the values of  which make
f a minimum and maximum. Then the function f—pu has opposite signs at ¢ and
d, and must vanish at some point of the interval between ¢ and d; and hence a
fortiori at some point of the interval from a to b.

EXERCISES

1. Note that z is a continuous function of z, and that consequently it follows
from Theorem 6 that any rational fraction P (z)/Q (x), where P and @ are poly-
nomials in «, must be continuous for all z’s except roots of Q () = 0.

2. Graph the function z — E (z) for = 0 and show that it is continuous except
for integral values of . Show that it is limited, has a minimum 0, an upper fron-
tier 1, but no maximum. :

3. Suppose that f(z) is defined for an infinite set [x] of which z = a is a point
of condéensation (not necessarily itself a point of the set). Suppose

Jlim [f@)=f@)]=0 or /@) =F@)]<e |o'—al<d |2 —al<3,

when 2’ and z”” regarded as independent variables approach a as a limit (passing

only over values of the set [x], of course). Show that f(z) approaches a limit as

z = a. By considering the set of values of f(x), the method of Theorem 3 applies

almost verbatim. Show that there is no essential change in the proof if it be

assumed that @’ and z” become infinite, the set [x] being unlimited instead of
 having a point of condensation a.

4. From the formula sin < 2 and the formulas for sin 4 — sinv and cos u — cosv
show that A sinz and A cosx are numerically less than 2|Az|; hence infer that sinz
and cosz are continuous functions of z for all values of x.

5. What are the intervals of continuity for tapz and cscx ? If e = 10—+, what
are approximately the largest available values of & that will make | f(z) — f(z,) | <e
when x, = 1°, 80°, 60°, 89° for each ? Use a four-place table.

6. Let f(x) be defined in the interval from 0 to 1 as equal to 0 when z is irra-
tional and equal to 1/¢ when z is rational and expressed as a fraction p/q in lowest
terms. Show that f is continuous for irrational values and discontinuous for
rational values. Ex. 8, p. 39, will be of assistance in treating the irrational values.

7. Note that in the definition of continuity a generalization may be introduced
by allowing the set [z] over which f is defined to be any set each point of which
is a point of condensation of the set, and that hence continuity over a dense set
(Ex. 7 above), say the rationals or irrationals, may be defined. This is important
because many functions are in the first instance defined only for rationals and are
subsequently defined for irrationals by interpolation. Note that if a function is
continuous over a dense set (say, the rationals), it does not follow that it is uni-
formly continuous over the set. For the point of condensation C' which was used
in the proof of Theorem 9 may not be a point of the set (may be irrational), and
the proof would fall through for the same reason that it would in the case of 1/z
in the interval 0 <z = 1, namely, because it could not be affirmed that the function
was continuous at C. Show that if a function is defined and is uniformly continu-
ous over a dense set, the value f(z) will approach a limit when z approaches any
value a (not necessarily of the set, but situated between the upper and lower
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frontiers of the set), and that if this limit be defined as the value of f(a), the
function will remain continuous. Ex. 8 may be used to advantage.

8. By factoring (z 4+ Az)® — z», show for integral values of n that when
0= 2= K, then A (z*) <nKn»-1 Az for small Az’s and consequently z* is uniformly
continuous in the interval 0 =2z = K. If it be assumed that z» has been defined
only for rational z’s, it follows from Ex. 7 that the definition may be extended
to all z’s and that the resulting z» will be continuous.

9. Suppose (@) that f(z) + f(¥) =/ (x + y) for any numbers z and y. Show that
f(n) =nf(1) and nf(1/n) = f(1), and hence infer that f(z) = xf(1) = Cz, where
C =f(1), for all rational #’s. From Ex. 7 it follows that if f(z) is continuous,
f(x) = Cz for all z’s. Consider (8) the function f(z) such that f(z) f(¥) =f(x + ¥)-
Show that it is Ce* = a=. )

10. Show by Theorem 12 that if y =«f (z) is a continuous constantly increasing
function in the interval @ = z =1, then to each value of y corresponds a single value
of z so that the function z = f—1(y) exists and is single-valued ; show also that
it is continuous and constantly increasing. State the corresponding theorem if
f(z) is constantly decreasing. The function f—1(y) is called the inverse function
to f(x).

11. Apply Ex. 10 to discuss y = V'z, where = is integral, « is positive, and only
positive roots are taken into consideration.

12. In arithmetic it may readily be shown that the equations

amgn = gm+n, (am)n = am», anbt = (ab)u’
are true when a and b are rational and positive and when m and »n are any positive
and negative integers or zero. (a) Can it be inferred that they hold when a
and b are positive irrationals? (8) How about the extension of the fundamental
inequalities

z*»>1, when z>1, »<1, when 0=z<1
to all rational values of n and the proof of the inequalities
gr>gr if m>n and z>1, gn<gr if m>n and O<z<l.

(Y) Next consider x as held constant and the exponent n as variable. Discuss the
exponential function a* from this relation, and Exs. 10, 11, and other theorems that
may seem necessary. Treat the logarithm as the inverse of the exponential.

26. The derivative. If « = a is a point of an interval over which
S () is defined and if the quotient

Af _ flat W)y —f(B) o _
}L - ’

Ax

approaches a limit when h approaches zero, no matter how, the function
S(x) is said to be differentiable at x = a and the value of the limit of
the quotient is the derivative f'(a) of f at * = a. In the case of differ-
entiability, the definition of a limit gives

&M}=f'(a)+" or f(a+ k) —f(a)=hf'(a) +4h, 1)

where lim y = 0 when lim 2 = 0, no matter how.



’

i

46 INTRODUCTORY REVIEW

In other words if e is given, a & can be found so that |9|<e when |h|<3. This
shows that a function differentiable at @ as in (1) is continuous at a. For

If@+ k) —f@)|=|f(@|s+e,  |h<3.

If the limit of the quotient exists when A = 0 through positive values only, the
function has a right-hand derivative which may be denoted by f” (at+) and similarly
for the left-hand derivative f’(a—). At the end points of an interval the derivative
is always considered as one-handed ; but for interior points the right-hand and left-
hand derivatives must be equal if the function is to have a derivative (unqualified).
The function is said to have an infinite derivative at a if the quotient becomes infi-
nite as h = 0; but if a is an interior point, the quotient must become positively
infinite or negatively infinite for all manners of approach and not positively infinite
for some and negatively infinite for others. Geometrically this allows a vertical
tangent with an inflection point, but not with a cusp as in Fig. 3, p. 8. If infinite
derivatives are allowed, the function may have a derivative and yet be discontin-
uous, as is suggested by any figure where f(a) is any value between lim f(x) when
z = a+* and lim f(z) when z = a-.

TreoreM 13. If a function takes on its maximum (or minimum) at
an interior point of the interval of definition and if it is differentiable
at that point, the derivative.is zero.

THEoOREM 14. Rolle’s Theorem. If a function f(x) is continuous over
an interval ¢ = « = 0 with end points and vanishes at the ends and has
a derivative at each interior point @ <z < b, there is some point £,
a < ¢ < b, such that f'(£)=0.

THEOREM 15. Theorem of the Mean. If a function is continuous over
an interval ¢ = « = 0 and has a derivative at each interior point, there
is some point ¢ such that

. ﬂ%):%(") =f'(¢) or f(a_—|—];3_—f@ = f'(¢ + 6h),

where 2 = ) — a* and 0 is a proper fraction, 0 < § < 1.

To prove the first theorem, note that if f(a) = M, the difference f(a + &) — f{a)
cannot be negative for any value of & and the quotient Af/h cannot be positive
when & >0 and cannot be negative when & < 0. Hence the right-hand derivative
cannot be positive and the left-hand derivative cannot be negative. As these two
must be equal if the function has a derivative, it follows that they must be zero,
and the derivative is zero. The second theorem is an immediate corollary. For as
the function is continuous it must have a maximum and a minimum (Theorem 11)
both of which cannot be zero unless the function is always zero in the interval.
Now if the function is identically zero, the derivative is identically zero and the
theorem is true ; whereas if the function is not identically zero, either the maximum
or minimum must be at an interior point, and at that point the derivative will vanish.

* That the theorem is true for any part of the interval from « to b if it is true for the
whole interval follows from the fact that the conditions, namely, that f be continuous
and that f“ exist, hold for any part of the interval if they hold for the whole.
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" To prove the last theorem construct the auxiliary function

f (b) f @ S (b) —f(a)

b—a

Y@ =@ —fla)— @ —a) T2 =1 V@) =r@—
As y (a) = ¢ (b) = 0, Rolle’s Theorem shows that there is some point for which
¥’ (¢) = 0, and if this value be substituted in the expression for y’(z) the solution
for 17 (¢) gives the result demanded by the theorem. The proof, however, requires
the use of the function y (x) and its derivative and is not complete until it is shown
that y (z) really satisfies the conditions of Rolle’s Theorem, namely, is continuous
in the interval a =z =b and has a derivative for every point a <z <b. The con-
tinuity is a consequence of Theorem 6 ; that the derivative exists follows from the
direct application of the definition combined with the assumption that the deriva-
tive of f exists.

27. Treorem 16. If a function has a derivative which is identically
zero in the interval a = « = b, the function is constant; and if two
functions have derivatives equal throughout the interval, the functions
differ by a constant. :

TreoreEM 17. If f(x) is differentiable and becomes infinite when
xz = a, the derivative cannot remain finite as » = a.

Tueorewm 18. If the derivative f'(x) of a function exists and is a
‘continuous function of x in the interval « = = = ), the quotient Af/A
converges uniformly toward its limit £’ (x).

These theorems are cons.equences of the Theorem of the Mean. For the first,
f@+h)—f(@)=hf'(a+60h)=0, if h=b—a, or f(a+k) =f(a).

Hence f() is constant. And in case of two functions f and ¢ with equal derivatives,
the difference y (z) = f(x) — ¢ (x) will have a derivative that is zero and the differ-
ence will be constant. For the second, let z, be a fixed value near a and suppose that
in the interval from Z, to a the derivative remained finite, say less than K. Then

[f(@o + k) — f(zo)| = | 1S (o + O1) | =|R| K.

Now let x, + h approach a and note that the left-hand term becomes infinite and
the supposition that f” remained finite is contradicted. For the third, note that f”,
being continuous, must be uniformly continuous (Theorem 9), and hence that if e is
given, a § may be found such that

1@ DZTO _ pe)|=ire + o - r@l<e

when [A|< § and for all z’s in the interval ; and the theorem is proved.
Concerning derivatives of higher order no special remarks are necessary. Each
is the derivative of a definite function — the previous derivative. If the deriva-
tives of the first n orders exist and are continuous, the derivative of order n + 1
may or may not exist. In practical applications, however, the functions are gen-
erally indefinitely differentiable except at certain isolated points. The proof of
Leibniz’s Theorem (§ 8) may be revised so as to depend on elementary processes.
Let the formula be assumed for a given value of n. The only terms which can

@)

e
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contribute to the term DiuDn+1~iy in the formula for the (n + 1)st derivative of
uv are the terms

"("‘1)"'("—“'2)D"-luDu+l-iv, n(n—l)"'(n_i'"l)Dqu"—"v
1.2...(i—1) 1.2...4 !

in which the first factor is to be differentiated in the first and the second in the
second. The sum of the coefficients obtained by differentiating is
n(n—l)-~-(n—i+2)+n(n—l)---(n-—i-+l)_ m+n...(n—i+2)
1.2...(i—1) 1.2...4 - 1.2...4 ’

which is precisely the proper coefficient for the term DiuD#+1— in the expansion
of the (n + 1) st derivative of uv by Leibniz’s Theorem.

With regard to this rule and the other elementary rules of operation (4)-(7) of
the previous chapter it should be remarked that a theorem as well as a rule is in-
volved —thus: If two functions u and v are differentiable at z,, then the product
up is differentiable at x, and the value of the derivative is u (z,) v’ (zo) + u’ (xy) v ().
And similar theorems arise in connection with the other rules. As a matter of fact
the ordinary proof needs only to be gone over with care in order to convert it into
a rigorous demonstration. But care does need to be exercised both in stating the
theorem and in looking to the proof. For instance, the above theorem concerning
a product is not true if infinite derivatives are allowed. Forlet u be — 1,0, or + 1
according as x is negative, 0, or positive, and let v = . Now v.has always a deriva-
tive which is 1 and u has always a derivative which is 0, + o, or 0 according as z
is negative, 0, or positive. The product uv is |z}, of which the derivative is — 1 for
negative z's, + 1 for positive z's, and nonexistent for 0. Here the product has no
derivative at 0, although each factor has a derivative, and it would be useless to have
a formula for attempting to evaluate something that did not exist.

EXERCISES

1. Show that if at a point the derivative of a function exists and is positive, the
function must be increasing at that point. °

2. Suppose that the derivatives f”(a) and f’(b) exist and are not zero. Show
"that f(a) and f () are relative maxima or minima of f in the interval a =z =b, and
determine the precise criteria in terms of the signs of the derivatives f’(a) and f/(b).

3. Show that if a continuous function has a positive right-hand derivative at
every point of the interval a =z =, then f(b) is the maximum value of f. Simi-
larly, if the right-hand derivative is negative, show that f(b) is the minimum of f.

4. Apply the Theorem of the Mean to show that if f/(z) is continuous at a, then
tim TE=IED _ ),
x X =a r—2
Z’ and z” being regarded as independent.
5. Form the increments of a function f for equicrescent values of the variable :
AS=f(a+ k) —f(a), ASf=f(a+2R)—f(a+h),
Af=fla+3h)—f(a+2h),---.
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These are called first differences ; the differences of these differences are
Alf=Ffa+2h)—2f(@+h) +f(),
A} =f(@+8R) =27 (@+2h) +F(@+R), -
which are called the second differences ; in like manner there are third differences
Aff=f(a+38h)—38f(a+2h)+3f(a+h)—f(a),---
and so on. Apply the Law of the Mean to all the differences and show that
AZf = h2f"(a + 6,k + G,h), ASf=1f"(a+ 0.k + O,k + G5h), - - -
Hence show that if the first n derivatives of f are continuous at a, then
4 2 4 As H A"
f(a)= hm h{’ S (@) = llm h—{, ceey J)(a) = }.uénoh—"'f-
6. Cauchy’s Theorem. If f(z) a,nd ¢ (z) are continuous over ¢ =z =0, have
derivatives at each interior point, and if ¢’(z) does not vanish in the interval,
IO =7@ _ 1@ . fe+h=f@ _ fa+oh
o) —9(@) ¢ p(a+h)—¢(@) ¢'(a+ k)
Prove that this follows from the application of Rolle’s Theorem to the function
IO~ 7@
() —¢(a)
7. One application of Ex. 6 is to the theory of indeterminate forms. Show that
if f(a) = ¢ (2) = 0 and if f’(x)/¢’(x) approaches a limit when z = a, then f(z)/¢ (z)
will approach the same limit.

8. Taylor's Theorem. Note that the form f(b) =f(a) + (b — a)f’(§) is one way
of writing the Theorem of the Mean. By the application of Rolle’s Theorem to

2 fO) = F(@) = b—a) f(a)

¥ (@) =f(@)—f(a) - [$(@) — ¢(a)]

Y@ =fO) —f@)— b—2)/" @) — (0 —2)

®—a)?
, o—a?.,
show . f(b):f(a)+(b—a)f(a)+__2__f ®),
and o ¥ () =70 = 7@) = 0= @)~ E5L e - - L v )
(b—a) .
o= a)"[f(b)—f(a)— ®— a)f'(a)
®—ay2,, G—ar-1,
- —2—f @—--- _Wf( 1)(,,)],
7 (b—a)2 "
show f(b)=f(a)+(b—a)f(a)+Tf @+ ---
(b—-— a,)n n ( a) §
oy [T @F 00

What are the restrictions that must be imposed on the function and its derivatives ?

9. If a continuous function over a =z = b has a right-hand derivative at each
point of the interval which is zero, show that the function is constant. Apply Ex. 2
to the functions f(z) + € (x — a) and f(x) — e(x — a) to show that the maximum
difference between the functions is 2 ¢ (b — @) and that f must therefore be constant.
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10. State and prove the theorems implied in the formulas (4)-(6), p. 2.

11. Consider the extension of Ex. 7, p. 44, to derivatives of functions defined
over a dense set. If the derivative exists and is uniformly continuous over the dense
set, what of the existence and continuity of the derivative of the function when its
"definition is extended as there indicated ?

12, If f(z) has a finite derivative at each point of the interval a =z =b, the
derivative f’(x) must take on every value intermediate between any two of its values.
To show this, take first the case where f“(a) and f”(b) have opposite signs and show,
by the continuity of f and by Theorem 13 and Ex. 2, that f”(¥) = 0. Next if
J/(@)< u <f’(b) without any restrictions on f’(a) and f’(b), consider the function
f(x) — ux and its derivative f’(z) — u. Finally, prove the complete theorem. It
should be noted that the continuity of f“(x) is not assumed, nor is it proved; for .
there are functions which take every value intermediate between two given values
and yet are not continuous.

28. Summation and integration. Let f(x) be defined and limited
over the interval « = x =6 and let M, m, and O =M —m be the
upper frontier, lower fron- »
tier, and oscillation of f(x) N M
in the interval. Let n —1
points of division be intro- I,if‘)
duced in the interval divid- ' /
ing it into = comsecutive
intervals &, &, ---, 8, of
which the largest has the o a
length A and let M;, m,, O;, )
and f(¢) be the upper and lower frontiers, the oscillation, and any
value of the function in the interval 8. Then the inequalities

ms.- = m,'s.' = f(f;) 8;' = I‘/I,'S; = ]'181
will hold, and if these terms be summed up for all » intervals,

m (b — a) §2m,8;§2f(&)8i§2]uisi§ MO —a) (4)

will also hold. Let s = 3m3;, o = 3 (£)9;, and S = 3 M$. From (4)
it is clear that the difference S — s does not exceed ’

M—-—m)b—a)=0(0— a),

the product of the length of the interval by the oscillation in it. The
values of the sums S, s, o will evidently depend on the number of parts
into which the interval is divided and on the way in which it is divided
into that number of palts

Turorem 19. If »' additional points of division be 1ntr0duced into
the interval, the sum ' constructed for the n 4+ n' — 1 points of division

m

oi b X
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cannot be greater than § and cannot be less than S by more than
n'OA. Similarly, s' cannot be less than s and cannot exceed s by more
than »'0A. X

.Tueorem 20. There exists a lower frontier L for all possible methods
of constructing the sum § and an upper frontier 7 for s. '

TaeorEM 21. Darboux’s Theorem. When e is assigned it is possible
to find a A so small that for all methods of division for which §; = A,
the sums S and s shall differ from their frontier values L and ! by less
than any preassigned e

To prove the first theorem note that although (4) is written for the whole inter-
~val from a to b and for the sums.constructed on it, yet it applies equally to any
part of the interval and to the sums constructed on that part. Hence if S; = M;5; be
the part of S due to the interval §; and if S; be the part of S’ due to this interval
after the introduction of some of the additional points into it, m;5; = S; =8; = M3, u/
Hence S; is not greater than S; (and as this is true for each interval §;, S’ is not
greater than S) and, moreover, S; — S is not greater than 0;3; and a fortiori not
greater than OA. As there are only »” new points, not more than 7 of the intervals
8; can be affected, and hence the total decrease S — S’ in 8 cannot be more than
n’OA. The treatment of 8 is analogous.

Inasmuch as (4) shows that the sums S and 8 are limited, it follows from Theo-
rem 4 that they possess the frontiers required in Theorem 20. To prove Theorem 21
note first that as L is a frontier for all the sums S, there is some particular sum S
which differs from L by as little as desired, say } e. For this S let n be the number
of divisions. Now consider 8’ as any sum for which each §; is less than A = } ¢/n0. -
If the sum 8" be constructed by adding the n points of division for 8 to the points
of division for §’, §” cannot be greater than S and hence cannot differ from L by
so much as }e. Also 8” cannot be greater than S’ and cannot be less than S’ by
more than nOA, which is }e. As S” differs from L by less than } e and S’ differs
from S” by less than } e, 8’ cannot differ from L by more than e, which was to be
proved. The treatment of s and ! is.analogous.

29. If indices are introduced to indicate the interval for which the
frontiers L and ! are calculated and if 8lies in the interval from a to d,
then L# and £ will be functions of 8.

TueoreM 22. The equations LP=LS+ L} a<e<b; L}P=—LS;

a

L)=p(b—a), m=pu= M, hold for L, and similar equations for /. As

functions of B, L8 and I£ are continuous, and if f(x) is continuous,
.

they are differentiable and have the common derivative £(8). v
To prove that L? = LS 4+ L2, consider ¢ as one of the points of division of the

interval from @ to b. Then the sums § will satisfy S® = S¢ + S?, and as the limit

of a sum is the sum of the limits, the corresponding relation must hold for the

frontier L. To show that L? =— L2 it is merely necessary to note that S? =— §2

because in passing from b to a the intervals §; must be taken with the sign opposite

to that which they have when the direction is from a to b. From (4) it appears

that m (b — a) = S2 = M (b — a) and hence in the limitm (b — a) S LP =M (b — a).
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Hence there is a value g, m = u = M, such that L} = (b — a). To show that L

is a continuous function of 8, take K >|M|and |m|, and consider the relations
LA+ LB =LE+ LE**— LE=LE+" = yh, |u|< K,
LaB-I'—Lf=L£'h—Lf-h—Lg_h =—L§_,‘ =—u'h, |w|< K.

Hence if ¢ is assigned, a § may be found, namely & <e/K, so that [LE** — LB|<e
when h <& and L# is therefore continuous. Finally consider the quotients

B+A_ LB B—h_ LB
Ii’._h—La =u and .L_“TZ._L_E =u

where u is some number between the maximum and minimum of f(z) in the inter-
val B = = B + h and, if f is continuous, is some value f(£) of f in that interval
and where u’ = f(¢') is some value of f in the interval g — h=z=pg. Now let
h = 0. As the function f is continuous, lim f(¢) = f(8) and lim f(¢') = f(8). Hence
the right-hand and left-hand derivatives exist and are equal and the function LS
has the derivative f(8). The treatment of ! is analogous.

THEOREM 23. For a given interval and function f, the quantities ¢
and L satisfy the relation / = L; and the necessary and sufficient con-
dition that L =1 is that there shall be some division of the interval
which shall make 3 (M; —m,)8; = 304;<e

If L =1}, the function f is said to be integrable over the interval

o b
from a to & and the integral f JS(x)dx is defined as the common value

L} =1} Thus the definite integral is defined.
TraeoreM 24. If a function is integrable over an interval, it is inte-
grable over any part of the interval and the equations

facﬂx) de + f " () do = f ')
fabf(x)d =_fb«=f(x)dx, fabf(x)dw=u(b—a)

8
hold ; moreover, f Sf(x)dx = F(B) is a continuous function of 8; and
if f(x) is continuous, the derivative F'(B8) will exist and be f(8).

By (4) the sums S and s constructed for the same division of the interval satisfy
the relation S — s=0. By Darboux’s Theorem the sums S and 8 will approach the
values L and ! when the divisions are indefinitely decreased. Hence L — I=0.
Now if L =1 and a A be found so that when §; < A the inequalities S — L < } e and
l—8<}e hold, then 8 — s =2 (M; — m;)8; = £0;5; <e; and hence the condition
20;5; < e is seen to be necessary. Conversely if there is any method of division such
that 20;; <e, then S — 8 <e and the lesser quantity L — [ must also be less than e.
But if the difference between two constant quantities can be made less than e,
where e is arbitrarily assigned, the constant quantities are equal ; and hence the
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condition is seen to be also sufficient. To show that if a function is integrable over
an interval, it is integrable over any part of the interval, it is merely necessary to
show that if L? =12, then LS = if where a and B are two points of the interval.
Here the condition £0;5; < e applies; for if £0;4; can be made less than e for the
whole interval, its value for any part of the interval, being less than for the whole,
must be less than e. The rest of Theorem 24 is a corollary of Theorem 22.

30%TueorEM 25. A function is integrable over the interval a = x =10
if it is continuous in that interval.

Tueorem 26. If the interval a =x =05 over which f(x) is defined
and limited contains only a finite number of points at which £ is dis-
continuous or if it contains an infinite number of points at which f is
discontinuous but these points have only a finite number of points of
condensation, the function is integrable.

Tueorem 27. If f(x) is integrable over thg interval a =x =, the

sum o = 3f(£)3; will approach the limit f f(x)dx when the indi-

vidual intervals §; approach the limit zero, it being immaterial how
they approach that limit or how the points § are selected in their
respective intervals . )

TreoreM 28. If f(x) is continuous in an interval a =x =¥, then

JS(x) has an indefinite integral, namely f Jf(x)dz, in the interval.

Theorem 25 may be reduced to Theorem 23. For as the function is continuous,
it is possible to find a A so small that the oscillation of the function in any interval
of length A shall be as small as desired (Theorem 9). Suppose A be chosen so that
‘the oscillation is less than e¢/(b — a). Then Z0;5; < e when §; <A; and the function
is integrable. To prove Theorem 26, take first the case of a finite number of discon-
tinuities. Cut out the discontinuities surrounding each value of z at which f is dis-
continuous by an interval of length 5. As the oscillation in each of these intervals
is not greater than O, the contribution of these intervals to the sum Z0;3; is not
greater than Ond, where n is the number of the discontinuities. By taking § small
enough this may be made as small as desired, say less than }e. Now in each of the
remaining parts of the interval @ =z =1, the function f is continuous and hence
integrable, and consequently the value of Z0;3; for these portions may be made as
small as desired, say 34 e. Thus the sum Z0;5; for the whole interval can be made
as small as desired and f(z) is integrable. When there are points of condensation
they may be treated just as the isolated points of discontinuity were treated. After
they have been surrounded by intervals, there will remain over only a finite num-
ber of discontinuities. Further details will be left to the reader.

For the proof of Theorem 27, appeal may be taken to the fundamental relation
(4) which shows that s=o¢=28. Now let the number of divisions increase indefi-
nitely and each division become indefinitely small. As the function is integrable,

b
8 and s approach the same limit f f(x)dz, and consequently ¢ which is included
a

between them must approach that limit. Theorem 28 is a corollary of Theorem 24
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which states that as f(x) is continuous, the derivative of f zf (x)dr is f(z). By defi-
nition, the indefinite integral is any function whose de;iva,tive is the integrand.
Hence f JEf (x)dz is an indefinite integral of f(z), and any other may be obtained
by a{ldil;'g to this an arbitrary constant (Theorem 16). Thus it is seen that the

proof of the existence of the indefinite integral for any given continuous function
is made to depend on the theory of definite integrals.

EXERCISES
1. Rework some of the proofs in the text with I replacing L.

2. Show that the L obtained from Cf(z), where C is a constant, is C times the L
obtained from f. Also if u, v, w are all limited in the interval a =z =W, the L for
the combination u + v — w will be L (u) + L (v) — L (w), where L (u) denotes the L
for u, etc. State and prove the corresponding theorems for definite integrals and
hence the corresponding theorems for indefinite integrals.

3. Show that =0;5; can be made less than an assigned e in the case of the func-
tion of Ex. 6, p. 44. Note that I = 0, and hence infer that the function is integrable
and the integral is zero. The proof may be made to depend on the fact that there
are only a finite number of values of the function greater than any assigned value.

4. State with care and prove the results of Exs. 8 and 5, p. 29. What restric-
tion is to be placed on f(r) if f(£) may replace u ?

5. State with care and prove the results of Ex. 4, p. 29, and Ex. 13, p. 30.

6. If a function is limited in the interval @ =x =b and never decreases, show
that the function is integrable. This follows from the fact that £0; = O is finite.

7. More generally, let f(x) be such a function that =0; remains less than some
number K, no matter how the interval be divided.  Show that f is integrable. Such
a function is called a function of limited variation (§ 127).

8. Change of variable. Let f(z) be continuous over ¢ =z =b. Change the
variable to x = ¢ (t), where it is supposed that a = ¢ (¢,) and b = ¢(t,), and that
¢ (t), ¢’(t), and f[¢ ()] are continuous in ¢ over t, =¢=¢{,. Show that

b ty 'Y0) t
= / = 4 dn
[r@t=[roie0a o [° r@d=[ fle@1e0d

Do this by showing that the derivatives of the two sides of the last equation with
respect to ¢ exist and are equal over t, =t =t,, that the two sides vanish when

t =t, and are equal, and hence that they must be equal throughout the interval.

9. Osgood’'s Theorem. Let a; be a set of quantities which differ uniformly £ rom
S (&) & by an amount ¢;5;, that is, suppose
a;=f(£) 8 + idi, where |fi]<e and a=§{=b.
Prove that if f is integrable, the sum Zqa; approaches a limit when 5; = 0 and that
the limit of the sum is f bf (x) dx.
a

10. Apply Ex. 9 to the case Af =f'Azr + {Ax where f’ is continuous to show
b
directly that f(b) — f(a) = f J'(zydz. Also by regarding Ar = ¢’ (t) At + ¢At, apply
to Ex. 8 to prove the rule for change of variable.



PART 1. DIFFERENTIAL CALCULUS :

CHAPTER III
TAYLOR'S FORMULA AND ALLIED TOi’ICS

31. Taylor’s Formula. The object of Taylor’s Formula is to express
~ the value of a function f(z) in terms of the values of the function and
its derivatives at some one point x =a. Thus

r@=r@+e-ar@+C5L @+

= T OR W
Such an expansion is necessarily true because the remainder R may be
considered as defined by the equation; the real significance of the
formula must therefore lie in the possibility of finding a simple ex-
pression for R, and there are several.

TueEorEM. On the hypothesis that f(x) and its ﬁrst n derivatives
exist and are continuous over the interval a = x = b, the function may
be expanded in that interval into a polynomial in = — a,

a2
F@=f @+ @—a) '@+ EF @)+
+ (n—l)L,f"‘ U(a) + R, €Y
with the remainder R expressible in any one of the forms
r —a)? " hnl_on-l ”
R=£T!lf‘ ’(f)=4(m)!Lf‘ (€) ‘
—_— 1 hn-l n) »
——(n—_l)—!\[t f (a+k—t)dt, (2)
where A=a2 —aand a < ¢ <z or § =a + 04 where 0 < 6 < 1.

A first proof may be made to depend on Rolle’s Theorem as indicated in Ex. 8,
p. 49. Let x be regarded for the moment as constant, say equal to b. Construct
55



56 . DIFFERENTIAL CALCULUS

the function y (z) there indicated. Note that y (@) = y (b) = 0 and that the deriva-
tive y’(z) is merely

V@) =— ";—‘f}—),—ﬂ» @+ 8= L2 10)— f0) - 0 - a7 @)
SR Ul i
. ]

By Rolle’s Theorem y’(§) = 0. Hence if ¢ be substituted above, the result is

", (b - a)“ a)
FO) =f@+ @—a)f@+--- +'(n—_17"-f("_l)(a)+ —— ™ (§),
after striking out the factor — (b — £)*—1, multiplying by (b — a)*/n, and transposing
S (). The theorem is therefore proved with the first form of the remainder. This
proof does not require the continuily of the nth derivative nor its existence at a and at b.
The second form of the remainder may be found by applying Rolle’s Theorem to

-

Y@ =rO-r@—- - @—----— —f"‘“’(z)—(b—z)P

where P is determined so that R =(b— a) P. Note that ¥ (b) =0 and that by
Taylor's Formula ¢ (a) = 0. Now

(e i apy @ — 6"~
Wf()(l)'F'P or P= f()(f)( 1),

Hence if ¢ be written §=a+ 6k where h=b—a, then b—t=b—a—0h=(b—a)(1—6).
(b—ay-1(1—-@)»-1 i — o—an(1— Gyn—1 -
R TR AR It oy A2
The second form of R is thus found. In this work as before, the result is proved
for = b, the end -point of the interval a=z=0b. But as the interval could be

considered as terminating at any of its points, the proof clearly applies to any =
in the interval.

A second proof of Taylor’s Formula, and the easiest to remember, consists in
integrating the nth derivative n times from a to . The successive results are

fzf(,,) (Z) dz =fn-1(x)]"= Jn-1 (z) — fn-1) (a)
[ [ro@dr=[re-v@a- [Fo-v@ds
= /0= (z) = fO=D(@) — (z — ) f D (@),
L z j; x f; Tf(") (%) da® = f(n=8) () — f(n=B) (a) — ( — @) [ =D (@) — .(f_;!;“)z f@=1 ().

Y(@)=— since y'(§) =

And R=(p—a)P=(b—a

j;’. .. a’f(n) (@) dan = f(z) — (@) — (x —a)f’ (@)
f”(a) e — E__ﬂ_f(n -1 (a).

(z

The formula is therefore proved with R in the form f f J)(x)dzn. To trans-
form this to the ordinary form, the Law of the Mean may be applied ((65), § 16). For

2 il

m@E—a)< f o) dz < Mz — a),
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where m is the least and M the greatest value of f((x) from a to . There is then
some intermediate value f()(¢) = u such that

j;z. . -j;xf(")(x) dzr = %"f(n)(f).

This proof requires that the nth derivative be continuous and is less general.
The third proof is obtained by applymg successive integrations by parts to the

obvious identity f(a + &) — f(a)= f f’(a + h — t)dt to make the integrand contain
higher derivatives.

A ' h h
fa+n-f@= f’(a+h—t)alt:tf/(a+,h—t):|0+f0 U@+ h—t)dt
= (@) + § B (a+ h— t)]" + f * o h— s

—hf’(a)+ f”()+ -+

( )'f(n =1)(a) +f 1)'f(u)(a + h—t)dt.

This, however, is precisely Taylor’'s Formula with the third form of remainder.

If the point a about which the function is expanded is x =0, the
expansion will take the form known as Maclaurin’s Formula :

S (@) f(0)+ff'(0)+ f"(0)+ +( l)vf("_l) O+2, (3)

R= :—;f‘”(ex) = (7:_1)' (1—6)"-1f®™(6z)= m f ol f) dt.

32. Both Taylor’s Formula and its special case, Maclaurin’s, express
a function as a polynomial in 2 =2 — a, of which all the coefficients
except the last are constants while the last is not constant but depends
on & both explicitly and through the unknown fraction § which itself is
a function of 4. If, however, the nth derivative is continuous, the coeffi-
cient f™(a + 64)/n! must remain finite, and if the form of the deriva-
tive is known, it may be possible actually to assign limits between
which f®™(a + 6%)/n! lies. This is of great importance in making
approximate calculations as in Exs. 8 ff. below; for it sets a limit to
the value of R for any value of n. :

THEOREM. There is only one possible expansion of a function into
a polynomial in 2= — a of which all the coefficients except the last
are constant and the last fihite; and hence if such an expansion is
found in any manner, it must be Taylor’s (or Maclaurin’s).

To prove this theorem consider two polynomials of the nth order

Cot Ch Coh2 -+ -+ Caohr =14 cuhn = Cy+ Cyh+ Cph% + - - + Cp_yhn =1+ Cpim,

which represent the same function and hence are equal for all values of A from 0
to b— a. It follows that the coefficients must be equal. For let & approach 0.
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The terms containing A will a.ppi'oa.ch 0 and hence ¢, and C, may be made as
nearly equal as desired ; and as they are constants, they must be equal. Strike
them out from the equation and divide by . The new equation must hold for all
values of & from 0 to b — a with the possible exception of 0. Again let A =0 and
now it follows that ¢, = C,. And so on, with all the coefficients. The two devel-
opments are seen to be identical, and hence identical with Taylor’s.

To illustrate the application of the theorem, let it be required to find the expan-
sion of tanz about 0 when the expansions of sinz and cosZ about 0 are given.

sing =z — }2® + {3525 + Pa7, cosz=1—}2% + Jrzt + Qub,

where P and Q remain finite in the neighborhood of z = 0. 1In the first place note
that tanz clearly has an expansion ; for the function and its derivatives (which
are combinations of tan  and sec z) are finite and continuous until z approaches } .
By division,
z+ 323+ b
1—32% 4 Aot + Qat)z — 3 28 + 1}y 25 + P27
z—32+ 254 Q7
- o+ (P—QF
18— } 25 4+ a4} Qed
S

27, where 8 is the remainder in the division

',

Hence tanx = + }a® + &° +

cosT .
and is an expression containing P, @, and powers of z ; it must remain finite if P

and @ remain finite. The quotient S/cos x which is the coeflicient of 27 therefore
remains finite near z = 0, and the expression for tan x is the Maclaurin expansion
up to terms of the sixth order, plus a remainder.

In the case of functions compounded from simple functions of which the expan-
sion is known, this method of obtaining the expansion by algebraic processes upon
the known expansions treated as polynomials is generally shorter than to obtain
the result by differentiation. The computation may be abridged by omitting the
last terms and work such as follows the dotted line in the example above ; but if
this 4s done, care must be exercised against carrying the algebraic operations too
far or not far enough. In Ex. 5 below, the last terms should be put in and carried
far enough to insure that the desired expansion has neither more nor fewer terms
than the circumstances warrant.

EXERCISES
hr (1 — gyn—t
. R =(b— a)P; =L __ f((§).
1. Assume (b— a)tP; show R T J™ (&)

. 2. Apply Ex. 5, p. 29, to compare the third form of remainder with the first.

3. Obtain, by differentiation and substitution in (1)7, three nonvanishing terms:
(a) sin-lz,a =0, (B) tanhzx,a=0, (y) tanz, a =},
(8) cscz,a=13mw, () efinz g =0, (%) logsinz, a =} .
4. Find the nth derivatives in the following cases and write the expansion:
(a) sinz, a =0, B) sinx, a =}, () ¢, a =0,
(8) crya=1, () logz, a =1, ) A+x)k,a=0.
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5. By algebraic processes find the Maclaurin expansion to the term in z5:

(a) secz, (8) tanhz, (y) — V1—22,
(8) e*sinz, (¢) [log (1 —)]?, () + Vcoshz,
(n) esinz, (9) log cosz, (¢) log V1 + z2.

The expansions needed in this work may be found by differentiation or taken
from B. O. Peirce’s ** Tables.”’ In (y) and ({) apply the binomial theorem of Ex.
.4(5). In (9) let y = sinz, expand ev, and substitute for y the expansion of sin z.
In () let cosx=1—y. In all cases show that the coefficient of the term in z8
really remains finite when z = 0.

6. If f(a+h)=co+ c,h + €% + - -+ + a1 A*—1 + c,lin, show that in
A c c, Cn-1. A
RNdh=ch+2h2 4+ 2h8 4 ... 40 21pa hndh
[ S @+ Ryah = ch+ 2h 4 2o 4 + 2 4 [ e
the last term may really be put in the form PA»+1 with P finite. Apply Ex. 5, p. 29.

7. Apply Ex. 6 to sin—1zx = f ———, etc., to find developments of

V1—g?
(a) sin —1g, (B) tan—lz, (y) sinh-1z,
(0) log 12, @ [fema, @ [l

In all these cases the results may be found if desired to n t.erms.

8. Show that the remainder in the Maclaurin development of e is less than
zre®/n ! ; and hence that the error introduced by disregarding the remainder in com-
puting e is less than z7e*/n!. How many terms will suffice to compute e to four
decimals ? How many for e® and for 01 ?

9. Show that the error introduced by disregarding the remainder in comput-
ing log (1+ ) is not greater than z»/n if £ >0. How many terms are required for
the computation of log 1} to four places ? of log1.2 ? Compute the latter.

10. The hypotenuse of a triangle is 20 and one angle is 81°. Find the sides by
expanding sinz and cosz about @ = } 7 as linear functions of £ — } w. Examine
the term in (x— } )2 to ﬁnd a maximum value to the error introduced by
neglecting it.

11. Compute to 6 places: (a) e}, (8) log 1.1, (y) sin 30/, (5) cos 30’. During
the computation one place more than the desired number should be carried along
in the arithmetic work for safety.

12. Show that the remainder for log (1 + ) is less than z#/n (1 + z)» if z<0.
Compute (a) log 0.9 to 6 places, (8) log 0.8 to 4 places.

13. Show that the remainder for tan—1z is less than z#/n where n may always
be taken as odd. Compute to 4 places tan—!4§.

14. The relation } = tan—11=4 tan-1} — tan-1,}; enables } = to be found
easily from the series for tan-1z. Find i-rr to 7 places (intermediate work carried
to 8 places). iy
15. Computation of logarithms. (a) If a = log 12, b = log $4, ¢ = log §3}, then
log2=7a—2b+ 3¢, log8=11a—38b + 5¢, logh=16a—4b+ Tc.
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Now a =—log (1 — v4), b =— log (1 — 145), ¢ = log (1 + &) are readily computed
and hence log 2, log 8, log 5 may be found. Carry the calculations of a, b, ¢ to
10 places and deduce the logarithms of 2, 3, 5, 10, retaining only 8 places. Com-

pare Peirce’s ** Tables,”” p. 109.
1+2 is less than —2L
11—z n(l— )
pute log 2 corresponding to = } to 4 places, log 1§ to 5 places, log 1% to 6 places.
P p—q 1/p—q\’ 1 (p—q\"!
Show lo —=2[—+-(—)+...+ i +R

™ R I M EY 2n—1\p+g -y
give an estimate of Rz, 41, and compute to 10 figures log3 and log 7 from log 2
and log 5 of Peirce’s **Tables ’’ and from

(8) Show that the error in the series for log Com-

4

4log3—4log2—logh= log:—(l), 4log7— b5log2 —log8— 2logh = log747 I
16. Compute Ex. 7 (¢) to 4 places for = 1 and to 6 places for z = §.
17. Compute sin—10.1 to seconds and sin—1} to minutes.
18. Show that in the expansion of (1 + z)* the remainder, as z is > or <0, is
k-(k—l)~~(k-—n)zn k-(k=1)---(k—n) Zn

1.2...n 1-2.-..n (1+z)n—k
Hence compute to 5 figures V103, V98, v/28, /250, ¥/1000.

19. Sometimes the remainder cannot be readily found but the terms of the
expansion appear to be diminishing so rapidly that all after a certain point appear
negligible. Thus use Peirce’s ** Tables,”” Nos. 774-789, to compute to four places
(estimated) the values of tan 6°, log cos 10°, csc 3°, sec 2°.

R, < or R, <

20. Find to within 1% the area under cos (z?) and sin (z2) from 0 to } 7.

21. A unit magnetic pole is placed at a distance L from the center of a magnet
of pole strength M and length 21, where l/L is small. Find the force on the pole
if (a) the pole is in the line of the magnet and if () it is in the perpendicular
bisector.

2
Ans. (a) 1 }:1 (1 + €) with e about 2(%) , ()} 2

L L3

22. The formula for the distance of the horizon is D =\/§_I: where D is the
distance in miles and % is the altitude of the observer in feet. Prove the formula
and show that the error is about }7% for heights up to a few miles. Take the radius
of the earth as 3960 miles.

(1— ¢) with € about 8 (1)2
2\L

23. Find an approximate formula for the dip of the horizon in minutes below
the horizontal if A in feet is the height of the observer.

24. 1f S is a circular arc and C its chord and ¢ the chord of half the arc, prove
S =1(8c— C)(1+ ¢) where ¢ is about $*/7680 R* if R is the radius.

25. If two quantities differ from each other by a small fraction e of their value,
show that their geometric mean will differ from their arithmetic mean by about
} € of its value.

26. The algebraic method may be applied to finding expansions of some func-
tions which become infinite. (Thus if the series for cosz and sinz be divided to
find cot z, the initial term is 1/z and becomes infinite at £ = 0 just as cotz does.
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Such expansions are not Maclaurin developments but are analogous to them.
The function z cotz would, however, have a Maclaurin development and the
expansion found for cot z is this development divided by z.) Find the develop-
ments about £ = 0 to terms in z* for

(a) cotz, (B) cot?z, (7) cscz, (8) cscdz,
(¢) cotz cscw, ($) 1/(tan—1z)2, (n) (sinz — tanz)-1.

27. Obtain the expansions :

(a) logsinz=logz—}z*—1}y2t+ R, () logtanz=logz+ a2+ FHat+-.-,
(v) likewise for log versz.

33. Indeterminate forms, infinitesimals, infinites. If two functions
J(x) and ¢ (x) are defined for x = a and if ¢ (a) # 0, the quotient f/¢ is
defined for x = «. But if ¢ (¢) = 0, the quotient f/¢ is not defined for a.
If in this case f and ¢ are defined and continuous in the neighborhood
of @ and f(a) # 0, the quotient will become infinite as x = @ ; whereas
if f(a) = 0, the behavior of the quotient /¢ is not immediately appar-
ent but gives rise to the indeterminate form 0/0. In like manner if f
and ¢ become infinite at @, the quotient f/¢ is not defined, as neither
its numerator nor its denominator is defined ; thus arises the indeter-
minate form o /0. The question of determining or evaluating an
indeterminate form is merely the question of finding out whether the
quotient ¥/¢ approaches a limit (and if so, what limit) or becomes
positively or negatively infinite when x approaches «.

TrEOREM. L’Hospital’s Rule. If the functions f(x) and ¢ (x), which
give rise to the indeterminate form 0/0 or oo /w0 when x = «, are con-
tinuous and differentiable in the interval ¢« < x = b and if  can be
taken so near to « that ¢'(x) does not vanish in the interval and if the
quotient f'/¢' of the derivatives approaches a limit or becomes posi-
tively or negatively infinite as x = «, then the quotient f/¢ will ap-

“proach that limit or become positively or negatively infinite as the case
may be. Hence an indeterminate form 0/0 or o /w0 may be replaced by
the quotient of the derivatives of numerator and denominator.

Cask 1. f(a) = ¢ (a) = 0. The proof follows from Cauchy’s Formula, Ex. 6, p. 49.

For 1@ _r@-r@ _1@,
o) o@—9¢(@ ¢E¢)
Now if = a, so must ¢, which lies between z and a. Hence if the quotient on the
right approaches a limit or becomes positively or negatively infinite, the same is
true of that on the left. The necessity of inserting the restrictions that f and ¢
shall be continuous and differentiable and that ¢’ shall not have a root indefinitely
near to a is apparent from the fact that Cauchy’s Formula is proved only for func-
tions that satisfy these conditions. If the derived form f’/¢’ should also be inde-
terminate, the rule could again be applied and the quotient f”/¢” would replace
J’/¢’ with the understanding that proper restrictions were satisfied by f”, ¢/, and ¢”.

a<t<z.
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C.\sn 11. f(a) = ¢ (@) = ». Apply Cauchy’s Formula as follows:

@ =10 _ 1@ 1=7O/f@) _ '@ a<e<b,

p@)—o0) @ 1-0(0)/8@) ¢ z<E<h
where the middle expression is merely a different way of writing the first. Now
suppose that f(z)/¢’(z) approaches a limit when x = a. It must then be possible to
take b so near to a that f’(§)/¢’(§) differs from that limit by as little as desired, no
matter what value £ may have between ¢ and b. Now as f and ¢ become infinite
when z = q, it is possible to take x so near to a that f(b)/f(z) and ¢ (b)/¢ () are
as near zero as desired. The second equation above then shows that f(x)/¢ (),
multiplied by a quantity which differs from 1 by as little as desired, is equal to
a quantity f”(£)/¢’(¢) which differs from the limit of f’(z)/¢’(x) as z = a by as little
as desired. Hence f/¢ must approach the same limit as f’/¢’. Similar reasoning
would apply to the supposition that f’/¢’ became positively or negatively infinite,
and the theorem is proved. It may be noted that, by Theorem 16 of § 27, the form
f’/¢’ is sure to be indeterminate. The advantage of being able to differentiate
therefore lies wholly in the possibility that the new form be more amenable to
algebraic transformation than the old.

The other indeterminate forms 0. «, 09, 1®, o,  — o may be reduced to the

foregoing by various devices which may be indicated as follows:

0 a0
0‘w=T=?, 00 = elog00 — 0log0 — e0r ..., ao—ao:loge"@:logi:-
o 0

The case where the variable becomes infinite instead of approaching a finite value
a is covered in Ex. 1 below. The theory is therefore completed.

Two methods which frequently may be used to shorten the work of evaluating
an indeterminate form are the method of E-functions and the application of Taylor's
Formula. By definition an E-function for the point * = a i3 any continuous function
which approaches a finite limit other than 0 when x = a. Suppose then that f(x) or
¢ (x) or both may be written as the products E,f, and E,¢,. Then the method of
treating indeterminate forms need be applied only tof,/¢, and the result multiplied
by lim E,/E,. For example,

z—a

3 _ o8 —
r—a = lim (2% 4+ az 4+ a?) lim ———— =8 a?lim r—a

lim ————— . = ———— =38a?
z=asin(z —a) az=a zza8in(z — a) z=asin(z— a)

Again, suppose that in the form 0/0 both numerator and denominator may be de-
veloped about & = a by Taylor's Formula. The evaluation is immediate. Thus

tang —sinz _ (£4 328+ Prf)— (e — 42 + Q) _}+(P— Q2
z2log(1+z) z2(z = } 2 + Rzd) T 1—3}z+Ra?’

and now if = 0, the limit is at once shown to be simply }.

When the functions become infinite at z = a, the conditions requisite for Taylor’s
Formula are not present and there is no Taylor expansion. Nevertheless an expan-
sion may sometimes be obtained by the algebraic method (§ 32) and may frequently
be used to advantage. To illustrate, let it be required to evaluate cot £ — 1/ which
is of the form o — o when z = 0. Here

cosz 1+ 3224+ Pzt 11—422+ Prt 1

1
cotr=—"= = ==(1—Z22a2 S’),
Sinz z— 32+ Qb zl-32 4 Qo :c( gt o
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where S remains finite when z = 0. If this value be substituted for cot z, then

lim (cotz—l)z lim(l——l-x+Sza—l)= lim(—1z+Sz‘) =0.
20 z/ =z=o\x 8 z/ z=0\ 8

.34. An infinitesimal is a variable which is ultimately to approach the
limit zero ; an infinite is a variable which is to become either positively
or negatively infinite. Thus the increments Ay and Ax are finite quan-
tities, but when they are to serve in the definition of a derivative they
must ultimately approach zero and hence may be called infinitesimals.
The form 0/0 represents the quotient of two infinitesimals ; * the form
o /oo, the quotient of two infinites; and 0.0, the product of an infin-
itesimal by an infinite. If any infinitesimal @ is chosen as the primary
infinitesimal, a second infinitesimal B is said to be of the same order as
@ if the limit of the quotient B/a exists and is not zero when a = 0;
whereas if the quotient 8/a becomes zero, B is said to be an infinites-
imal of higher order than @, but of lower order if the quotient becomes
infinite. If in particular the limit B/a* exists and is not zero when
@ = 0, then B is said to be of the nth order relative to @. The deter-
mination of the order of one infinitesimal relative to another is there-
fore essentially a problem in indeterminate forms. Similar definitions
may be given in regard to infinites.

TueoreM. If the quotient B/a of two infinitesimals approaches a
limit or becomes infinite when @ = 0, the quotient B8'/a' of two infin-
itesimals which differ respectively from 8 and @ by infinitesimals of
higher order will approach the same limit or become infinite.

THEOREM. Duhamel’s Theorem. If the sum Se;=a, +a,+---+a,
of n positive infinitesimals approaches a limit when their number »
becomes infinite, the sum 38;= B8, + 8, + - + B,, where each B, differs
uniformly from the corresponding «; by an infinitesimal of higher
order, will approach the same limit.

As a’ — a is of higher order than a and 8’ — B of higher order than g,

ad—a_ o
a

lim =0, 1imf=f-0 or — =14, £=1+f,
B a B

where 5 and ¢ are infinitesimals. Now o’ = a(1+ 7) and g/ =8 (1 + {). Hence
F_Bl+g F_8

—= and lim = ,
a al+y ad «a
provided B/a approaches a limit ; whereas if 8/a becomes infinite, so will g'/a’.
In a more complex fraction such as (8 — v)/a it is not permissible to replace g8

* It cannot be emphasized too strongly that in the symbol 0/0 the 0’s are merely sym-
bolic for a mode of variation just as « is; they are not actual 0’s and some other nota-
tion would be far preferable, likewise for 0+ =, 09, etc.
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and v individually by infinitesimals of higher order; for g — y may itself be of
higher order than 8 or y. Thus tan ¢ — sin z is an infinitesimal of the third order
relative to z although tan « and sin  are only of the first order. To replace tan
and sin z by infinitesimals which differ from them by those of the second order or
even of the third order would generally alter the limit of the ratio of tanz — sinz
to 23 when z = 0.
To prove Duhamel’s Theorem the 8's may be written in the form
Bi = ai (1 + my), i=1, 2 .-, 1, [ni| <e,

where the n's are infinitesimals and where all the »’s simultaneously may be made
less than the assigned ¢ owing to the uniformity required in the theorem. Then
[Br+B8+ -+ B)—(y+ g+ + an)| = [ma + na, + - + man|<eZa.

Hence the sum of the g8's may be made to differ from the sum of the a’s by less
than eZa, a quantity as small as desired, and as Ta approaches a limit by hypoth-
esis, so =8 must approach the same limit. The theorem may clearly be extended
to the case where the a’s are not all positive provided the sum Z|a;| of the abso-
lute values of the a’s approaches a limit.

35. If y=f(x), the differential of y is defined as
dy = f'(x) Az, and hence dx=1.Azx. 6]
From this definition of dy and dx it appears that dy/dx = f'(x), where
the quotient dy/dx is the quotient of two finite quantities of which dx

may be assigned at pleasure. This is true if « is the independent
variable. If x and y are both expressed in terms of ¢,
x=ux(t), y=y(), dx = Dxdt, dy = Dydt;
dy _Dy
dz~ Dz
From this appears the important theorem: The quotient dy/dx is the
derivative of y with respect to x no matter what the independent variable
may be. It is this theorem which really justifies writing the derivative
as a fraction and treating the component differentials according to the
rules of ordinary fractions. For higher derivatives this is not so, as
may be seen by reference to Ex. 10. )
As Ay and Ax are regarded as infinitesimals in defining the deriva-
tive, it is natural to regard dy and dx as infinitesimals. The difference
Ay — dy may be put in the form

ay—ay=[LEED=IE _ pi |, ®)

wherein it appears that, when Az = 0, the bracket approaches zero.
Hence arises the theorem: If x is the independent variable and if Ay
and dy are regarded as infinitesimals, the difference Ay — dy is an infin-
itesimal of higher order than Ax. This has an application to the

and = D,y, by virtue of (4), § 2.
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subject of change of variable in a definite integral. For if x=¢(2),
then dx = ¢'(¢)dt, and apparently

JECES [ risenee

where ¢(¢,)=c and ¢(?,) =0, so that ¢ ranges from ¢, to ¢, when x
ranges from « to b.

But this substitution is too hasty ; for the dx written in the integrand
is really Az, which differs from dx by an infinitesimal of higher order
when x is not the independent variable. The true condition may be
seen by comparing the two sums

S @)z, I FleE)] )AL, Ar=dt,

the limits of which are the two integrals above. Now as Az differs
from dx = ¢'(¢)dt by an infinitesimal of higher order, so f(x) Az will
differ from f[¢(¢)]¢'(f)dt by an infinitesimal of higher order, and
with the proper assumptions as to continuity the difference will be uni-
form. Henee if the infinitesimals f(x) Az be all positive, Duhamel’s
Theorem may be applied to justify the formula for change of variable.
To avoid the restriction to positive infinitesimals it is well to replace
Duhamel’s Theorem by the new

THEOREM. Osgood’s Theorem. Let a,, a,, ---, @, be n infinitesimals
and let «; differ uniformly by infinitesimals of higher order than Ax
froin the elements f(x,)Ax; of the integrand of a definite integral

J(x)dx, where f is continuous ; then the sum Se=a, + o, +---+«,

ai)'proaches the value of the definite integral as a limit when the num-
ber » becomes infinite. '

Let a; = f(x;) Az + {iAx;, where |{;| < e owing to the uniformity demanded.

Then l Sai- PICTE ] = | Py

But as f is continuous, the definite integral exists and one can make

|3 r@an— @y S~ [ rwyd

It therefore appears that Za; may be made to differ from the integral by as little
as desired, and Za; must then approach the integral as a limit. Now if this theo-
rem be applied to the case of the change of variable and if it be assumed that
S[#(%)] and ¢'(f) are continuous, the infinitesimals Ax; and dr; = ¢’(t)dt: will
differ uniformly (compare Theorem 18 of § 27 and the above theorem on Ay — dy)
by an infinitesimal of higher order, and so will the infinitesimals f(x;) Azr; and
S[#(t:)] ¢’(t:) dt,. Hence the change of variable suggested by the hasty substitution
is justified.

<¢2AJ:.-=¢ b — a).

<e, and hence <eb—a+1).
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EXERCISES

1. Show that 1’Hospital’s Rule applies to evaluating the indeterminate form
J(x)/¢ (z) when z becomes infinite and both f and ¢ either become zero or infinite.

2. Evaluate the following forms by differentiation. Examine the quotients
for left-hand and for right-hand approach ; sketch the graphs in the neighborhood
of the points.

azr — bx tanz — 1
lim ’ lim ———, lim 2 lo;
(@) lim == @ Jim ) limz logz,
. : 1
(8) lim ez, (€) lim (cot g)sinz, - ($) limzl-=,
r=w x=0 ) z=1

3. Evaluate the following forms by the method of expansions :

. 1 . . er— etanz log z
1 — —cot?z), lim ———— . 1
(@) :cl;l}) (z’ co a:) ® 11;110 z— tang ™ iz 11—
. . zsin(sinz) — sin2z . — — 2z
hz — lim ——— .~ lim ——_— 27,
® llg) (cschz —csez),  (e) 220 8 o ® 11.2:) z— sin.z:
4. Evaluate by any method : 1
. et — e 2sm:c—4a: tanz)
lim 1 ,
(@) lim - (@) tim (2
3y — sin -1} 2 -
() lim zcosts — log (1 + 2) —sin—-1} & , @) lim log (z %1:-)
z20 x8 z=jr tanzx

(¢) lim [z (1 + %)z_ e? log (1 + %)]

5. Give definitions for order as applied to infinites, noting that higher order
would mean becoming infinite to a greater degree just as it means becoming zero
to a greater degree for infinitesimals. State and prove the theorem relative to quo-
tients of infinites analogous to that given in the text for infinitesimals. State and
prove an analogous theorem for the product of an infinitesimal and infinite.

6. Note that if the quotient of two infinites has the limit 1, the difference of
the infinites is an infinite of lower order. Apply this to the proof of the resolution
in partial fractions of the quotient f(x)/F (z) of two polynomials in case the roots

.of the denominator are all real. For if F(x) = (z — a)*F, (z), the quotient is an
infinite of order k in the neighborhood of z = a ; but the difference of the quotient
and f(a)/(t — a)*F, (a) will be of lower integral order — and so on.

7. Show that when z =+, the function e is an infinite of higher order
than z» no matter how large n. Hence show that if P(z) is any polynomial,
lim P (r)e=* = 0 when & =+ oo.
r=wm

8. Show that (log )™ when z is infinite is a weaker infinite than «» no matter
how large m or how small n, supposed positive, may be. What is the graphical
interpretation ?

1
9. If P is a polynomial, show that lim P( ) = 0. Hence show that the

x=0
1 1

Maclaurin development of e 2 is f(z) = ¢ = = — f(")(az) if £(0) is defined as 0.
n!
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10. The higher differentials are defined as dsy = f®)(z) (dz)» where z is taken
as the independent variable. Show that d¥z = 0 for k> 1 if x is the independent
variable. Show that the higher derivatives D2y, D3y,... are not the quotients
d2y/dx?, d3y/dx?, ... if  and y are expressed in terms of a third variable, but that
the relations are

?yde — d2xdy
—_————

. de (ded?y — dyd®z) — 8 d2x (ded?y — dyd®z)
D2y = = -

.Dzay = dzb ’

The fact that the quotient dry/dzn, n> 1, is not the derivative when z and y are
expressed parametrically militates against the usefulness of the higher differentials
and emphasizes the advantage of working with derivatives. The notation dny/dz»
is, however, used for the derivative. Nevertheless, as indicated in Exs. 16-19,
higher differentials may be used if proper care is exercised.

11. Compare the conception of higher differentials with the work of Ex. 5, p. 48.

12. Show that in a circle the difference between an infinitesimal arc and its
chord is of the third order relative to either arc or chord.

13. Show that if 8 is of the nth order with respect to a, and « is of the first
order with respect to a, then 8 is of the nth order with respect to v.

14. Show that the order of a product of infinitesimals is equal to the sum of the
orders of the infinitesimals when all are referred to the same primary infinitesimal
a. Infer that in a product each infinitesimal may be replaced by one which differs
from it by an infinitesimal of higher order than it without affecting the order of the
product.

15. Let A4 and B be two points of a unit circle and let the angle 4 OB subtended
at the center be the primary infinitesimal. Let the tangents at 4 and B meet at
T, and OT cut the chord AB in M and the arc AB in C. Find the trigonometric
expression for the infinitesimal difference TC — CM and determine its order.

16. Compute d? (z sinz) = (2 cosx — z sinx) dx? + (sin & + z cos z) d%x by taking
the differential of the differential. Thus find the second derivative of z sinz if x is
the independent variable and the second derivative with respect to ¢ if z = 1 + ¢2.

17. Compute the first, second, and third differentials, d2z # 0.
(a) 2? cosz, B) Y1—zlog(1—z), : (v) xe?=sinz.

18. In Ex. 10 take y as the independent variable and hence express D2y, Dfy
in terms of Dy, D2z. Cf. Ex. 10, p. 14,

19. Make the changes of variable in Exs. 8, 9, 12, p. 14, by the method of

" differentials, that is, by replacing the derivatives by the corresponding differential

expressions where z is not assumed as independent variable and by replacing these

differentials by their values in terms of the new variables where the higher differ-
entials of the new independent variable are set equal to 0.

20. Reconsider some of the exercises at the end of Chap. I, say, 17-19, 22, 23,
217, from the point of view of Osgood’s Theorem instead of the Theorem of the Mean.

21. Find the areas of the bounding surfaces of the solids of Ex. 11, p. 18.
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22. Assume the law F =kmm’/r? of attraction between particles. Find the
attraction of :

(@) a circular wire of radius a and of mass M on a particle m at a distance » from
the center of the wire along a perpendicular to its plane; Ans. kMmr (a® + 12)~ 3,

(8) a circular disk, etc., as in (a); Ans. 2kMma~2(1—r/Vr? & a?).

() a semicircular wire on a particle at its center ; Ans. 2kMm/wa?.

(8) a finite rod upon a particle not in the line of the rod. The answer should
be expressed in terms of the angle the rod subtends at the particle.

(¢) two parallel equal rods, forming the opposite sides of a rectangle, on each
other.

23. Compare the method of derivatives (§ 7), the method of the Theorem of the
Mean (§ 17), and the method of infinitesimals above as applied to obtaining the for-
mulas for (a) area in polar cobrdinates, (8) mass of a rod of variable density, (y) pres-
sure on a vertical submerged bulkhead, (8) attraction of a rod on a particle. Obtain
the results by each method and state which method seems preferable for each case.

24. Is the substitution dz = ¢’(f)dt in the indefinite integral f f(x) dz to obtain

the indefinite integral f flo(t)] ¢'(t) dt justifiable immediately ?

36. Infinitesimal analysis. To work rapidly in the applications of
calculus to problems in geometry and physics and to follow readily the
books written on those subjects, it is necessary to have some familiarity
with working directly with infinitesimals. It is possible by making use
of the Theorem of the Mean and allied theorems to retain in every ex-
pression its complete exact value; but if that expression is an infini-
tesimal which is ultimately to enter into a quotient or a limit of a sum,
any infinitesimal which is of higher order than that which is ultimately
kept will not influence the result and may be discarded at any stage of
the work if the work may thereby be simplified. A few theorems
worked through by the infinitesimal method will serve partly to show
how the method is used and partly to establish results which may be
of use in further work. The theorems which will be chosen are:

1. The increment Ax and the differential dx of a variable differ by
an infinitesimal of higher order than either.

2. If a tangent is drawn to a curve, the perpendicular from the curve
to the tangent is of higher order than the distance from the foot of the
perpendicular to the point of tangency.

3. An infinitesimal arc differs from its chord by an infinitesimal of
higher order relative to the arc.

4. If one angle of a triangle, none of whose angles are infinitesimal,
differs infinitesimally from a right angle and if 4 is the side opposite
and if ¢ is another angle of the triangle, then the side opposite ¢ is
k sin ¢ except for an infinitesimal of the second order and the adjacent
side is % cos ¢ except for an infinitesimal of the first order.
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The first of these theorems has been proved in § 35. The second follows from
it and from the idea of tangency. For take the z-axis coincident with the tangent
or parallel to it. Then the perpendicular is Ay and the distance from its foot to the
point of tangency is Az. The quotient Ay/Ax approaches 0 as its limit because the
tangent is horizontal ; and the theorem is proved. The theorem would remain true
if the perpendicular were replaced by a line making a constant angle with the tangent
and the distance from the point of tangency to the foot of the perpendicular were re-
placed by the distance to the foot of the oblique line. For if £ PMN =6,

PM _ PNcscd _ PN cscl

TM  TN-PNcot§ TN _PN
‘ T~

’

and therefore when P approaches T with § constant, PA/ TM approaches zero and
PJM is of higher order than TM.

The third theorem follows without difficulty from the assumption or theorem
that the arc has a length intermediate between that of the chord and that of the
sum of the two tangents at the ends of the chord. Let 6, and 6, be the angles
between the chord and the tangents. Then

s— AB <AT+ TB— AB _AM(secf, —1) + MB(sec,—1)
AM+ MB AM + MB AM+ MB

©)

Now as AB approaches 0, both sec §, — 1 and sec§,— 1 approach 0 and their
coefficients remain necessarily finite. Hence the difference between the arc and
the chord is an infinitesimal of higher order than the chord. As

T
the arc and chord are therefore of the same order, the difference
is of higher order than the arc. This result enables one to replace
the arc by its chord and vice versa in discussing infinitesimals of St >

the first order, and for such purposes to consider an infinitesimal
arc as straight. In discussing infinitesimals of the second order, this substitution
would not be permissible except in view of the further theorem given below in
§ 87, and even then the substitution will hold only as far as the lengths of arcs are
concerned and not in regard to directions.

For the fourth theorem let # be the angle by which C departs from 90° and with
the perpendicular BM as radius strike an arc cutting BC. Then by trigonometry

AC =AM+ MC =hcos¢ + BMtand, B
BC = hsing + BM (secd —1).

Now tan @ is an infinitesimal of the first order with respect to §;
for its Maclaurin development begins with §. And secd —1
is an infinitesimal of the second order; for its development
begins with a term in 62. The theorem is therefore proved.
This theorem is frequently applied to infinitesimal triangles, M C
that is, triangles in which & is to approach 0.

37- As a further discussion of the third theorem it may be recalled that by defi-
nition the length of the arc of a curve is the limit of the length of an inscribed
polygon, namely,

s=1lim (VAz? + AyZ + Vazd + ay2 + -+ + VAr2 + Ay)).
n=ow
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Az? + Ay? — dx? — dy?

VA2 4 Ayt +Vda? + dy?
- (az—dr) (Az + do) + (Ay — dy) (Ay + dy) |
VAr? + Ay? + Vda? + dy?
VAR + Ayt —Vidat + dy? _ (Az —d7) Az + dz
Vazt + A2 T VAr § Ay VAD + AP + VD + di
(ay — dy) Ay + dy .
VAz? + Ay? VAZ? + Ay + Vda? + dy?

But Axr — dz and Ay — dy are infinitesimals of higher order than Az and Ay.
Hence the right-hand side must approach zero as its limit and hence V. m

differs from V/dz? + dy? by an infinitesimal of higher order and may replace it in
the sum '

s=lim > Vaz? + Ay} = lim Ex/dzudy?:f"\/uwdz.
n=o n=o £

The length of the arc measured from a fixed point to a variable point is a func-
tion of the upper limit and the differential of arc is

Now  VAz2 + Ay —Vda? + dy? =

and

ds = dfx\/1+ Vdz =V1+ yrdz =Vaz + .
EN

To find the order of the difference between the arc and its chord let the origin
be taken at the initial point and the z-axis tangent to the curve at that point.
*The expansion of the arc by Maclaurin’s Formula gives

8(z) = 8(0) + z8'(0) + } x25”(0) + } 235" (6z),
where " s8(0) =0, g0)=V14+y2,=1, §7(0) = _w =0.
V1+y2|o
Owing to the choice of axes, the expansion of the curve reduces to
v =F@) =y(0) + 2y (0) + } z*y” () = § 2% (),

and hence the chord of the curve is
c@=Vat+yt=z V14 }22[y”’ (fr)]* =z (1 + 22P),

where P is a complicated expression arising in the expansion of the radical by
Maclaurin’s Formula. The difference

3(x) — ¢ (@) = [x + 3 @3¢ (0z)] — [¢ (1 + 2*P)] = 23 (} ¢ (6x) — P).

This is an infinitesimal of at least the third order relative to . Now as both 3 (z)
and c (z) are of the first order relative to «, it follows that the difference s(z) — ¢ (z)
must also be of the third order relative to either s(z) or ¢(z). Note that the proof
assumes that y” is finite at the point considered. This result, which has been
found analytically, follows more simply though perhaps less rigorously from the
fact that sec §, — 1 and sec §, — 1 in (6) are infinitesimals of the second order with
6, and 6,.

38. The theory of contact of plane curves may be treated by means
of Taylor’s Formula and stated in terms of infinitesimals. Let two
curves y = f(x) and y = g(x) be tangent at a given point and let the
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origin be chosen at that point with the z-axis tangent to the curves.
The Maclaurin developments are

y=S@) = GI IO + -+ e D(0) 2o (0) -

1
(n—1)!
y=9@) =3O+ 11)vw"-*y<"-l><0>+m~g<~><0>+--«-

If these developments agree up to but not including the term in z*, the
difference between the ordinates of the curves is .

f@)—g@= %x” LF®0) — g™+, f™(0)+ g™(0),

and is an infinitesimal of the nth order with respect to . The curves
are then said to have contact of order n —1 at their point of tangency.
In general when two curves are tangent, the derivatives f''(0) and ¢"(0)
are unequal and the curves have simple contact or contact of the first
order.

The problem may be stated differently. Let PAf be a line which
makes a constant angle 6 with the z-axis. Then, when P approaches T,
if RQ be regarded as straight, the proportion

lim (PR : PQ) = lim (sin £ PQR :sin £Z PRQ) =sin6:1

shows that PR and PQ are of the same order. Clearly also the lines
TM and TN are of the same order. Hence if

by,
. PR PQ
lim (TN)"#:O o, then hm(TlI)" #0,00. R
Hence if two curves have contact of the (n —1)st =F \\ N
order, the segment of a line intercepted between \j,i

the two curves is of the nth order with respect to

the distance from the point of tangency to its foot. It would also be
of the nth order with respect to the perpendicular TF from the point
of tangency to the line.

In view of these results it is not necessary to assume that the ‘two
curves have a special relation to the axis. Let two curves y = f(x) and
y = g(x) intersect when x = o, and assume that the tangents at that point.
are not parallel to the y-axis. Then

y=o+ @=0f@+ -+ G L pon@+ E= D o g

v=to+ @)@+ + G peoa + E L o) 4 oo
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will be the Taylor developments of the two curves. If the difference
of the ordinates for equal values of x is to be an infinitesimal of the
nth order with respect to # — @ which is the perpendicular from the
point of tangency to the ordinate, then the Taylor developments must
agree up to but not including the terms in z*. This is the condition for
contact of order » —1. '

As the difference between the ordinates is

F@) = 9@ = 2 @ — P [fO@) = @]+,

the difference will change sign or keep its sign when = passes through
a according as » is odd or even, because for values sufficiently near to
« the higher terms may be neglected. Hence the curves will cross each
other if the order of contact is even, but will not cross each other if the
order of contact is odd. If the values of the ordinates are equated to find
the points of intersection of the two curves, the result is

= 3 = L) — @]+ -}

and shows that « = a is a root of multiplicity n. Hence it is said that
two curves have in common as many coincident points as the order of
their contact plus one. This fact is usually stated more graphically
by saying that the curves have n consecutive points in common. It may
be remarked that what Taylor’s development carried to » terms does, is
to give a polynomial which has contact of order » —1 with the function
that is developed by it.

As a problem on contact consider the determination of the circle which shall
have contact of the second order with a curve at a given point (a, o). Let

Yy=%+@—af@+i@—a?fa+---
be the development of the curve and let ¥’ = f’(a) = tanr be the slope. If the
circle is to have contact with the curve, its center must be at some point of the
normal. Then if R denotes the assumed radius, the equation of the circle may be
written as
(x—a)?+2Rsint(x—a)+ (¥ —yo)2— 2R cosT(y — ¥o) =0,
where it remains to determine R so that the development of the circle will coincide
with that of the curve as far as written. Differentiate the equation of the circle.
dy Rsint 4 (x — a) (dy)
= 7, = = ta = f’
dz RcosT— (y—y,) dz/ a, y, nT=s,
d?y [RcosT—(y—yy)1*+ [BsinT + (x— a)]? (dﬁ) 1
da? [RcosT— (¥ — ¥o)]® ’ oy BRcosPt’

d$2
and Y=Y+ @ —a)f(a)+ } (@ — a)?

1
Rcos®T
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is the development of the circle. The equation of the coefficients of (z — a)?2,
1 sectT {1+ [f(a)]?}}
Rcosdt @) S (a)
This is the well known formula for the radius of curvature and shows that the cir-

cle of curvature has contact of at least the second order with the curve. The circle
is sometimes called the osculating circle instead of the circle of curvature.

=f"(a), gives R =

39. Three theorems, one in geometry and two in kinematics, will
now be proved to illustrate the direct application of the infinitesimal
methods to such problems. The choice will be:

1. The tangent to the ellipse is equally inclined to the focal radii
drawn to the point of contact.

2. The displacement of any rigid body in a plane may be regarded
at any instant as a rotation through an infinitesimal angle about some
point unless the body is moving parallel to itself.

3. The motion of a rigid body in a plane may be regarded as the
rolling of one curve upon another.

For the first problem consider a secant PP’ which may be converted into a
tangent TT” by letting the two points approach until they coincide. Draw the
focal radii to P and P and strike arcs with F and F” as

centers. As F'P 4 PF = F’'P’ 4+ P'F =2a, it follows P’
that NP = MP’. Now consider the two triangles PP’M
and P’PN nearly right-angled at M and N. The sides 3
PP, PM, PN, PPM, P'N are all infinitesimals of the
same order and of the same order as the angles at F and F-
F’. By proposition 4 of § 36 F
MP’ = PP’ cos ZPP'M + e, NP = PP’ cos L P'PN + ¢,

where e; and e, are infinitesimals relative to MP’ and NP or PP’. Therefore
lim [cos £ PP’M — cos £ P’PN] = cos £ TPF’ — cos £ T'PF = lim elp"—Pf’ =0,

and the two angles TPF’ and T’PF are proved to be equal as desired.

To prove the second theorem note first that if a body is rigid, its position is com-
pletely determined when the position 4B of any rectilinear segment of the body
is known. Let the points 4 and B of the body be de-
scribing curves A4’ and BB’ so that, in an infinitesimal
interval of time, the line 4B takes the neighboring posi-
tion A’B’. Erect the perpendicular bisectors of the lines
AA’ and BB’ and let them intersect at O. Then the tri-
angles AOB and A’OB’ have the three sides of the one
equal to the three sides of the other and are equal, and
the second may be obtained from the first by a mere rotation about O through the
angle AOA’= BOB’. Except for infinitesimals of higher order, the magnitude of
the angle is 44°/0A4 or BB’/OB. Next let the interval of time approach 0 so that
A’ approaches 4 and B’ approaches B. The perpendicular bisectors will approach
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the normals to the arcs A4’ and BB’ at A and B, and the point O will approach
the intersection of those normals.

The theorem may then be stated that: At any instant of time the motion of a
rigid body in a plane may be considered as a rotation through an infinitesimal angle
about the intersection of the normals to the paths of any two of its points at that in-
stant ; the amount of the rotation will be the distance ds that any point moves divided
by the distance of that point from the instantaneous center of rotation; the angular
velocity about the instantaneous center will be this amount of rotation divided by the
interval of time dt, that is, it will be v/r, where v i3 the velocity of any point of the body
and r is its distance from the instantaneous center of rotation. It is therefore seen
that not only is the desired theorem proved, but numerous other details are found.
As has been stated, the point about which the body is rotating at a given instant
is called the instantaneous center for that instant.

As time goes on, the position of the instantaneous center will generally change.
If at each instant of time the position of the center is marked on the moving plane
or body, there results a locus which is called the moving centrode or body centrode ;
if at each instant the position of the center is also marked on a fixed plane over
which the moving plane may be considered to glide, there results another locus which
is called the fixed centrode or the space centrode. From these definitions it follows
that at each instant of time the body centrode and the space centrode intersect at
the instantaneous center for that instant. Consider a series of
positions of the instantaneous center as P_,P_, PP, P, marked
in space and Q_2Q_1QQ,Q, marked in the body. At a given
instant two of the points, say P and @, coincide ; an instant
later the body will have moved so as to bring @, into coin-
cidence with P, ; at an earlier instant Q_; was coincident with
P_;. Now as the motion at the instant when P and @ are together is one of
rotation through an infinitesimal angle about that point, the angle between PP,
and QQ, is infinitesimal and the lengths PP, and QQ, are equal ; for it is by the
rotation about P and @ that @, is to be brought into coincidence with P,. Hence
it follows 1° that the two centrodes are tangent and 2° that the distances PP, = Q@,
which the point of contact moves along the two curves during an infinitesimal inter-
val of time are the same, and this means that the two curves roll on one another
without slipping — because the very idea of slipping implies that the point of con-
tact of the two curves should move by different amounts along the two curves,
the difference in the amounts being the amount of the slip. The third theorem
is therefore proved.

EXERCISES

1. If a finite parallelogram is nearly rectangled, what is the order of infinites-
imals neglected by taking the area as the product of the two sides ? What if the
figure were an isosceles trapezoid ? What if it were any rectilinear quadrilateral
all of whose angles differ from right angles by infinitesimals of the same order ?

2. On a sphere of radius r the area of the zone between the parallels of latitude
N and N + d\ is taken as 2 wr cos N - rd\, the perimeter of the base times the slant
height. Of what order relative to d\ is the infinitesimal neglected ? What if the
perimeter of the middle latitude were taken so that 2#r2cos (A + 3 d\)d\ were
assumed ?
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3. What is the order of the infinitesimal neglected in taking 4 mr2dr as the
volume of a hollow sphere of interior radius r and thickness dr ? What if the mean
radius were taken instead of the interior radius ? Would any particular radius be
best ? .

4. Discuss the length of a space curve y = f(z), 2 = g (z) analytically as the
length of the plane curve was discussed in the text.

5. Discuss proposition 2, p. 68, by Maclaurin’s Formula and in particular show
that if the second derivative is continuous at the point of tangency, the infinites-
imal in question is of the second order at least. How about the case of the tractrix

y_t_lloga—\/aﬁ—:c2
2 Ta4Va:—z

+ Va2 — g,

and its tangent at the Vertexz=a? How about s(x)—c(z)of §37?

6. Show that if two curves have contact of order n —1, their derivatives will
have contact of order n — 2. What is the order of contact of the kth derivatives
k<n—1?

7. State the conditions for maxima, minima, and points of inflection in the
neighborhood of a point where f(")(a) is the first derivative that does not vanish.

8. Determine the order of contact of these curves at their intersections:

V2@ 4yt +2)=3(@+7v)
5x2—6zxy + 5y% =38,

=a2cos2¢
=a@—a),

2+ yt=y
8+ Yt =ay.

9. Show that at points where the radius of curvature is a maximum or mini-
mum the contact of the osculating circle with the curve must be of at least the
third order and must always be of odd order.

(@) ® 7 ™

10. Let PN be a normal to a curve and P’N a neighboring normal. If O is the
center of the osculating circle at P, show with the aid of Ex. 6 that ordinarily the
perpendicular from O to P’N is of the second order relative to the arc PP’ and that
the distance ON is of the first order. Hence interpret the statement : Consecutive
normals to a curve meet at the center of the osculating circle.

11. Does the osculating circle cross the curve at the point of osculation? Will
the osculating circles at neighboring points of the curve intersect in real points ?

12. In the hyperbola the focal radii drawn to any point make equal angles with
the tangent. Prove this and state and prove the corresponding theorem for the
parabola.

13. Given an infinitesimal arc A B cut at C by the perpendicular bisector of its
chord AB. What is the order of the difference AC — BC?

14. Of what order is the area of the segment included between an infinitesimal
arc and its chord compared with the square on the chord ?

15. Two sides AB, AC of a triangle are finite and differ infinitesimally ; the
angle 4 at 4 is an infinitesimal of the same order and the side BC is either recti-
linear or curvilinear. What is the order of the neglected infinitesimal if the area
is assumed as § AB9? What if the assumption is § AB-AC.4°?
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16. A cycloid is the locus of a fixed point upon a circumference which rolls on
a straight line. Show that the tangent and normal to the cycloid pass through the
highest and lowest points of the rolling circle at each of its instantaneous positions.

17. Show that the increment of arc As in the cycloid differs from 2 a sin } 6d9
by an infinitesimal of higher order and that the increment of area (between two
consecutive normals) differs from 8 a2sin? } d¢ by an infinitesimal of higher order.
Hence show that the total length and area are 8a and 3wa2. Here a is the radius
of the generating circle and @ is the angle subtended at the center by the lowest
point and the fixed point which traces the cycloid.

18. Show that the radius of curvature of the cycloid is bisected at the lowest
point of the generating circle and hence is 4a sin } 6.

19. A triangle ABC is circumscribed about any oval curve. Show that if the
side BC is bisected at the point of contact, the area of the triangle will be changed
by an infinitesimal of the second order when BC is replaced by a neighboring tan-
gent B’C’, but that if BC be not bisected, the change will be of the first order.
Hence infer that the minimum triangle circumscribed about an oval will have its
three sides bisected at the points of contact.

20. If a string is wrapped about a circle of radius a and then unwound so that
its end describes a curve, show that the length of the curve and the area between
the curve, the circle, and the string are

] 0
= d, 4= 262
s j;aa A fogaado,
where 6 is the angle that the unwinding string has turned through.

21.°Show that the motion in space of a rigid body one point of which is fixed
may be regarded as an instantaneous rotation about some axis through the given
point. To do this examine the displacements of a unit sphere surrounding the fixed
point as center.

22. Suppose a fluid of variable density D(z) is flowing at a given instant through
a tube surrounding the z-axis. Let the velocity of the fluid be a function v(z) of z.
Show that during the infinitesimal time ¢ the diminution of the amount of the
fluid which lies between z =a and z = a + A is

S[v(a + h)D(a + k)3t — v(a) D(a)dt],
where 8 is the cross section of the tube. Hence show that D (z)v(x) = const. is the
condition that the flow of the fluid shall not change the density at any point.

23. Consider the curve y = f(z) and three equally spaced ordinates at £ = a — 3,
z=a, x=a+ 5. Inscribe a trapezoid by joining the ends of the ordinates at
Z = a + 8 and circumscribe a trapezoid by drawing the tangent at the end of the
ordinate at * = a and producing to meet the other ordinates. Show that

82 &
So = 25/ (a), S=2 a[f(a) +5 7@ + ﬁaf«v)(e)],

8, = 2a[f(a) + 6;f"(a) + ;—:f‘m(&)]
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are the areas of the circumscribed trapezoid, the curve, the inscribed trapezoid.
Hence infer that to compute the area under the curve from the inscribed or cir-
cumscribed trapezoids introduces a relative error of the order 82, but that to com-
pute from the relation 8 = }(2S, + 8,) introduces an error of only the order of 8*.

24. Let the interval from @ to b be divided into an even number 2n of equal
parts & and let the 2 n + 1 ordinates yo, ¥, - -+, ¥2 at the extremities of the inter-
vals be drawn to the curve y = f(x). Inscribe trapezoids by joining the ends of
every other ordinate beginning with y,, ¥,, and going to y2,. Circumscribe trape-
zoids by drawing tangents at the ends of every other ordinate y,, ¥z, - -+, ¥2n-1.
Compute the area under the curve as

s=fa°f(z)dz=b‘“

+1/3+---+3/2u-1)
+2(y0+y2+"'+2/2n]_1/o_212n]+R

by using the work of Ex. 23 and infer that the error R is less than (b— a) 84f(v)(¢) /45.
This method of computation is known as Simpson’s Rule. It usually gives accu-

racy sufficient for work to four or even five figures when § = 0.1and b—a =1 for
J@)(z) usually is small.

25. Compute these integrals by Simpson’s Rule. Take 2n = 10 equal intervals.
Carry numerical work to six figures except where tables must be used to find f(z) :

2 de 1 g 1
3 = V. _ = -11=Z74=0.
@ [ 5 =1og2 = 0.60815, @) [ s = tant 1= g = 0.78585,
2
(2] fi"sinzd:c = 1.00000, 9) j; log,,zdz = 2log,o = — M = 0.16776,
Tlog(1+2) llog(1+ ),
() f o B=021220, ®) j; —S de = 0.82247,

The answers here given are the true values of the integrals to five places.

26. Show that the quadrant of the ellipse x = asin‘¢, y=>bcosgis
1
$= ufh\/I— e2sin2pdg = ;mzf V32— €?) + e cosmu du.
) )

Compute to four figures by Simpson’s Rule with six divisions the quadrants of
the ellipses :

(@) e=3V3, s=1211q, (p)e::}x/é, 3=1.85la.

27. Expand s in Ex. 26 into a series and discuss the remainder.

s=lm[1-(1>2ez (1 3)"” (1 -8 5)"’“ ...(1‘3"‘(2"‘1))2 o -R,.]
2 2 2.4/ 3 \2.4.6/ 5 2.4..-2n )2n—1

1 [1.8...@2n+ 1)\2e2n+2
1-e2(2 4 -.(2n+2))2n+1

Estimate the number of terms necessary to compute Ex. 26 (8) with an error not
greater than 2 in the last place and compare the labor with that of Simpson’s Rule.

R, < SeeEx.18,p.60,and Peirce’s **Tables,” p.62.

28. If the eccentricity of an ellipse is 44, find to five decimals the percentage
error made in taking 2 wa as the perimeter. Ans. 0.00694%
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29. If the catenary y = c cosh (z/c) gives the shape of a wire of length L sus-
pended between two points at the same level and at a distance ! nearly equal to
L, find the first approximation connecting L, I, and d, where d is the dip of the
wire at its lowest point below the level of support.

30. At its middle point theé parabolic cable of a suspension bridge 1000 ft. long
between the supports sags 50 ft. below the level of the ends. Find the length of
the cable correct to inches. i

40. Some differential geometry. Suppose that between the incre-
ments of a set of variables all of which depend on a single variable ¢
there exists an equation which is true except for infinitesimals of higher
order than At = dt, then the equation will be exactly true for the differ-
entials of the variables. Thus if

SAx +gAy +hAz 4+ lAt -+ e, 46,4 =0
is an equation of the sort mentioned and if the coefficients are any func-

tions of the variables and if e, e,,--- are infinitesimals of higher order
than dt, the limit of

fAt+gA‘/+h—+l—+ T+ 2=0

. dJ
or fdx+gdy+hdz+ldt=0;'

and the statement is proved. This result is very useful in writing
down various differential formulas of geometry where the approximate
relation between the increments is obvious and where the true relation
between the differentials can therefore be found.

For instance in the case of the differential of arc in rectangular coor-
dinates, if the increment of arc is known to differ from its chord by an
infinitesimal of higher order, the Pythagorean theorem shows that the

equation  A@_ Az 4 Ay or As?=A2’+ Ay + AL Q)
is true except for infinitesimals of higher order; and hence
ds?=da*+dy? or ds®=dx’+dy’+dr ™
In the case of plane polar cobrdinates, the triangle PP'N (see Fig.)
has two curvilinear sides PP' and PN and is right- ar
angled at N. The Pythagorean theorem may be N ¥ Zy
applied to a curvilinear triangle, or the triangle may M
be replaced by the rectilinear triangle PP'N with dz

the angle at N no longer a right angle but nearly so. In either way of
looking at the figure, it is easily seen that the equation As?= Ar? 4 2A¢?
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which the figure suggests differs from a true equation by an infinitesi-
mal of higher order; and hence the inference that in polar cobdrdinates
ds® = drf 4+ ?d¢>

The two most used systems of codrdinates
other than rectangular in space are the polar
or spherical and the cylindrical. In the first
the distance = OP from the pole or center,
the longitude or meridional angle ¢, and the
colatitude or polar angle 8 are chosen as coor-
dinates ; in the second, ordinary polar codrdinates » = OM and ¢ in
the xy-plane are combined with the ordinary rectangular # for distance
from that plane. The formulas of transformation are

z=rcosd, r=Val4 P+ 2%

4
y=rsin @ sin ¢, 6 =cos™! —-—_\/mg__'_zg, €]
x =7 sin 6 cos ¢, ¢=tan-1%a

for polar codrdinates, and for cylindrical cosrdinates they are
z=2 y=rsing, x=rsing, r=Val+y# ¢= tan%- )

Formulas such as that z
for the differential of
arc may be obtained for
these new codrdinates by
mere transformation of
(7" according to the rules
for change of variable.

In both these cases,
however, the value of
ds may be found readily
by direct inspection of
the figure. The small
parallelepiped (figure
for polar case) of which
As is the diagonal has
some of its edges and
faces curved instead of
straight; all the angles, X
however,areright angles,
and as the edges are infinitesimal, the equations certainly suggested as
holding except for infinitesimals of higher order are
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A=A+ 5in?0A¢* + AP and  As*= Ar 470414 A2 (10)
or ds®=dr*+?sin’0d¢*+*dF and ds*=dr*+de*+dA (10"

To make the proof complete, it would be necessary to show that noth-
ing but infinitesimals of higher order have been neglected and it might
actually be easier to transform +Vda®+ dy®+ dz® rather than give a
" rigorous demonstration of this fact. Indeed the infinitesimal method is
seldom used rigorously; its great use is to make the facts so clear to the
rapid worker that he is willing to take the evidence and omit the proof.

In the plane for rectangular codrdinates with rulings parallel to the
y-axis and for polar cobrdinates with rulings issuing from the pole the
increments of area differ from

dd=ydr and dA=}7d$ (11)
respectively by infinitesimals of higher order, and
EN -}
A=f ydz and A=;f Py ar)
ED bo

are therefore the formulas for the area under a curve and between two
ordinates, and for the area between the curve and two radii. If the plane
is ruled by lines parallel to both axes or by lines issuing from the pole
and by circles concentric with the pole, as is customary for double inte-
gration (§§ 131, 134), the increments of area differ respectively by
infinitesimals of higher order from

dd=dxdy and dd =rdrd, 12)

and the formulas for the area in the two cases are

A=limYAd= f f d4 = f dady, (12"
4=lmYAd= fdA =ffrdrd¢,

where the double integrals are extended over the area desired.

The elements of volume which are required for triple integration
(§§ 133, 134) over a volume in space may readily be written down for
the three cases of rectangular, polar, and cylindrical coordinates. In the
first case space is supposed to be divided up by planes x=a, y =1,
z = ¢ perpendicular to the axes and spaced at infinitesimal intervals; in
the second case the division is made by the spheres » =« concentric
with the pole, the planes ¢ =& through the polar axis, and the cones
6 = ¢ of revolution about the polar axis; in the third case by the cylin-
ders r=a, the planes ¢ =20, and the planes z=¢. The infinitesimal
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volumes into which space is divided then differ from
dv = dxdydz, dv = *sin 6drd $dé, dv = rdrd¢dz (13)
respectively by infinitesimals of higher order, and

f f dedyds, f f A sin 0drdgdd, f f frdrdqwz (13"

are the formulas for the volumes.

41. The direction of a line in space is represented by the three angles
which the line makes with the positive directions of the axes or by the
cosines of those angles, the direction cosines of the line. From the defi-
nition and figure it appears that

dx d dz
l=cosa=— m=cos B= n=cosy=_- g (14)

[/
ds’ ds’
are the direction cosines of the tangent to the arc at the point; of the
tangent and not of the chord for the reason

that the increments are replaced by thediffer- £
entials. Hence it is seen that for the direc-
tion cosines of the tangent the proportion . jzg
Y z
lim:n=dx:dy:dz (14" o8B P Jdy Y

holds. The equations of a space curve are *

z=f@), y=9@, =z=hr()
in terms of a.variable parameter ¢* At the point (z, y, 2, where
t=t, the equations of the tangent lines would then be
x—xy Y—Yo  Z—% T—Tg _ Y—Yo 22— 2 .
@), ~ J(dy)Jo Ty, ¢ T g'(t;; =way @
As the cosine of the angle § between the two directions given by the
direction cosines /, m, n and ', m', n' is

cos@=U+mm'+nn', so U+mm'+nn'=0 (16)

is the condition for the perpendicularity of the lines. Now if (x, g, #)
lies in the plane normal to the curve at x, y,, 2, the lines determined
by the ratios & — 2,: y — y,: 2 — 2, and (dz),: (dy),: (d#), will be per-
pendicular. Hence the equation of the normal plane is

(@ —x)(dx),+ (¥ — y,)(dy), + (2 — %)) (d2),= 0
or f'(to)(x —x)+ g'(to)(y —¥)+ ]"'(to)(z —7)= 0. a7

* For the sake of generality the parametric form in ¢ is assumed ; in a particular case a
simplification might be made by taking one of the variables as ¢ and one of the functions
f’, ¢, #’ would then be 1. Thus in Ex. 8 (¢), ¥ should be taken as ¢.
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The tangent plane to the curve is not determinate; any plane through
the tangent line will be tangent to the curve. If A be a parameter, the
pencil of tangent planes is

T —% Y¥—%

7o N~V g =°
There is one particular tangent plane, called the osculating plane,which
is of especial importance. Let -

2 —2,=f't) 7+ 1S )P+ IO, r=t—1, 1, <E<t,
with similar expansions for y and #, be the Taylor developments of

x, y, z about the point of tangency. When these are substituted in the
equation of the plane, the result is

—‘,-’[*ﬂ5’2+)\452 14X ’ﬂ@]

7ty T e .Lgn " o
1 n III c
+ b«)* <>.(+”Mmﬂ'

This expression is of course proportional to the distance from any point
x, y, z of the curve to the tangent plane and is seen to be in general of
the second order with respect to = or ds. It is, however, possible to
choose for A that value which makes the first bracket vanish. The tan-
gent plane thus selected has the property that the distance of the curve
Jrom it in the neighborhood of the point of tangency is of the third order
and is called the osculating plane. The substitution of the value of A gives

T—x, Y—Y, *—2, x—x Y—yY, 2—2,
Fay g M) |=0 o @), @), (@), |=0 @8
s 9"( ORRACY (@), (Py), (T),

or (dydz — dzdly) (@ — ) + (ded’ — dad®)(y — y)
+ (ded?y — dyd’x) (z — z,) =0

as the equation of the osculating plane. In case f"'(t)=g¢"(¢t,)=A"(t,)=0,
this equation of the osculating plane vanishes identically and it is neces-
sary to push the development further (Ex. 11).

42. For the case of plane curves the curvature is defined as the rate
at which the tangent turns compared with the description of are, that
is, as d¢/ds if d¢ denotes the differential of the angle through which
the tangent turns when the point of tangency advances along the curve
by ds. The radius of curvature R is the reciprocal of the curvature,
that is, it is ds/d¢. Then

d¢=dtan'1d—y, d_¢_d_¢d__x___L’ R= Ml 19)
dx ds drds [14 4] y"
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where accents denote differentiation with respect to x. For space curves
the same definitions are given. If I, m, n and I+ dl, m + dm, n+dn
are the direction cosines of two successive tangents,

cos d¢ = l(lv+ dl) + m(m 4 dm) + n(n 4 dn).
But Z+mP+n*=1 and (+ d))*+ (m+dm)*+ (n+ dn)?=1.
Hence  dP+dm*+ dn®=2 — 2 cos ¢ = (2sin } ¢)?, '

2 i 2 2 2

where accents denote differentiation with respect to s.

The torsion of a space curve is defined as the rate of turning of the’
osculating plane compared with the increase of arc (that is, dy/ds, where
dy is the differential angle the normal to the osculating plane turns
through), and may clearly be calculated by the same formula as the
curvature provided the direction cosines L, M, N of the normal to the
plane take the places of the direction cosines /, m, n of the tangent line.
Hence the torsion is

1_ (d_.p)2_ dL* 4 dM® + dN*

7=\ S — e N 20)
and the radius of torsion R is defined as the reciprocal of the torsion,
where from the equation of the osculating plane
L _ M N
dydz — dedPy ~ ded’x — dxd® ~ dxd’y — dydx
= L . (209
Vsum of squares

The actual computation of these quantities is somewhat tedious.

The vectorial discussion of curvature and torsion (§ 77) gives a better insight
into the principal directions connected with a space curve. These are the direction
of the tangent, that of the normal in the osculating plane and directed towards
the concave side of the curve and called the principal normal, and that of the
normal to the osculating plane drawn upon that side which makes the three direc-
tions form a right-handed system and called the binormal. In the notations there
given, combined with those above,

r=zityitek, t=li+mj+nk, c=\+uj+sk, n=Li+Mj+ Nk

where \, u, v are taken as the direction cosines of the principal normal. Now dt
is parallel to e and dn is parallel to — c. Hence the results
dl _dm dn ds E_dM__dN ds

—_—— = = — d = = = - — 21
A ® v R an A I v R 1)
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follow from dc/ds = C and dn/ds = T. Now dc is perpendicular to ¢ and hence in
the plane of t and n ; it may be written as dc=(t.dc)t+ (n.dc)n. But as tec=n.c=0,
t.dc =— c.dt and n.dc =— c.dn. Hence

dc = — (c-dt)t — (c-dn)n = — Ctds + Tnds = — it{-ds+ 2as

dax !l L du m M dv n N

— == =4 — —_— =4 —, —_—=—— 4 —. 22
Hemce  3,="&TR - EBVR - kTR (22)
Formulas (22) are known as Frenet’s Formulas; they are usually written with — R
in the place of R because a left-handed system of axes is used and the torsion, being
an odd function, changes its sign when all the axes are reversed. If accents denote

differentiation by s,

¥y 7 ¥y z

xl/ yll zll z// yll zl/

277 s 4 1 /77 277 17
-above formulas, — 1_12 L 2 usual formulas, — I LA § (23)

right-handed R .x”2+y”2+z’ b left-handed R @24y 427

EXERCISES

1. Show that in polar cobrdinates in the plane, the tangent of the inclination
of the curve to the radius vector is rdg¢/dr.

2. Verify (10), (10") by direct transformation of codrdinates.

3. Fill in the steps omitted in the text in regard to the proof of (10), (10") by
the method of infinitesimal analysis.

4. A rhumb line on a sphere is a line which cuts all the meridians at a constant
angle, say a. Show that for a rhumb line sin §d¢ = tan adf and ds = r sin adf.
Hence find the equation of the line, show that it coils indefinitely around the
poles of the sphere, and that its total length is r sec a.

5. Show that the surfaces represented by F(¢, §) = 0 and F(r, ) = 0 in polar
coordinates in space are respectively cones and surfaces of revolution about the
polar axis. What sort of surface would the equation F(r, ¢) = 0 represent ?

6. Show accurately that the expression given for the differential of area in
polar codrdinates in the plane and for the differentials of volume in polar and
cylindrical coérdinates in space differ from the corresponding increments by in-
finitesimals of higher order.

7. Show that Z—:, rZ—f, r sin 0‘2—': are the direction cosines of the tangent to a

space curve relative to the radius, meridian, and parallel of latitude.
8. Find the tangent line and normal plane of these curves.
(@) zyz=1, y ==z at (1,1,1), (B) x=cost, y =sint, z =Kt
(v) 2ay =22, 6a%z =8, (8) x=tcost, y =tsint, z = K,
(e)y=2a2 22=1—y, D)2+ y2+22=0a? 22+ 92+ 2ax=0.
9. Find the equation of the osculating plane in the examples of Ex. 8. Note
that if z is the independent variable, the equation of the plane is

(%%"%ZZ)(“‘%)—(—)(II yo)+( )(Z—zo) 0.
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10. A space curve passes through the origin, is tangent to the z-axis, and has
z = 0 as its osculating plane at the origin. Show that

z=tf’(0)+ 3¢¥”0) + - - -, y=3t2%"0)+---, z2=38Br"0)+ .-
will be the form of its Maclaurin development if t =0 givesz =y =2z = 0.

11. If the 2d, 8d, - - -, (n — 1)st derivatives of f, g, & vanish for ¢ = ¢, but not
all the nth derivatives vanish, show that there is a plane from which the curve
departs by an infinitesimal of the (n + 1)st order and with which it therefore

has contact of order n. Such a plane is called a hyperosculating plane. Find its
equation.

12. At what points if any do the curves (8), (v), (¢), (), Ex. 8 have hyperoscu-
lating planes and what is the degree of contact in each case ?

13. Show that the expression for the radius of curvature is

| _ oo LG = KgY + (7 — f 4 (g — g

==V&?24+y24+27%= ’

R 2+ g2+ w2k
where in the first case accents denote differentiation by s, in the second by ¢.

14. Show that the radius of curvature of a space curve is the radius of curva-
ture of its projection on the osculating plane at the point in question.

15. From Frenet’s Formulas show that the successive derivatives of & are

=1 :u:”—l’—A N ML xR’+ L
- " TFR "R R R "R RR’

where accents denote differentiation by s. Show that the results for y and z are

the same except that m, u, M or n, », N take the places of I, A, L. Hence infer
that for the nth derivatives the results are

™ =1P, + AP, + LP;, y® =mP, + uP, + MP;, 2z =nP, + vP, + NP,

where P, P,, P, are rational functions of E and R and their derivatives Dy s.

v

16. Apply the foregoing to the expansion of Ex. 10 to show that
1 82 R’ 88
—g— ... =3 _ D s =5
PES=gm T YIarTem t *TemR

where R and R are the values at the origin where s =0, ! = = N =1, and the
other six direction cosines m, n, \, v, L, M vanish. Find 8 and write the expan-
sion of the curve of Ex. 8 (y) in this form.

+ ey

' 17. Note that the distance of a point on the curve as expanded in Ex. 16 from
the sphere through the origin and with center at the point (0, R, R'R) is

Va? + (y — R)? + (z — R'R)2 —VR? + R"R?
_ (*2+ y2— 2Ry + 22 — 2 R'Rz)
= ,
Va2 + (y— R)2 + (z — R'R)2 + VR? + R?R?
and consequently is of the fourth order. The curve therefore has contact of the

third order with this sphere. Can the equation of this sphere be derived by a
limiting process like that of Ex. 18 as applied to the osculating plane ?
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18. The osculating plane may be regarded as the plane passed through three
consecutive points of the curve ; in fact it is easily shown that

i xr Y z 1

im :

e f W w11

fnihpe [Ttz Yo+ 8y 2zy+0z 1| 2
o+ Ax Yo+ Ay z+ Az 1

T—Ty Y=Yy 2—2,
(=), (dy), (dz)y |=0.
(@), (d%), (d%2),

19. Express the radius of torsion in terms of the derivatives of z, y, 2 by ¢
(Ex. 10, p. 67).

20. Find the direction, curvature, osculating plane, torsion, and osculating
sphere (Ex. 17) of the conical helix z =fcost, y =tsint, z=Fk at t = 2.

21. Upon a plane diagram which shows As, Az, Ay, exhibit the lines which
represent ds, dx, dy under the different hypotheses that z, y, or s is the independ-
ent variable.



CHAPTER IV
PARTIAL DIFFERENTIATION ; EXPLICIT FUNCTIONS

43. Functions of two or more variables. The definitions and theo-
rems about functions of more than one independent variable are to a
large extent similar to those given in Chap. II for functions of a single
variable, and the changes and difficulties which occur are for the most
part amply illustrated by the case of two variables. The work in the
text will therefore be confined largely to this case and the generaliza-
tions to functions involving more than two variables may be left as
exercises.

If the value of a variable #z is uniquely determined when the values
(x, y) of two variables are known, z is said to be a function z = f'(x, y)
of the two variables. The set of values [(x, y)] or of points P(x, y) of
the xy-plane for which 2 is defined may be any set, but usually consists
of all the points in a certain area or region of the plane bounded by
a curve which may or may not belong to the region, just as the end
points of an interval may or may not belong to it. Thus the function
1/V1 — a? — 32 is defined for all points within the circle 2* + 3* =1,
‘but not for points on the perimeter of the circle. For most purposes it
is sufficient to think of the boundary of the region of definition as a
polygon whose sides are straight lines or such curves as the geometric
intuition naturally suggests.

The first way of representing the function z = f(x, y) geometrically
is by the surface z = f(x, y), just as y = f(x) was represented by a curve.
This method is not available for « = f(x, y, 2), a function of three vari-
ables, or for functions of a greater number of variables; for space has
only three dimensions. A second method of representing the function
z = f(x, y) is by its contour lines in the xy-plane, that is, the curves
f(x, y) = const. are plotted and to each curve is attached the value of
the constant. This is the method employed on maps in marking heights
above sea level or depths of the ocean below sea level. It is evident that
these contour lines are nothing but the projections on the xy-plane
of the curves in which the surface z = f(z, ) is cut by the planes
z = const. This method is applicable to functions u = f(x, 7, z) of
three variables. The contour surfuces u = const. which are thus obtained

87
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are frequently called equipotential surfuces. If the function is single
valued, the contour lines or surfaces cannot intersect one another.

The function z = f(x, y) is continuous for (a, b) when either of the
following equivalent conditians is satisfied :

1°.  limf(z, y) =f(a,b) or limf(x, y)=F(limz, limy),
no matter how the variable point P (x, y) approaches (a, b).
2°. If for any assigned e, @ number 8 may be found so that
|f(, v) —fla, 0)|<e when |x—a|<8§ |y—0|<a.
Geometrically this means that if a square with (¢, 4) as center and

with sides of length 2§ parallel to the axes be drawn, (@,be

the portion of the surface z = f(x, y) above the ¥

square will lie between the two planes z=f(«,b)+e |20 O \\E
Or if contour lines are used, no line f(z, y) = const. I (a,b
where the constant differs from f(a, ) by so much If(a,b)-€
as e will cut into the square. _It is clear that in place O! 20 X

of a square surrounding (e, 0) a circle of radius & or any other figure
which lay within the square might be used.

44. Continuity examined. From the definition of continuity just given and
from the corresponding definition in § 24, it follows that if f(x, ¥) is a continuous
function of « and y for (a, b), then f(z, b) is a continuous function of x forz =a
and f(a, ¥) is a continuous function of y for ¥ = b. That is, if f is continuous in
z and y jointly, it is continuous in x and y severally. It might be thought that
conversely if f(z, b) is continuous for £ = a and f(a, y) for y = b, f(z, ¥) would
be continuous in (z, y) for (a, b). That is, if f is continuous in z and y severally,
it would be continuous in & and y
jointly. A simple example will show
that this is not necessarily true. Con-
sider the case

-2 +o

Y
_ _ x2 + yz A
z2=f(x,¥) = Fre
f(0,0)=0
and examine z for continuity at X

(0, 0). The functions f(z, 0) =z,
and f(0, ¥) = y are surely continuous
in their respective variables. But the surface z = f(x, ) is a conical surface (except
for the points of the z-axis other than the origin) and it is clear that P (z, y) may
approach the origin in such a manner that z shall approach any desired value.
Moreover, a glance at the contour lines shows that they all enter any circle or
square, no matter how small, concentric with the origin. If P approaches the origin
along one of these lines, z remains constant and its limiting value is that constant.
In fact by approaching the origin along a set of points which jump from one con-
tour line to another, a method of approach may be found such that z approaches
no limit whatsoever but oscillates between wide limits or becomes infinite. Clearly
the conditions of continuity are not at all fulfilled by z at (0, 0).
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Double limits. There often arise for consideration expressions like
‘1'13’ [lim fx,9)],  lim [.l,'=n}: AN 1)

where the limits exist whether z first approaches its limit, and then y its limit, or
vice versa, and where the question arises as to whether the two limits thus obtained
are equal, that is, whether the order of taking the limits in the double limit may
be interchanged. It is clear that if the function f(z, y) is continuous at (a, b), the
limits approached by the two expressions will be equal; for the limit of f(z, y) is
f(a, b) no matter how (z, y) approaches (a, b). If f is discontinuous at (a, b), it
may still happen that the order of the limits in the double limit may be inter-
changed, as was true in the case above where the value in either order was zero;
but this cannot be affirmed in general, and special considerations must be applied
to each case when f is discontinuous.

Varieties of regions.* For both pure mathematics and physics the classification
of regions according to their connectivity is important. Consider a finite region R
bounded by a curve which nowhere cuts itself. (For the present :

purposes it is not necessary to enter upon the subtleties of the

meaning of ‘“‘curve’ (see §§ 127-128); ordinary intuition will p
suffice.) It is clear that if any closed curve drawn in this region

had an unlimited tendency to contract, it could draw together

to a point and disappear. On the other hand, if R’ be a region

like R except that a portion has been removed so that R’ is
bounded by two curves one within the other, it is clear that R’
some closed curves, namely those which did not encircle the
portion removed, could shrink away to a point, whereas other
closed curves, namely those which encircled that portion, could

at most shrink down into coincidence with the boundary of that
portion. Again, if two portions are removed so as to give rise R”
to the region R”, there are circuits around each of the portions

which at most can only shrink down to the boundaries of those

portions and circuits around both portions which can shrink down to the bounda-
ries and a line joining them. A region like R, where any closed curve or circuit
may be shrunk away to nothing is called a simply connected region; whereas regions
in which there are circuits which cannot be shrunk away to nothing are called
multiply connected regions.

A multiply connected region may be made simply connected by a simple device
and convention. For suppose that in R’ a line were drawn connecting the two
bounding curves and it were agreed that no curve or circuit drawn within R’ should
cross this line. Then the entire region would be surrounded by a
single boundary, part of which would be counted twice. The figure
indicates the situation. In like manner if two lines were drawn in
R” connecting both interior boundaries to the exterior or connecting
the two interior boundaries together and either of them to the outer
boundary, the region would be rendered simply connected. The entire region
would have a single boundary of which parts would be counted twice, and any
circuit which did not cross the lines could be shrunk away to nothing. The lines

* The discussion from this point to the end of § 45 may- be connected with that of
§§ 123-126.
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thus drawn in the region to make it simply connected are called cuts. There is no
need that the region be finite ; it might extend off indefinitely in some directions
like the region between two parallel lines or between the sides of an angle, or like
the entire half of the zy-plane for which y is positive. In such cases the cuts may
be drawn either to the boundary or off indefinitely in such a way as not to meet
the boundary.

45. Multiple valued functions. If more than one value of z corresponds to the
pair of values (z, ), the function z is multiple valued, and there are some note-
worthy differences between multiple valued functions of one variable and of several
variables. It was stated (§ 23) that multiple
valued functions were divided into branches Y| Yy
each of which was single valued. There are
two cases to consider when there is one vari-
able, and they are illustrated in the figure.
Either there is no value of « in the interval

. for which the different values of the function
are equal and there is consequently a number
D which gives the least value of the difference
between any two branches, or there is a value of z for which different branches
have the same value. Now in the first case, if  changes its value continuously and
if f(x) be constrained also to change continuously, there is no possibility of passing
from one branch of the function to another ; but in the second case such change is
possible for, when x passes through the value for which the branches have the same
value, the function while constrained to change its value continuously may turn off
onto the other branch, although it need not do so.

In the case of a function z = f(z, ) of two variables, it is not true that if the
values of the function nowhere become equal in or on the boundary of the region
over which the function is defined, then it is impossible to pass continuously from
one branch to another, and if P(z, y) describes any
continuous closed curve or circuit in the region, the
value of f(z, ¥) changing continuously must return to
its original value when P has completed the descrip-
tion of the circuit. For suppose the function z be a
helicoidal surface z = a tan—1(y/z), or rather the por-
tion of that surface between two cylindrical surfaces
concentric with the axis of the helicoid, as is the case
of the surface of the screw of a jack, and the circuit
be taken around the inner cylinder. The multiple num-
bering of the contour lines indicates the fact that the
function is multiple valued. Clearly, each time that
the circuit is described, the value of z is increased by the amount between the suc-
cessive branches or leaves of the surface (or decreased by that amount if the circuit
is described in the opposite direction). The region here dealt with is not simply
connected and the circuit cannot be shrunk to nothing — which is the key to the
situation. :

TueoreM. If the difference between the different values of a continuous mul-
tiple valued function is never less than a finite number D for any set (z, y) of
values of the variables whether in or upon the boundary of the region of defini-
tion, then the value f(z, ) of the function, constrained to change continuously,

(0] X Ol X
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will return to its initial value when the point P (z, y), describing a closed curve
which can be shrunk to nothing, completes the circuit and returns to its starting
point.

Now owing to the continuity of f throughout the region, it is possible to find a
number § so that | f(z,¥) — f(2',¥')|<e when |¢ — 2’|<3 and |y — 3’| <3 no matter
what points of the region (z, ¥) and (x’, ¥’) may be. Hence the values of f at any
two points of a small region which lies within any circle of radius } § cannot differ
by so much as the amount D. If, then, the circuit is so small
that it may be inclosed within such a circle, there is no possi- g
bility of passing from one value of f to another when the circuit @
is described and f must return to its initial value. Next let l
there be given any circuit such that the value of f starting from
a given value f(z, y) returns to that value when the circuit has 2
been completely described. Suppose that a modification were
introduced in the circuit by enlarging or diminishing the inclosed area by a small
area lying wholly within a circle of radius } 5. Consider the circuit ABCDEA and
the modified circuit ABC’DEA. As these circuits coincide except for the arcs BCD
and B(’D, it is only necessary to show that f takes on the same value at D whether
D is reached from B by the way of C or by the way of C’. But this is necessarily
so for the reason that both arcs are within a circle of radius  é.

Then the value of f must still return to its initial value f(z, ¥)

when the modified circuit is described. Now to complete the

proof of the theorem, it suffices to note that any circuit which

can be shrunk to nothing can be made up by piecing together a’

number of small circuits as shown in the figure. Then as the

change in f around any one of the small circuits is zero, the change must be zero
around 2, 8, 4, --- adjacent circuits, and thus finally around the complete large
circuit.

Reducibility of circuits. If a circuit can be shrunk away to nothing, it is said to
be reducible; if it cannot, it is said to be irreducible. In a simply connected region
all circuits are reducible ; in a multiply connected region there are an infinity of
irreducible circuits. Two circuits are said to be equivalent or reducible to each
other when either can be expanded or shrunk into the other. The change in the
value of f on passing around two equivalent circuits from 4 to 4 A
is the same, provided the circuits are described in the same direc-
tion. For consider the figure and the equivalent circuits ACA
and AC’A described as indicated by the large arrows. It is clear
that either may be modified little by little, as indicated in the _A
proof above, until it has been changed into the other. Hence the 4
change in the value of f around the two circuits is the same. Or, as another proof,
it may be observed that the combined circuit ACAC’A, where the second is
described as indicated by the small arrows, may be regarded as a reducible circuit
which touches itself at A. Then the change of f around the circuit is zero and f
must lose as much on passing from 4 to A by C’ as it gains in passing from 4 to
A by C. Hence on passing from 4 to A by €’ in the direction of the large arrows
the gain in f must be the same as on passing by C.

1t is now possible to see that any circuit ABC may be reduced to circuits around
the portions cut out of the region combined with lines going to and from A and the
boundaries. The figure shows this; for the circuit ABC"BADC”DA is clearly
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reducible to the circuit ACA. It must not be forgotten that although the lines A B
and BA coincide, the values of the function are not necessarily the same on 4B
as on BA but differ by the amount of change introduced in
f on passing around the irreducible circuit BC’B. One of the
cases which arises most frequently in practice is that in
which the successive branches of f(z, ) differ by a constant
amount as in the case z = tan—1(y/x) where 2 7 is the differ-
ence between successive values of z for the same values of the
variables. If now a circuit such as ABC’BA be considered, where it is imagined
that the origin lies within BC’B, it is clear that the values of z along AB and
along BA differ by 2, and whatever z gains on passing from 4 to
B will be lost on passing from B to A4, although the values through
which z changes will be different in the two cases by the amount
2. Hence the circuit ABC’BA gives the same changes for 2z as
the simpler circuit BC’B. In other words the result is obtained
that if the different values of a multiple valued function for the same
values of the variables differ by a constant independent of the values of
the variables, any circuit may be reduced to circuits about the bound-
aries of the portions removed ; in this case the lines going from the point 4 to the
boundaries and back may be discarded.

EXERCISES
1. Draw the contour lines and sketch the surfaces corresponding to
_T+y _ _ _
(a)z_z_y, 2(0,0)=0, B) z= z+7’ z(0, 0) =

Note that here and in the text only one of the contour lines passes through the
origin although an infinite number have it as a frontier point between two parts

of the same contour line. Discuss the double limits lim lim 2z, lim lim z.
x=0y=0 y=0 x=0

2. Draw the contour lines and sketch the surfaces corresponding to

¥ 72 + 232 -1
- 2=, z2=00————.
2y @ z ™ 22 +y2—-1
Examine particularly the behavior of the function in the neighborhood of the
apparent points of intersection of different contour lines. Why apparent ?

3. State and prove for functions of two independent variables the generaliza-
tions of Theorems 6-11 of Chap. II. Note that the theorem on uniformity is proved
for two variables by the application of Ex. 9, p. 40, in almost the identical manner
as for the case of one variable.

4. Outline definitions and theorems for functions of three variables. In partic-
ular indicate the contour surfaces of the functions

_z+y+2z _T 4yt 42 Ty
@u=3"0—F Ou=ZFpyg M=

and discuss the triple limits as z, ¥, 2 in different orders approach the origin.
5. Let z = P(z, ¥)/Q (%, ¥), where P and Q are polynomials, be a rational func-

tion of z and y. Show that if the curves P = 0 and Q = 0 intersect in any points,
all the contour lines of z will converge toward these points; and conversely show
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that if two different contour lines of z apparently cut in some point, all the contour
lines will converge toward that point, P and @ will there vanish, and z will be
undefined.

6. If D is the minimum difference between different values of a multiple valued
function, as in the text, and if the function returns to its initial value plus Iy =D
when P describes a circuit, show that it will return to its initial value plus Iy =D
when P describes the new circuit formed by piecing on to the given circuit a small
region which lies within a circle of radius } 8.

7. Study the function z = tan—1(y/x), noting especially the relation between
contour lines and the surface. To eliminate the origin at which the function is not
defined draw a small circle about the point (0, 0) and observe that the region of
the whole zy-plane outside this circle is not simply connected but may be made so
by drawing a cut from the circumference off to an infinite distance. Study the
variation of the function as P describes various circuits.

8. Study the contour lines and the surfaces due to the functions

1 —_2

(a) z =tan—lzy, (8) z=tan"! i ;2, (v) z=sin"1(z —y).

Cut out the points where the functions are not defined and follow the changes in
the functions about such circuits as indicated in the figures of the text. How may
the region of definition be made simply connected ?

9. Consider the function z = tan—1(P/Q) where P and Q are polynomials and
where the curves P = 0 and @ = 0 intersect in n points (a,, b)), (a5, by), « -+, (@n, bn)
but are not tangent (the polynomials have common solutions which are not mul-
tiple roots). Show that the value of the function will change by 2k if (z, y)
describes a circuit which includes k of the points. Illustrate by taking for P/Q
the fractions in Ex. 2.

10. Consider regions or volumes in space. Show that there are regions in which
some circuits cannot be shrunk away to nothing ; also regions in which all circuits
may be shrunk away but not all closed surfaces.

46. First partial derivatives. Let z = f(x, y) be a single valued
function, or one branch of a multiple valued function, defined for («, b)
and for all points in the neighborhood. If y be given the value b,
then z becomes a function f(r, ) of z alone, and if that function has a
derivative for x = a, that derivative is called the partial derivative of
z = f(x, y) with respect to x at (e, b). Similarly, if x is held fast and
equal to @ and if f(«, y) has a derivative when y = 4, that derivative is
called the partial derivative of z with respect to y at (e, 4). To obtain
these derivatives formally in the case of a given function f(x, y) it is
merely necessary to differentiate the function by the ordinary rules,
treating y as a constant when finding the derivative with respect to x
and z as a constant for the derivative with respect to y. Notations are

of 0z _ ., . _ ,_ . _(d=
a_x-—ax_fz—‘ﬂ_zz—sz_sz_<dx>y
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for the z-derivative with similar ones for the y-derivative. The partial
derivatives are the limits of the quotients

limf(a+h’ b) — f(a, l'), lim‘f(a’b-'_ki_f(a’ b)’ ©)

A=0 h k=0

provided those limits exist. The application of the Theorem of the
Mean to the functions f(x, &) and f(a, y) gives

f(a+ kb)) —f(a,b)=hf(a+ 6k 0), 0<6 <1, 3
Fla b+ B)—f(a, B) = kfy (0, 0+ 6j), 0<b,<1, O

under the proper but evident restrictions (see § 26).

Two comments may be made. First, some writers denote the partial derivatives
by the same symbols dz/dx and dz/dy as if z were a function of only one variable
and were differentiated with respect to that variable; and if they desire especially
to call attention to the other variables which are held constant, they affix them as
subscripts as shown in the last symbol given (p. 93). This notation is particularly
prevalent in thermodynamics. As a matter of fact, it would probably be impos-
sible to devise a simple notation for partial derivatives which should be satisfac-
tory for all purposes. The only safe rule to adopt is to use a notation which is
sufficiently explicit for the purposes in hand, and at all times to pay careful atten-
tion to what the derivative actually means in each case. Second, it should be noted
that for points on the boundary of the region of definition of f(x, ) there may be
merely right-hand or left-hand partial derivatives or perhaps none at all. For it
is necessary that the lines y = b and = a cut into the region on one side or the
other in the neighborhood of (a, b) if there is to be a derivative even one-sided ;
and at a corner of the boundary it may happen that neither of these lines cuts
into the region.

Trreorem. If f(x,y) and its derivatives f; and f, are continuous func-
tions of (x, y) in the neighborhood of (a, 4), the increment Af may be
written in any of the three forms

Af=f(a+h b+k)— f(a,b)

= hf(a + 01h, )+ kfy(a+h b+ 02k) @)

= hfi(a+ Ok, b+ Ok) + kf;(a + Ok, b+ 0k)

= hfi(a, b) + kfy(a, 0) + LA + L,
where the @’s are proper fractions, the {’s infinitesimals.

To prove the first form, add and subtract f(a + &, b) ; then
Af=[f(a+h b)—f(a ]+ [f@+hd+k)—Sa+h )]
=hf,(a+ 6k, b) + kf, (@ + h, b+ 6,k)

by the application of the Theorem of the Mean for functions of a single variable
(§§ 7, 26). The application may be made because the function is continuous and

the indicated derivatives exist. Now if the derivatives are also continuous, they
may be expressed as

@40 ) =fl@b)+5, fl@+hb+ ok =r @b+ -
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where {;, {, may be made as small as desired by taking 4 and k sufficiently small.
Hence the third form follows from the first. The second form, which is symmetric
in the increments h, k, may be obtained by writing € =a + th and y = b + tk.
Then f(, y) = ®(t). Asfis continuous in (z, ), the function & is continuous in ¢
and its increment is

Ab=f(a+ T+ Alh b+t + Atk)— f(a + th, b + tk).

This may be regarded as the increment of f taken from the point (z, ) with At. 4
and At- k as increments in # and y. Hence A® may be written as

A® = At-hf](a+ th, b+ th) + At-kf) (@ + th, b+ th) + AL - b + GAL - k.
Now if A® be divided by At and At be allowed to approach zero, it is seen that

hmr_hf (@+ thy b+ th) + ] (a + th, b+uc)_9

The Theorem of the Mean may now be applied to & to give & (1) — &(0) =1 &(6),
and hence

P(1)—20)=f(a+h, b+ k)—f(a, )
= Af=hf/(a+ Ok, b+ 6k) + kf, (a+ 6k, b+ 6F).

47. The partial differentials of f may be defined as
d.f=f.Ax, sothat dx= Az, df _ f

de ~ 0x’

5

df=fA tha = df f ®
W =1yAY, sothat dy=Ay, aJ

where the indices # and y introduced in d,f and d, f indicate that = and
y respectively are alone allowed to vary in forming the corresponding
partial differentials. The total differential :

0 0
dr=df+ar=Lan+Lay, ®)

which is the sum of the partial differentials, may be defined as that
sum ; but it is better defined as that part of the increment

0 0

ar=L oo+ L ay+ 00+ 14y ™

ox oy
which is obtained by neglecting the terms ¢ Az + {,Ay, which are of
higher order than Az and Ay. The total differential may therefore be
computed by finding the partial derivatives, multiplying them respec-
tively by dx and dy, and adding.

The total differential of z = f(x, ) may be formed for (x, y,) as

e=1=(Z) e=a0+(Z) v-w. ®)

where the valies x — 2, and y — y, are given to the independent differ-
entials dx and dy, and df = dz is written as z — 2z, This, however, is
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the equation of a plane since « and y are independent. The difference
Af — df which measures the distance from the plane to the surface
along a parallel to the z-axis is of higher order than VAx? + Ay?; for

Af—df | _|{Ar + LAy
Var® + Ay? VAz? 4 Ay

Hence the plane (8) will be defined as the tangent plane at (x,, y,, z,)
to the surface z = f(x, ¥). The normal to the plane is

<[&]+[&|=0.

E—x) Y=Y Z2—%

= =15, 9)
G

which will be defined as the normal to the surface at (x, y, #,). The
tangent plane will cut the planes y =y, and x =z, in lines of which
the slope is f; and f;. The surface will cut these planes in curves
which are tangent to the lines.

In the figure, PQSR is a portion of the NGB
surface z = f(x, y) and PT'TT" is a cor- R o
’
responding portion of its tangent plane Q A7
. TR
at P(x, y, #,)- Now the various values \/‘PZ:_ | _Ip”
may be read off. i
PP' = Az, PQ=A,f L F ol
pryPR =g, PT =, 1
PP" = Ay, P'"R = A,,f, /l|_”___,__
PHTN/PPN =.f;’ PHTII — dy.f; //
P'T'+ P'T"=N'T,  N'S=Af, 4

NT=df=d,f+d,f.
48. If the variables x and y are expressed as x = ¢ (¢) and y = ¢ (¢)
so that f(x, y) becomes a function of ¢, the derivative of f with respect
to ¢ is found from the expression for the increment of f.

Af of Ax | of Ay

‘At %Kt+3yAt+c‘At+£’
. ; A_f_dl_alflf ofdy.
o Al:léno At ox dt = Oy dt 10)

The conclusion requires that « and y should have finite derivatives with
respect to 2. The differential of f as a function of ¢ is

af of dx of dy of of
df— dt 8xdtdt+3 dt Fm dx +a dy 11

and hence it appears that the dcﬁ‘erentzal has the same form as the total
differential. This result will be generalized later.
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As a particular case of (10) suppose that « and y are so related that
the point (z, y¥) moves along a line inclined at an angle = to the z-axis.
If s denote distance along the line, then

x=x,+scost, y=y,+ssinr, dr=cosrds, dy=sinsds (12)
%:g—i% %%:f;COSr+f,;sinr. 13)
The derivative (13) is called the directional derivative of f in the direc-
tion of the line. The partial derivatives f7, f, are the particular direc-
tional derivatives along the directions of the z-axis and y-axis. The
directional derivative of f in any direction is the rate of increase of
£ along that direction ; if = = f(z, y) be inter-
preted as a surface, the directional derivative is
the slope of the curve in which a plane through A
the line (12) and perpendicular to the xy-plane %
cuts the surface. If f(x, y) be represented by 0 crao
its contour lines, the derivative at a point 0| X
(z, ¥) in any direction is the limit of the ratio
Af/As = AC/As of the increase of f, from one contour line to a neigh-
boring one, to the distance between the lines in that direction. It is
therefore evident that the derivative along any contour line is zero and
that the derivative along the normal to the contour line is greater than
in any other direction because the element dn of the normal is less than
ds-in any other direction. In fact, apart from infinitesimals of higher
order, aF  df

An _ Af _Aarf a _d
a; = cos ¥, As = an o8 ¥, 25 = dn ©08 . (14)

and

Y

Hence it is seen that the derivative along any direction may be found
by multiplying the derivative along the normal by the cosine of the angle
between that direction and the normal. The derivative along the normal
to a contour line is called the normal derivative of f and is, of course,
a function of (z, y).

49. Next suppose that « = f(x, y, 2, - - ) is a function of any number
of variables. The reasoning of the foregoing paragraphs may be
repeated without change except for the additional number of variables.
The increment of f will take any of the forms

Af=fla+hb+kc+1--)—flabe---)
= hf/(a + 6., byey- )+ kfy(a+ Ry b+ 6k, ¢, ---)
+Ufi(a+hb+kc+6l )+
=[hfa;+k.f,;+[f:+"']a+sh,b+ox~,r+or....
=k + R+ LR+ A+
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and the total differential will naturally be defined as

_u of of
df = Gpda+ g dy+oodet oo, (16)

and finally if =, g, 2, --- be functions of ¢, it follows that

af _ofde  ofdy Ofdz an
dt  Owdt  Oydt B ozdt
and the differential of f as a function of ¢ is still (16).

If the variables «, y, 2, --- were expressed in terms of several new
variables », s, - - -, the function f would become a function of those vari-
ables. To find the partial derivative of f with respect to one of those
variables, say », the remaining ones, s, ---, would be held constant and
f would for the moment become a function of » alone, and so would «,
Y, %, ---. Hence (17) may be applied to obtain the partial derivatives

of ofox  0fdy , 0f 0z
or  oxor @ar-l-az@r o (18)
of _oftm ofty 9f0e

and 9 ox 0s 0y 0Os 3zas+”’etc'

These are the formulas for change of variable analogous to (4) of § 2.
If these equations be multiplied by Ar, As, --- and added,

U ar+ L s +... af<a’”A+ As+ - > af(aA_'_ >+ “

or 0s ox\ 0 01
of of
or df = F™ d:¢:+a dy +3 dz + -

for when 7, s, ... are the independent variables, the parentheses above
are dz, dy, dz, --- and the expression on the left is df.
THEOREM. The expression of the total differential of a function of
x, Y, 2, --- a8 df = fidx + f,dy + f,dz + --- is the same whether z, y,
, --- are the independent variables or functions of other independent

variables 7, s, ---; it being assumed that all the derivatives which occur,
. whether of f by @, y,%,---orof z, 9,2, --- by 7, s, --+, are continuous
functions.

By the same reasoning or by virtue of this theorem the rules
d(cu) = cdu, d(u+v— w)=du+ dv— dw,
d (wv) = udv + vdu, d(’—‘) = vdu — udv, (19)
v v?
of the differential calculus will apply to calculate the total differential
of combinations or functions of several variables. If by this means, or
any other, there is obtained an expression
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df =R(r,s8,t,--)dr + S(rys,t,--)ds + T(r,s,t,--)dt + --- (20)
for the total differential in which #, s, ¢, .- are independent variables,
the coefficients R, S, T, -- - are the derivatives

2 9 3
r=, S=a_Js°, Y, (1)

For in the equation df = Rdr+ Sds+ Tdt+- - -= fldr+ fids+ fidt+- - -,
the variables 7, s, ¢, - -, being independent, may be assigned increments
absolutely at pleasure and if the particular choice dr=1, ds=dt=--.=0,
be made, it follows that R = f;; and so on. The single equation (20) is
thus equivalent to the equations (21) in number equal to the number of
the independent variables.

As an example, consider the case of the function tan—1(y/z). By the rules (19),
WV d@/) _dy/z—ydx/a* _ zdy — ydz

d tan—

¢ 1+ @/2? 1+ @/z)? 2242
4 Y ¥ o v z
Th Ltan-12=— Y | Zian1I=—_"__, by (20)-(2D).
en P Y Jy y @0-eh

If y and = were expressed as y = sinh rst and = cosh rst, then
1Y _ zdy —ydz _ [stdr + rtds 4 rsdt][cosh?rst — sinh?rst]

dtan—-1Z = .
z z2 4 2 cosh?rst 4+ sinh2rst
and of _ st of _ of _ s
or  cosh2rst’ s cosh2rst’ ot cosh2rst
EXERCISES
1. Find the partial derivatives f/, f or f7, f;, f, of these functions :

xr Jy xrJyr Jz

(a) log(@* + ¥°), ® e"cosz/ sinz, (v) 2+ 32y + 9%,

(3) a:z-}:l-/y . () —— = + i (¢) log(sinz + sin%y + sin3z),

in-1¥ z Wit b L
(n) sin z’ ()] zer, (¢) tanh \/-( PR

2. Apply the definition (2) directly to the following to find the partial deriva-
tives at the indicated points:

Yy

(@) 72

xz —
Uk

3. Find the partial derivatives and hence the total differential of :

@ oo
(8) e-=siny, (¢) ex*sinhay, () logta.n(z-}-,—ry)

o (4 G2 (>Iog( s\ EE +”2>

Sat(L1),  (8) 2+ ey +30at (0, 0), and () at (1, 1,

z at (0, 0); also try differentiating and substituting (0, 0).

(8) zlogyz, 6% Va2 — a2 — y2,
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4. Find the general equations of the tangent plane and normal line to these
surfaces and find the equations of the plane and line for the indicated (z,, y,) :

(a) the helicoid z = ktan—1(y/x), 1, 0), (1, — 1), (0, 1),

(ﬁ) the pa‘rabOIOid 4])2 = (12 + yz)v (01 p)v (21-77 0)1 (p1 - p)v _

(v) the hemisphere z = Va2 — 22 — 32, (0, — } @), (3 @, } @), (} V3a, 0),
(8) the cubic zyz =1, (1L, L, 1),(—4% -4 4, &1 1)

5. Find the derivative with respect to ¢ in these cases by (10):
(a) f=1a%+ y? @ = acost, y =bsint, () tan—l\/g, y = cosht, x = sinht,
(v) sin=}(z —y), ® =3¢t y =413, (8) cos2zy, x = tan—1¢, y = cot—1¢.
6. Find the directional derivative in the direction indicated and obtain its
numerical value at the points indicated :
(@) €%y, T = 45°, (1, 2), (8) sinZry, T = 60°, (V3, — 2).
7. (a) Determine the maximum value of df/ds from (138) by regarding 7 as

variable and applying the ordinary rules. Show that the direction that gives the
maximum is

TNy /4 df (af (of)
1 = =
T = tan fx,, and then n a;) +

(8) Show that the sum of the squares of the derivatives along any two perpen-
dicular directions is the same and is the square of the normal derivative.

8. Show that (f, + ¥'f,)/V1+y%and (fJ¥ — ;) /\/l + y’2 are the deriva-

tives of f along the curve y = ¢ (z) and normal to the curve.
9. If df/dn is defined by the work of Ex. 7 (a), prove (14) as a consequence.

10. Apply the formulas for the change of variable to the following cases :

2 of\2
(a) r=Va? + 32, ¢=tan—1%. Find i—i, g. (;—'D + (;‘—;) .
2
(B) ¢ =rcos¢, y =rsing. Find Z—{ gﬁ <g) + r2(6£>
(v)2=2r—-8s8+7,y=—r+8s8—9. Find %=4x+2y if u=2a%—y2
7

z =2z cosa — y’ sin a, f of\2_ (ef\2, [of \?
(?) { =& sina + ¥y’ cos a. Show (a ) +<@> _<%> +<6y’)'
@ProveZ 4P —0 it s v =r@-ny-2.

(¢) Letx = ax’ + by +cz,y=ax +by +c'z,z=a"z + by + c¢”z’, where
a,bc, a,b,c,a’,b”, ¢ are the direction cosines of new rectangular axes with
respect to the old. This transformation is called an orthogonal transformation. Show

o)+ () + ()= )+ )+ G- G
(az+ay+az az+ay+az"dn'

11. Define directional derivative in space; also normal derivative and estab-
lish (14) for this case. Find the normal derivative of f = xzyz at (1, 2, 3).

12. Find the total differential and hence the partial derivatives in Exs. 1, 8, and
(a) log(z*+ 3% +2%),  (B) /=, (v) 2ye’,  (9) ayzlogayz,
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(e) u=2%2—y2 x=rcosst, y = ssinrt. Find Eu/fr, cu/es, cu/at.

(f) u=y/xz,z=rcos¢sinb, y =rsingsingd. Find u, uw u,

() u=ev, z=logVr? + s% y =tan—1(s/r). Find u/, u,.

13. Iff—fzf—gandf;f= 9, sh wcf l_?_q al¥__ o if r, ¢ are polar
cx ¢y cy cx cr rcee TP cr

codrdinates and f, g are any two functions.

14. If p(z, y, 2, t) is the pressure in a fluid, or p(z, ¥, z, t) is the density, depend-
ing on the position in the fluid and on the time, and if u, v, w are the velocities of
the partlcles of the fluid along the axes,

., ., ap dp _p WL P
ap _ L d P=
dt “a:c+°ay+w + an dt Y2 +vcy+ cz+

Explain the meaning of each derivative and prove the formula.

15. If z = zy, interpret z as the area of a rectangle and mark d,z, Az, Az on the
figure. Consider likewise u = zyz as the volume of a rectangular parallelepiped.

16. Small errors. If f(z, y) be a quantity determined by measurements on z
and y, the error in f due to small errors dz, dy in z and ¥ may be estimated as
af =fldz + fy’dy and the relative error may be taken as df + f=dlogf. Why
is this ?

(a) Suppose S = } absin C be the area of a triangle with a =10, b = 20, C = 30°.
Find the error and the relative error if a is subject to an error of 0.1. Ans. 0.5, 1%.

(B) In (a) suppose C were liable to an error of 10" of arc. Ans. 0.27, 3%.

(v) If a, b, C are liable to errors of 1%, the combined error in S may be 3.1%.

(8) The radius r of a capillary tube is determined from 18.6 7r2l = w by find-
ing the weight w of a column of mercury of length I. If w =1 gram with an error
of 10-3 gr. and ! =10 cm. with an error of 0.2 cm., determine the possible error
and relative error in r. Ans. 1.29, 6 x 10—4%, mostly due to error in L

(e) The formula c2 = a2 + b — 2 abcos C is used to determine ¢ where a = 20,
b = 20, C = 60° with possible errors of 0.1 in @ and b and 30’ in C. Find the possible
absolute and relative errors inc. Ans. }, 13%.

(¢) The possible percentage error of a product is the sum of the percentage
errors of the factors.

(n) The constant g of gravity is determined from g = 2 st—2 by observing a body
fall. If sis set at 4 ft. and ¢ determined at about } sec., show that the error in g
is almost wholly due to the error in ¢, that is, that s can be set very much more
accurately than ¢ can be determined. For example, find the error in ¢ which would
make the same error in g as an error of § inch in s.

(9) The constant g is determined by gt2 = @2l with a pendulum of length ! and
period ¢. Suppose ¢ is determined by taking the time 100 sec. of 100 beats of the
pendulum with a stop watch that measures to } sec. and that ! may be measured
as 100 cm. accurate to 4 millimeter. Discuss the errors in g.

17. Let the cobrdinate « of a particle be z = f(g,, ¢,) and depend on two inde-
pendent variables ¢,, g,. Show that the velocity and kinetic energy are

=5 Wy g B,

tdt ag’ T =}mv? = ayif + 20,50:0 + 505,
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where dots denote differentiation by ¢, and a,,, a,,, a,, are functions of (g,, g,).

Show & = (52 »i=1,2, and slmnlarly for any number of variables q.

g ogs
18. The helix z = acost, y = asint, z = t tan a cuts the sphere z2 4 y2 + 22 =
a?sec? at sin—1(sin a sin g).
19. Apply the Theorem of the Mean to prove-that f(z, ¥, z) is a constant if
Jfe=f, =1, =0 is true for all values of z, y, z. _Compare Theorem 18 (§ 27) and
make the statement accurate.

of\2, [ef\?, [of\* ©o.
20. Transfo Y (—) (——) (—) to (a) cylindrical and lar
ransforn o ™ + P + p (a) cy (B) pol
coordinates (§ 40).

21. Find the angle of intersection of the helix z = 2 cost, y = 2sint, z = ¢ and
the surface xyz = 1 at their first intersection, that is, with 0 <t <} .

22. Let f, g, b be three functions of (z, ¥, 2). In cylindrical codrdinates (§ 40)
form the combinations F = fcos ¢ + gsin ¢, G =—fsing + gcos¢p, H = h. Trans-

form
of <¢g ¢h og eof
@ty (ﬁ) ’ il
to cylindrical codrdinates and express in terms of F, G, H in simplest form.
23. Given the functions y= and (2¢)= and 2. Find the total differentials and
hence obtain the derivatives of #* and (z¥)* and z(=9,

50. Derivatives of higher order. If the first derivatives be again
differentiated, there arise four derivatives fz, fi, fie Joy of the second
order, where the first subscript denotes the first differentiation. These
may also be written

a“f v _Of . _ O of

Jeo = ox?’ Q/% v = Pady’ Jw = o’
where the derivative of 9f/dy with respect to x is written 0%//0x0y
with the variables in the same order as required in D,D, f and opposite
to the order of the subscripts in f,;. This matter of order is usually of
no importa,nce owing to the theorem: If the derivatives f;, f, have
derivatives fr,, fr. which are continuous in (x, y) in the neighborhood

of any point (x, y,), the derivatives f,, and f,. are equal, that is,
v (Tp Yo) = Soe(Zp Yo)-
The theorem may be proved by repeated application of the Theorem of the
Mean. For
[f(zo + R, Yo+ k)"'f(zo, Yo+ k)]— [f(zo +h, yo)-f(zov yo)] = [¢(1/o+ k)—' ¢(yo)]
=[S @+ by Yo + k)= f (®g + 1y Yo) 1= [F gy Yo + k)= gy ¥o)]=[¥(%y + h)—¥(2)]
where ¢ (y) stands for f(z, + &, ¥)— f(2,, ¥) and ¢ (z) for f(z, y, + k) —~ S (x, ¥,)-
Now
¢ Wo + k) — ¢ (o) = k¢’ (o + OK) = K[ fy (%o + hy Yo + Ok) — f, (s ¥ + OK)],
¥ (@ + ) = ¢ (@) = by (g + 6'B) = h[fr (o + OR, Yo + k) — f (2o + O'h, ¥5)]

“;!“ H
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by applying the Theorem of the Mean to ¢(y) and ¢ (x) regarded as functions of a
single variable and then substituting. The results obtained are necessarily equal
to each other ; but each of these is in form for another application of the theorem.
KLfy o + Ry yo + Ok) — f, (g, Yo + Ok)] = khS,(zo + nh, Yy, + 6F),
hF (@ + Ok, yo + k) — f7 (o + O'hy Yo)] = hkfy (2o + 6'h, o + 'K).
Hence Jye @y + by yo + Ok) =1 @y + O, Yo + 7F).
As the derivatives f,;, f,, are supposed to exist and be continuous in the variables
(z, ¥) at and in the neighborhood of (z,, ¥,), the limit of each side of the equation
exists as h = 0, k = 0 and the equation is true in the limit. Hence
f,; (€01 %) =f:;;/(1’ov Yo)-

"The differentiation of the three derivatives f., fi, = fiz, for Will give
six derivatives of the third order. Consider £/ and f;.. These may
be written as (fy);, and (f7),. and are equal by the theorem just proved
(provided the restrictions as to continuity and existence are satisfied).
A similar conclusion holds for f,7, and f,,.; the number of distinct
derivatives of the third order reduces from six to four, just as the
number of the second order reduces from four to three. In like manner
for derivatives of any order, the value of the derivative depends not on
the order in which the individual differentiations with respect to x and
y are performed, but only on the total number of differentiations with
respect to each, and the result may be written with the differentiations
collected as

mnn £ — am+nf‘ J— m + n)
DrDrf = P s €te. (22)
Analogous results hold for functions of any number of variables. If
several derivatives are to be found and added together, a symbolic
form of writing is frequently advantageous. For example,

of 20
axoye | o
or (D= + D,)f = (D + 2D.D, + D))f = fo + 215 + fyr

51. It is sometimes necessary to change the variable in higher deriv-
atives, particularly in those of the second order. This is done by a
repeated application of (18). Thus f;; would be found by differentiat-
ing the first equation with respect to =, and f}; by differentiating the
first by s or the second by », and so on. Compare p. 12. The exercise
below illustrates the method. It may be remarked that the use of Zigher
differentials is often of advantage, although these differentials, like the
higher differentials of functions of a single variable (Exs. 10, 16-19,
p. 67), have the disadvantage that their form depends on what the
independent variables are. This is also illustrated below. It should be
particularly borne in mind that the great value of the first differential

(DID,D; + Dy)f =
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lies in the facts that it may be treated like a finite quantity and that
its form is independent of the variables.

To change the variable inv, + v, to polar codrdinates and show

82v+@ 6_+12u+ 1 é% (xr=7rcose¢, y =rsing,
o P ot ror r2ogl (r=Vat+ 2 ¢=tan"1(y/).

Then av avar+2v6¢ f_vzf_vg_’_f_vc-_fp
aJ; orex o¢cr cy corcy cocy

by applying (18) directly with z, y taking the place of r, s, - .- and r, ¢ the place

of z, ¥y, 2, ---. These expressions may be reduced so that
w_m 2w -y bz -y
o Vai + 2 T+ y? orr  op R

Next — =

cx orox ox a¢o.r or

[z wozx &% —y ve—ylz

"[aﬂ toaor aoe 6¢57]
[a?'vm wexr ow-—y éva—y]—y

or
0% iav aavar & v a¢
ox

oporr oropr og? 12 epcp 12

The differentiations of z/r and — y/r2 may be performed as indicated with respect to
r, ¢, remembering that, as r, ¢ are independent, the derivative of » by ¢ is 0. Then

Po_zo P aye yio
' ot Por  rBorog rop  rogt
In like manner 8%v/cy? may be found, and the sum of the two derivatives reduces
to the desired expression. This method is long and tedious though straightforward.

1t is considerably shorter to start with the expression in polar codrdinates and
transform by the same method to the one in rectangular cosrdinates. Thus

o ovox owoy ov o l(au av )
s - — 8i. = —_ —_ y
or azar+ayar ety o=ttt
o/ ov 20 ) (a% P )
—_ — )= ——sin x — CO8 sin -—-COS —si
ar(rbr) (ax2 ¢+am o)+ oy ¢+ay o)y + ¢+8y ng,
av ovoxr ovoy ov v av
— =2 = — __rsin —TCOS = - — —Z,
26 aza¢+aya¢ or ¢+ oy # 6J;y+by ?
L (a% ¢——cos¢)y+( il sin¢+;cos¢>z
rogp?  \ox? dyox oxdy oy?
—a—vcos¢—-ﬁsin¢
P oy )
of v 1 0% o2 ¢
Th O(p )4 200 _ (9P, 00
en ar(rar)+r6¢'l (6‘12+6y2>r
2 2 S 22 2 2
or g R ) DU W B R ) @)
oyt reor\ or r2op2 or:2  ror  r2og?

The definitions d2f = £ dz?, dd,f = foydzdy, d2f =f, dy? would naturally be
given for partial differentials of the second order, each of which would vanish if f
reduced to either of the independent variables x, ¥ or to any linear function of
them. Thus the second differentials of the independent variables are zero. The
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second total differential would be obtained by differentiating the first total differ-

ential. .
@f = ddf = d(afdz+g ) d fdz+dafdy+afd%+‘fd2y,
af b2l oY 3f i’f 3f
but — dz + ——dy. —=d,
" L~ P ™ YT agSt®
and a@f = afd:cﬂ+2 a;’ dxdy+§yj;dy2+afd%+afd2y (24)

The last two terms vanish and the total differential reduces to the first three terms
if ¢ and y are the independent variables ; and in this case the second derivatives,
S Fogr Ty 7€ the coefficients of dx?, 2dzdy, dy?, which enables those derivatives
to be found by an extension of the method of finding the first derivatives (§ 49).
The method is particularly useful when all the second derivatives are needed.
The problem of the change of variable may now be treated. Let
d?v = g d.'c“‘ +2— da:d + —d 2
o Y
20 & 2v
=-—¢:lr2 2——drd —~d 2 4+ —d%r 4+ —d2g,
or? + erée ¢+a¢2 ¢ +2r +a¢ ¢
where z, y are the independent variables and r, ¢ other variables dependent on
them — in this case, defined by the relations for polar codrdinates. Then

dx = cos ¢pdr — rsin ¢de, dy = sin ¢dr 4 r cos ¢pde
or dr = cos ¢pdx + sin ¢dy, rd¢ = — sin ¢dx 4 cos ¢pdy. (25)
Then d?r = (— sin ¢dz + cos pdy)dp = rdpdp = rde?,
drdg + rd?p = — (cos ¢pdz + sin ¢pdy) dp = — drde,

where the differentials of dr and rd¢ have been found subject to d2x = d2y = 0.
Hence d?r = rd¢? and rd?¢ = — 2drdg. These may be substituted in d?v which
becomes

) % 1év

=gy o0 120 2
Po=gdrt (era» ra¢> 'H(w“ )"’

Next the values of dr?, drde, d¢? may be substituted from (25) and

2 2 .
d%:[ﬁcos%—g(ﬂ-_l‘_”)cos‘psmtp*_(f v +rav)sm ¢]d:c¢

or? orop rop cop? ér) r2
laov cos?¢p — sm2¢ ¢%v cos ¢ sin g
[0 il ) ]dxd
+ [ cos¢ sm ¢+ (ar8¢ r el ” a¢'l r2 v

% % 1ov ov\ cos ¢J
o sin%¢ + 2 (2 — 2 Z) cos psin ay2.
+ [ar ot (ara¢ r a¢) gsing + (6¢2 +r ar) 72
Thus finally the derivatives v, v,,, v, are the three brackets which are the
coefficients of dx?, 2dzdy, dy2. The value of v, + vw is as found before.

52. The condition f;, = f,. which subsists in accordance with the

fundamental theorem of § 50 gives the condition that

Mz, y)dx + N(x, y)dy = 2—5(1.1‘ +2—;(l]/ =df
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be the total differential of some function f(x, y). In fact
0 of oM oN 0 of

Gyoxr Oy ox cxoy

oM ON aM dN

and E = oor (d_y> (dw) (26)
The second form, where the variables which are constant during the
differentiation are explicitly indicated as subscripts, is more eommon in
works on thermodynamics. It will be proved later that conversely if
this relation (26) holds, the expression Mdx 4 Ndy is the total differ-
ential of some function, and the method of finding the function will
also be given (§§ 92, 124). In case Mdx + Ndy is the differential of
some function f(x, y) it is usually called an exact differential.

The application of the condition for an exact differential may be
made in connection with a problem in thermodynamics. Let S and U
be the entropy and energy of a gas or vapor inclosed in a receptacle of
volume v and subjected to the pressure p at the temperature 7. The
fundamental equation of thermodynamics, connecting the differentials
of energy, entropy, and volume, is

dU = TdS — pdv; and (‘%)b <Z§> (7

is the condition that dU be a total differential. Now, any two of the
five quantities U, §, v, T, p may be taken as independent variables. In
(27) the choice is S, v; if the equation were solved for dS, the choice
would be U, v; and U, S if solved for dv. In each case the cross differ-
entiation to express the condition (26) would give rise to a relation
between the derivatives.

If p, T were desired as independent variables, the change of variable

ds ds
as = (%) ap ar,  dv=(%)ap ar
(dp) + (dT) o BE (d ) + (dT)

s av=[1(%) —p(®) Jo+ [1(25) ~p(%) Jor

should be made. The expression of the condition is then

{ar G) 2 ()el}, = {5l ") 2 ), 1}

ds eS e o628 dv %
or =) + T —p =T —— () —p —>

dp/ r oTep eTep cpoT a1/, epoT
where the differentiation on the left is made with p constant and that on the right
with T constant and where the subscripts have been dropped from the second
derivatives and the usual notation adopted. Everything cancels except two terms
which give
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@)= -G, o (@)= @), @
dp/r dT/p T\dp/r dT/p

The importance of the test for an exact differential lies not only in the relations
obtained between the derivatives as above, but also in the fact that in applied
mathematics a great many expressions are written as differentials which are not
the total differentials of any functions and which must be distinguished from exact
differentials. For instance if dH: denote the infinitesimal portion of heat added
to the gas or vapor above considered, the fundamental equation is expressed as
dH = dU + pdv. That is to say, the amount of heat added is equal to the increase
in the energy plus the work done by the gas in expanding. Now dH is not the dif-
ferential of any function H (U, v); it is dS = dH/T which is the differential, and
this is one reason for introducing the entropy S. Again if the forces X, Y act on a
particle, the work done during the displacement through the arc ds = Vdz? + dy?
is written d W = Xdx 4+ Ydy. It may happen that this is the total differential of
some function ; indeed, if

AW=—dV(z,y), Xiz+ Yiy=—av, Xx=-2V, y=_2,
ox oy

where the negative sign is introduced in accordance with custom, the function V is
called the potential energy of the particle. In general, however, there is no poten-
tial energy function ¥V, and dW is not an exact differential ; this is always true
when part of the work is due to forces of friction. A notation which should dis-
tinguish between exact differentials and those which are not exact is much more
needed than a notation to distinguish between partial and ordinary derivatives;
but there appears to be none. '

Many of the physical magnitudes of thermodynamics are expressed as deriva-
tives and such relations as (26) establish relations between the magnitudes. Some
definitions :

specific heat at constant volume is C, = (‘E) =T <dS) ’
v

dT/v aT
dH ds
ific heat at tant s Cp=(-=) =T(=
specific heat at constant pressure is C, (dT)p <dT)p,
latent heat of expansion is Ly,= <d_H) = T(@) ,
dv /1 dv/r
coefficient of cubic expansion is ap,= 1(2>
P P o\aT)y’

modulus of elasticity (isothermal) is Er= — v<d—p ,

modulus of elasticity (adiabatic) is Eg= — v(—-

53. A polynomial is said to be homogeneous when each of its terms
is of the same order when all the variables are considered. A defini-
tion of homogeneity which includes this case and is applicable to more
general cases is: A function f(x, y, 2, - --) of any number of variables is
called homogeneous if the function is multiplied by some power of X when
all the variables are multiplied by A; and the power of A which factors
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out is called the order of homogeneity of the function. In symbols the
condition for homogeneity of order = is

f(my )\?/; y " ) = N'f(x’ Ys 2y o ) (29)
Thus e+, W g, L (29"
x 2 z z + 3

are homogeneous functions of order 1, 0, — 1 respectively. To test a
function for homogeneity it is merely necessary to replace all the vari-
ables by A times the variables and see if A factors out completely. The
homogeneity may usually be seen without the test.

If the identity (29) be differentiated with respect to A,

0 0 0
(x%+y5?/+za +-~>f()m:, Ay, Az, ) =0l 1f (2, y, 2, - - ).
A second differentiation with respect to A would give
Vit ? Vil & il
( 22+x‘/98y+xz39 --->f+<yxay—ax+y’gz+yza—zz+--->f
aﬁ
+<zx"_a—1;.+ a + 2 2 "‘>f+"'=”(”“1))~"'2f(‘t,?/,2,"')

or < S+ 2xy — -i-;l/z(j;/2 ->f=n(n—l))\""f(ac,y/,z,-'-).

Now if A be set equal to 1 in these equations, then

013 y

xai+J;J;+zaf =t g, (30)
- T & A T NIRRT}

In words, these equations state that the sum of the partial derivatives
each multiplied by the variable with respect to which the differentia-
tion is performed is » times the function if the function is homogeneous
of order n; and that the sum of the second derivatives each multiplied

* by the variables involved and by 1 or 2, according as the variable is
repeated or not, is n(n — 1) times the function. The general formula
obtained by differentiating any number of times with respect to A may
be expressed symbolically in the convenient form

xD,+yD,+ 2D, + - Yf=n(n—1)---(n—k+1)f. (31)
This is known as Euler’s Formule on homogeneous functions.

It is worth while noting that in a certain sense every equation which represents
a geometric or physical relation is homogeneous. For instance, in geometry the
magnitudes that arise may be lengths, areas, volumes, or angles. These magni-
tudes are expressed as a number times a unit ; thus, V2 ft., 8 sq. yd., = cu. ft.
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In adding and subtracting, the terms must be like quantities; lengths added to
lengths, areas to areas, etc. The fundamental unit is taken as length. The units of
area, volume, and angle are derived therefrom. Thus the area of a rectangle or
the volume of a rectangular parallelepiped is

A=aft. x bft. =abft.2=absqft.,, V=aft. xbft. x cft. = abc ft.3 =abc cu. ft.,

and the units sq. ft., cu. ft. are denoted as ft.2, ft.3 just as if the simple unit ft.
had been treated as a literal quantity and included in the multiplication. An area
or volume is therefore considered as a compound quantity consisting of a number
which gives its magnitude and a unit which gives its quality or dimensions. If L
denote length and [L] denote ** of the dimensions of length,” and if similar nota-
tions be introduced for area and volume, the equations [A] = [L]? and [V] =[L]?
state that the dimensions of area are squares of length, and of volumes, cubes of
lengths. If it be recalled that for purposes of analysis an angle is measured by the
ratio of the arc subtended to the radius of the circle, the dimensions of angle are
seen to be nil, as the definition involves the ratio of like magnitudes and must
therefore be a pure number.

When geometric facts are represented analytically, either of two alternatives is
open: 1° the equations may be regarded as existing between mere numbers; or
2°, as between actual magnitudes. Sometimes one method is preferable, sometimes
the other. Thus the equation z2 4 y2 = 72 of a circle may be interpreted as 1°, the
sum of the squares of the cosrdinates (numbers) is constant ; or 2°, the sum of the
squares on the legs of a right triangle is equal to the square on the hypotenuse
(Pythagorean Theorem). The second interpretation better sets forth the true
inwardness of the equation. Consider in like manner the parabola y2 = 4pz. Gen-
erally ¥ and z are regarded as mere numbers, but they may equally be looked
upon as lengths and then the statement is that the square upon the ordinate equals
the rectangle upon the abscissa and the constant length 4p ; this may be inter-
preted into an actual construction for the parabola, because a square equivalent
to a rectangle may be constructed.

In the last interpretation the constant p was assigned the dimensions of length
so as to render the equation homogeneous in dimensions, with each term of the
dimensions of area or [L]2. It will be recalled, however, that in the definition of
the parabola, the quantity p actually has the dimensions of length, being half the
distance from the fixed point to the fixed line (focus and directrix). This is merely
another corroboration of the initial statement that the equations which actually
arise in considering geometric problems are homogeneous in their dimensions, and
must be so for the reason that #n stating the first equation like magnitudes must
be compared with like magnitudes.

The question of dimensions may be carried along through such processes as
differentiation and integration. For let ¥ have the dimensions [y] and « the dimen-
sions [x]. Then Ay, the difference of two y’s, must still have the dimensions [y]
and Az the dimensions [z]. The quotient Ay/Az then has the dimensions [y]/[z].
For example the relations for area and for volume of revolution,

o Lo o [4]- 8- []- o

and the dimensions of the left-hand side check with those of the right-hand side.
As integration is the limit of a sum, the dimensions of an integral are the product
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of the dimensions of the function to be integrated and of the differential dz.
if
Thus i )e s dg _1 i ® +c
“Joat+x2 a
were an integral arising in actual practice, the very fact that a2 and z2 are added
would show that they must have the same dimensions. If the dimensions of z
be [L], then

[‘[;xt?%] [a2+12][ ]_[L]a[] '[_;7]‘=[?/]'

and this checks with the dimensions on the right which are [L]-1, since angle has
no dimensions. As a rule, the theory of dimensions is neglected in pure mathe-
matics ; but it can nevertheless be made exceedingly useful and instructive.

In mechanics the fundamental units are length, mass, and time ; and are denoted
by [L], [M], [T]. The following table contains some derived units:

velocity [[T} acceleration [[ ]] force []EI;ZII:ZL ] ,
areal velocity [[LT]]’ de.nsity Eil]l 2 momentum [3:]T[]L] ,
angular velocity ﬁ ,  moment % , energy %[]f]z .

With the aid of a table like this it is easy to convert magnitudes in one set of
units as ft., 1b., sec., to another system, say cm., gm., sec. All that is necessary is
to substitute for each individual unit its value in the new system. Thus

ft. cm. cm.
g= 32}.@, 1 ft. = 30.48 cm., g = 321 x 30.48 v i 9803 oo

EXERCISES
1. Obtain the derivatives f,., f,,, f,z, f,, and verify f, = f.

@ sty @ 10gTEL () oY) 4y o).

2. Compute ¢%v/¢y? in polar codrdinates by the straightforward method.

%
3. Show that a2ax at’ 1fv—f(x+at)+¢(a:—a,t)

4. Show that this equation is uncha.nged in form by the transformation :

il

axa+2zyzaf+2(y y“) +z2y’f 0; u=uay, v=1/y.

5. In polar cojrdinates z = r cos 0, z=rsinfdcos¢, y = rsinfsin ¢ in space

v v o 1[0 ov 1 o 1 o -, 00
—==]—(r2= _— 4 —— —[si =)1.
a2 e 22 + oy 12 [ar( ar> + sin2 @ og? + sin 4 86 (sm o 80)]

The work of transformation may be shortened by substituting successively
r=rco8¢, y=rsing, and z=rcos¢, r =rsing.

6. Let z, y, 2, t be four independent variables and x = rcos¢, y = rsing, z =2
the equations for transforming z, y, z to cylindrical codrdinates. Let
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g2 2 z2
X:—i Y:—a—f, Z= 3f , F—cf G=—i;
cxoz cyoz czz ayl cyét cxct
show Z=}?_Q’ Xcos¢‘+ Ysin¢=—la—Q, Fsing — Gcos¢—1ﬂ,
reor r oz r ot

where r—1Q = &f/or. (Of importance for the Hertz oscillator.)

7. Apply the test for an exact differential to each of the following, and write
by inspection the functions corresponding to the exact differentials :

(@) 8zdz + y2dy, (B) Sxyd;r, +a3dy,  (y) x%ydz + y2dy,
zdz + ydy 2dz — ydy ydz — zdy
a T o T A e |
@ “ar 5T 0
(n) (42 + 32% + y?)dx + (2 + 22y + 89°)dy,  (6) z%%(dz + dy).
8. Express the conditions that P(z, y, z)dz + Q(z, ¥, 2)dy +-R (z, ¥, z)dz. be
an exact differential dF (z, y, z).” Apply these conditions to.tlré differentials : .
(a) 3x%y?zdx + 2 2¥y2dy + z3y%dz, B) (¥ + 2)dz + (x + 2)dy + (z + y)d=.
9. Obtain (;;) (‘:Z)Tand (Z—Z) (?i:) from (27) with proper variables.
10. If three functions (called thermodynamic potentials) be defined as

y=U-TS, x =U+ pv, ¢=U— TS + pv,
show dy = — SdT — pdv, dx = TdS + vdp, d{= — SdT + vdp,

and express the conditions that dy, dx, d¢ be exact. Compare with Ex. 9.
11. State in words the' definitions corresponding to the defining formulas, p. 107.

12. If the sum (Mdz + Ndy) +(Pdz + Qdy) of two dlﬁerentlals is exact and one
of the differentials is exact, the other is. Prove this. :

13. Apply Euler’s Formula (81), for the simple case k = 1, to the three func-
tions (29’) and verify the formula. Apply it for k£ = 2 to the first function.

14. Verify the homogeneity of these functions and determine their order :

2 o 2 - z y" ____zyz ’
@ v/ztaloga=logy), O =m0 O) n o
x Vz—VYy
G 4 22 -1_, .
(3) zyev® + 22, () Vzeor=1Z, (1) Vit Y,

15. State the dimensions of moment of inertia and convert a unit of moment of
inertia in ft.-1b. into its equivalent in cm.-gm.

16. Discuss for dimensions Peirce’s formulas Nos. 93, 124-125, 220, 300.

17. Continue Ex. 17, p. 101, to show d& _ 2 ang iﬂ .l + er
dteqi oq; dt eq; 70

18. If p; = aA—T in Ex. 17, p. 101, show without analysis that 2 T = ¢, p, + ¢,P,.
2’
If T’ denote T’ = T, where T is considered as a function of p,, p, while T is con-
sidered as a function of ¢,, ¢,, prove fromT” = ¢, p, + ¢,p, — T that
oT oT” eT

— = @i» = —_-—

cp; 0qi 0qi
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19. If (2, ¥,) and (z,, ¥,) are the coordinates of two moving particles and
d’x . dy. d2z dzy,
mgp = Xr Mg =To maTg =Xy mTy

are the equations of motion, and if z,, ¥,, %,, ¥, are expressible as

z, = f1(01 92 B)y Y1 = 91(91s 920 93)s %2 =S2(Q1y D25 Ta)s Y2 = 92(Q1s Ta» T5)
in terms of three independent variables g,, g,, 93, show that
az ay o2y y Wy _doT _oT
Q=X t+7, + X, 247, -
1T ey, % 29, % 2q, Tdt aql oq,

=Y,

where T = } (mv} + myo) = T(ql, Qs 3y 4y» Q9y @3) and is homogeneous of the
second degree in §,, ¢,, ;. The work may be carried on as a generalization of
Ex. 17, p. 101, and Ex. 17 above. It may be further extended to any number of
particles whose positions in space depend on a number of variables g.

20. In Ex. 19 if p; = z—.T, generalize Ex. 18 to obtain
qi

T oT"  oT dp, , 9T
i=—) = —-—— Ql +
epi ogi ogi a " aqy
The equations @; = doT _of and Q; = dp. -
dt éq; aq. qi

gian and Hamiltonian equations of motlon.
21. If m” = k% and ¢’ = ¢ and v’ (¥, ¢’) = v(r, $), show

o  leov 10w »2fcw  1ov 1 %
e—,n“‘«aﬁmw—ﬁ(sﬁ*m*ﬁa?e)'

2. If =k ¢ =9, =60, and v (7, ¢, 0) = ;’i—v(r, ¢, 0), show that the

expression of Ex. 6 in the primed letters is kr2/73 of its value for the unprimed
letters. (Useful in § 198.)
% 62z

cxdy ot

23. Ifz=z¢<g)+np(%), show :c2—+2 zy

24. Make the indicated changes of variable :

(@ 2V eV - (c |4 62V)

@t et

BV SV _ (& BNy, @y
®) wr 6u’ o (612 + 61/2)[(60 +<av) ]’ where
of _op of ¢

z=f(u,v), ¥=o(u, ), o w3

25. For an orthogonal transformation (Ex. 10 (¢), p. 100)

¢2v ¢ v ¢? ¢ o2
LTI L AL AL
ex?  oy? o2z cx? oyt ¢z?

if z = e*cosv, y = e*sinv,

54. Taylor’s Formula and applications. The development of f(z, y)
is found, as was the Theorem of the Mean, from the relation (p. 95)
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Af=®(1)— ®(0) if ®(t)=rf(a+ th, b+ tk).
If ®(t) be expanded by Maclaurin’s Formula tb n terms,
-
(n 1)'
The expressions for &'(f) and ®'(0) may be found as follows by (10):
') =M+ kfy, @'O0)=[1f;+ Aﬁ/]: @
then ") =h(hfr. + kf) + k(W + kfon)
= 1L + 2 hkfe + KfL = (hD, + kD,)%,
¥0(t) = (WD, + RD,)f, #°(0) = [(D + kD)f], .
And f(a+h b+ k) —f(a, b) = Af = &(1) — q>(0) (D, + kD ) £ (a, b
‘(hD + KDY F(, 8+ 1),(7LD .+ kD, f(a, b)

+ ﬁ"z (hD, + kD,)"f(a + 6k, b + 6F). (32)

®(t) — #(0) = w®+ﬁ@mﬂ-4- & 0(0) + 2 a(gy).

In this expansion, the increments 4 and 4 may be replaced, if de-
sired, by * — @ and y — b and then f(z, y) will be expressed in terms
of its value and the values of its derivatives at («, 0) in a manner
entirely analogous to the case of a single variable. In particular if the
point (a, b) about which the development takes place be (0, 0) the
development becomes Maclaurin’s Formula for f(zx, y).

S y)=r(0,0) + («D. + yD,)f (0, 0) + 51‘, (=D +yD,)’f(0,0)+ -

g7 (Dt YD) O, 0) 4 1 (DA YD O, ). (32)

Whether in Maclaurin’s or Taylor’s Formula, the successive terms are
homogeneous polynomials of the 1st, 2d, - --, (»n — 1)st order in x, y or
in x — a, y — b. The formulas are unique as in § 32.

Suppose V1 — z? — 2 is to be developed about (0, 0). The successive deriva-
tives are

’ -z ’ —‘_l/ ’ ’
=—_— ., =) 0, 0)=0 0,0)=0
L= e VT 0= 400=0
£ = — 1492 . = Ty L= —1422 ,
a-z—pt 7 -zt " -
7= -9z Fo= v-2zt-y
(1—22—y2)k (l_ze_yz)w !

and V1—22—32=14+ 0z +0y)+3(—22+0zy—92)+ 302 +--)+---,
or  V1i—z?2—y?2=1-—}(?+ y?) 4+ terms of fourth order + -- ..

In this case the expansion may be found by treating z2 + y2 as a single term and
expanding by the binomial theorem. The result would be



114 DIFFERENTIAL CALCULUS

[1- @+ 901 =11+ 09— (@ + 225 + 09 — o (@ + 92— .
That the development thus 6btained is identical with the Maclaurin development

that might be had by the method above, follows from the uniqueness of the devel-
opment. Some such short cut is usually available.

55. The condition that a function z = f(x, y¥) have a minimum or
maximum at (@, b) is that Af> 0or Af <0 for all values of 2 = Ax
and % = Ay which are sufficiently small. From either geometrical or

- analytic considerations it is seen that if the surface z = f(z, y) has a
minimum or maximum at (a, ), the curves in which the planes y =
and x = a cut the surface have minima or maxima at x =ce and y =0
respectively. Hence the partial derivatives f; and f, must both vanish
at (a, b), provided, of course, that exceptions like those mentioned on
page 7 be made. The two simultaneous equations

_ fi=0, f;=0, , (33)

corresponding to f'(x) = 0 in the case of a function of a single varia-
ble, may then be solved to find the positions (x, y) of the minima
and maxima. Frequently the geometric or physical interpretation of
z = f(x, y) or some special device will then determine whether there
is a maximum or a minimum or neither at each of these points.

For example let it be required to find the maximum rectangular parallelepiped
which has three faces in the codrdinate planes and one vertex in the plane
z/a + y/b + z/c = 1. The volume is

V=a:yz=czy(l—?—l—z.’).

b
ﬂ=—2£zy—(—:y’+cy=0 zi:—2£zy-—£x’+cz=0.
ox a b oy b a

The solution of these equations is x = 1 a, ¥y = }b. The corresponding z is } ¢ and
the volume V" is therefore abc/9 or § of the volume cut off from the first octant by
the plane. It is evident that this solution is a maximum. There are other solutions
of V; =V, = 0 which have been discarded because they give V = 0.

The conditions f; = f, = 0 may be established analytically. For
Af=(fi+{)az+ (fy + {)dy

Now as ¢, ¢, are infinitesimals, the signs of the parentheses are deter-
mined by the signs of f;, f; unless these derivatives vanish; and hence
unless f; = 0, the sign of Af for Az sufficiently small and positive and
Ay = 0 would be opposite to the sign of Af for Az sufficiently small and
negative and Ay = 0. Therefore for a minimum or maximum f;=0;
and in like manner f,=0. Considerations like these will serve to
establish a criterion for distinguishing between maxima and minima
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analogous to the criterion furnished by f''(r) in the case of one vari-
able. For if £} = f, = 0, then

Af =¥ (WfL+ 2R + Ky rcarony=s+on

by Taylor’s Formula to two terms. Now if the second derivatives are
continuous functions of (x, ) in the neighborhood of («, b), each deriv-
ative at (a + 6k, b + 6k) may be written as its value at («, 4) plus an
infinitesimal. Hence -

Af = Y (WL + 2RELL + K )@, vy + § (R, + 2 REE, + 7).

Now the sign of Af for sufficiently small values of 2, & must be the
same as the sign of the first parenthesis provided that parenthesis does
not vanish. Hence if the quantity

> 0 for every (%, k), a minimum

k2 ’” 2 Itk 77 k2 ’” X
W+ oot K wdean < 0 for every (%, k), a maximum.

As the derivatives are taken at the point (a, b), they have certain constant
values, say 4, B, C. The question of distinguishing between minima and maxima
therefore reduces to the discussion of the possible signs of a quadratic form
Ah? 4 2 Bhk 4 Ck2? for different values of A and k. The examples

R4k, —h—k2, R—k, +(h—k)?

show that a quadratic form may be: either 1°, positive for every (h, k) except (0, 0);
or 2°, negative for every (h, k) except (0, 0); or 3°, positive for some values (h, k)
and negative for others and zero for others; or finally 4°, zero for values other than
(0, 0), but either never negative or never positive. Moreover, the four possibilities
“here mentioned are the only cases conceivable except 6°, that A = B= C = 0 and
the form always is 0. In the first case the form is called a definite positive form, in
the second a definite negative form, in the third an indefinite form, and in the fourth
and fifth a singular form. The first case assures a minimum, the second a maxi-
mum, the third neither a minimum nor a maximum (sometimes called a minimax) ;
but the case of a singular form leaves the question entirely undecided just as the
condition () = 0 did.
The conditions which distinguish between the different possibilities may be ex-
pressed in terms of the coefficients 4, B, C.

1° pos. def., B2< AC, A,C>0; 8 indef., B> AC;
2° neg. def., B2< AC, A,C<0; 4°sing.,, B?2= AC.

The conditions for distinguishing between maxima and minima are :

fi=0 } A Sien fym > 0 minimum ; 34
fy=0) " T w o fr Sy < 0 maximum ;

o> Footypy minimax s 72 = flafim ).
It may be noted that in applying these conditions to the case of a definite form it
is sufficient to show that either £, or f,;; is positive or negative because they neces-
sarily have the same sign.
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EXERCISES

1. Write at length, without symbolic shortening, the expansion of f(z, y) by
Taylor's Formula to and including the terms of the third order in £ — a, y — b.
‘Write the formula also with the terms of the third order as the remainder.

2. Write by analogy the proper form of Taylor's Formula for f(z, y, z) and
prove it. Indicate the result for any number of variables.

3. Obtain the quadratic and lower terms in the development
(a) of zy? 4 sinzy at (1, } 7) and (B) of tan—!(y/z) at (1, 1).

4. A rectangular parallelepiped with one vertex at the origin and three faces
in the codrdinate planes has the opposite vertex upon the ellipsoid

x2/a? + y2/b% + 2%/c? =1.
Find the maximum volume.

5. Find the point within a triangle such that the sum of the squares of its
distances to the vertices shall be a minimum. Note that the point is the intersec-
tion of the medians. Is it obvious that a minimum and not a maximum is present ?

6. A floating anchorage is to be made with a cylindrical body and equal coni-
cal ends. Find the dimensions that make the surface least for a given volume.

7. A cylindrical tent has a conical roof. Find the best dimensions.

8. Apply the test by second derivatives to the problem in the text and to any
of Exs. 4-7. Discuss for maxima or minima the following functions :

Aa) 2y +zy® -z, ®B) &+ y® — 2% — § (@ + o),
() 22+ +z+7, (%) 3v® —x? + 2y — =,
() @+ y® — 9y + 27, () * + yt— 222 + day — 292

9. State the conditions on the first derivatives for a maximum or minimum of
function of three or any number of variables. Prove in the case of three variables.

10. A wall tent with rectangular body and gable roof is to be so constructed as
to use the least amount of tenting for a given volume. Find the dimensions.

11. Given any number of masses m,, m,, - - -, m, situated at (&, ¥;), (s, ¥5), - - *»
- (%, Yu). Show that the point about which their moment of inertia is least is their
center of gravity. If the points were (z;, ¥, 2,), - - - in space, what point would
make Zmr? a minimum ?

12. A test for maximum or minimum analogous to that of Ex. 27, p. 10, may
be given for a function f(z, y) of two variables, namely : If a function is positive
all over a region and vanishes upon the contour of the region, it must have a max-
imum within the region at the point for which f; = f,; = 0. If a function is finite
all over a region and becomes infinite over the contour of the region, it must have
a minimum within the region at the point for which f; =, = 0. These tests are
subject to the proviso that f = f,; = 0 has only a single solution. Comment on the
test and apply it to exercises above.

13. If a, b, c, r are the sides of a given triangle and the radius of the inscribed
circle, the pyramid of altitude & constructed on the triangle as base will have its
maximum surface when the surface is } (@ + b + ¢) Vr2 + k2.



CHAPTER V
PARTIAL DIFFERENTIATION; IMPLICIT FUNCTIONS

56. The simplest case; F(x, y) =0. The total differential
dF = Fldz + F,dy =d0 =0

oo dy _ F; de _F/
indicates =7 dy = T F (€]

v

as the derivative of y by , or of x by y, where ¥ is defined as a function
of x, or x as a function of y, by the relation F(x, ) = 0; and this method
of obtaining a derivative of an implicit function without solving expli-
citly for the function has probably been familiar long before the notion
of a partial derivative was obtained. The relation F(x, y)= 0 is pictured
as a curve, and the function y = ¢ (x), which would be obtained by solu-
tion, is considered as multiple valued or as restricted to some definite
portion or branch of the curve F(x, y)=0. If the results (1) are to
be applied to find the derivative at some point

(% ¥,) of the curve F(x, y)=0, it is necessary Y

that at that point the denominator F, or F; should Flax,y)=0

not vanish. @
These pictorial and somewhat vague notions (%’y"i;"?\

may be stated precisely as a theorem susceptible
of proof, namely: Let x, be any real value of x
such that 1° the equation F(x,, ¥) = 0 has a real solution y,; and 2°, the
function F(x, y) regarded as a function of two independent variables
(, v) is continuous and has continuous first partial derivatives F;, F, in
the neighborhood of (x,, ,); and 3° the derivative F; (x,, y,) % 0 does
not vanish for (z,, y,); then F(z, y) =0 may be solved (theoretically)
as y=¢(x) in the vicinity of x =2 and in such a manner that
Y= ¢ (x,), that ¢ (x) is continuous in z, and that ¢ (z) has a derivative
¢'(x) = — F;/F,; and the solution is unique. This is the fundamental
theorem on implicit functions for the simple case, and the proof follows.

o X

By the conditions on Fy, F,, the Theorem of the Mean is applicable. Hence

F (2, ¥) = F (%o, Yo) = F (@, y) = (AF; + kF )z, + gh, yo + o~ @
Furthermore, in any square |h|<3, |k|<& surrounding (z,, ¥,) and sufficiently
small, the continuity of F; insures|F;|< M and the continuity of F, taken with

117
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the fact that Fy (o, ¥,) # 0 insures |F |>m Consider the range of z as further
restricted to values such that |z — z,|<md/M if m < M. Now consider the value
of F(z, y) for any z in the permissible interval

and for y = y0+60ry Yo— 8. As |[kF)|>ms 11

but |(@ — z,) F,|<ms, it follows from (2) that ./ e
F(z, y, + 8) has the sign of §F, and F(z, Yo— 3) 5 4 Yo

has the sign of — 3F, ; and as the sign of F, does !

not change, F(z, y, + 8) and F(x, y,— 6) have A

opposite signs. Hence by Ex. 10, p. 45, there is | // : Y,—3d
one and only one value of y between y,— § and |

¥, + 8 such that F(z,y) = 0. Thus for each z in |

the interval there is one and only'one y such O 25% X

that F(z, y) = 0. The equation F(z, y) = 0 has a

unique solution near (z,, ¥,). Let ¥ = ¢ (z) denote the solution. The solution is
continuous at x = &, because |y — y,|<3. If (z, y) are restricted to values y = ¢ (x)
such that F(z, y) = 0, equation (2) gives at once

k_y—v,_dv__Fi@+Ohy+6h)  dy_  Fi@, ¥

h z—z, Ar  F,@+0hy+6k) dz  F,(@, U

As F,, F, are continuous and F; # 0, the fraction k/h approaches a limit and the
derivative ¢’(x,) exists and is given by (1). The same reasoning would apply to
any point z in the interval. The theorem is completely proved. It may be added
that the expression for ¢’(x) is such as to show that ¢’(x) itself is continuous.

The values of higher derivatives of implicit functions are obtainable
by successive total differentiation as

F,+ Fy' =0,
F:;;_'_ 2F~Jl+ // !2+ I;v/ "n_ 0’ (3)

ete. It is noteworthy that these successive equations may be solved for
the derivative of highest order by dividing by F, which has been assumed
not to vanish. The question of whether the function y = ¢ (x) defined
implicitly by F(x, y) = 0 has derivatives of order higher than the first
may be seen by these equations to depend on whether F(x, y) has
higher partial derivatives which are continuous in (z, ¥).

57. To find the maxima and minima of y = ¢ (x), that is, to find the
points where the tangent to F(x, ) = 0 is parallel to the x-axis, observe
that at such points y'= 0. Equations (3) give

1=0, FL+Fy"=0. @®

Hence always under the assumption that F, = 0, there are maxima at
the intersections of F =0 and F,= 0 if F}, and F, have the same sign,
and minima at the intersections for which F,, and F, have opposite signs ;
the case F, = 0 still remains undecided. :
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For exzimple if F(z, y) =2 + y® — 8axy = 0, the derivatives are

d 2
3@ —ay)+ 3@y —ax)y’ =0, d_1=_;‘1—21’
@ 2 adzy

6x—6ay +6yy?+ 32— ax)y” =0, = """ .

To find the maxima or minima of y as a function of z, solve
F,=0=22—ay, F=0=2z8+4 y%— 8Saxy, F, 0.

The real solntions of F, = 0 and F = 0 are (0, 0) and Q’/ 2 a, _\'/f_la) of which the
first must be discarded because F, (0, 0) =0. At (V2a, V4a) the derivatives
F:; and F/, are positive; and the point is a maximum. The curve F =0 is the
folium of Descartes.

The rdle of the variables x and ¥ may be interchanged if F, % 0 and
the equation F(x, y) = 0 may be solved for x = ¢ (y), the functions ¢
and ¢ being inverse. In this way the vertical tangents to the curve
F = 0 may be discussed. For the points of F = 0 at which both F,=0
and F, = 0, the equation cannot be solved in the sense here defined.
Such points are called singular points of the curve. The questions of
the singular points of F = 0 and of maxima, minima, or minimax (§ 55)
of the surface z = F(x, y) are related. For if F;= F, = 0, the surface
has a tangent plane parallel to z = 0, and if the condition 2z = F = 0 is
also satisfied, the surface is tangent to the xy-plane. Now if z = F(x, y)
has a maximum or minimum at its point of tangency with z = 0, the
surface lies entirely on one side of the plane and the point of tangency
is an isolated point of F(x, y) = 0; whereas if the surface has a mini-
max it cuts through the plane z = 0 and the point of tangency is not
an isolated point of F(x, y) = 0. The shape of the curve F =0 in the
neighborhood of a singular point is discussed by developing F(x, ¥)
about that point by Taylor’s Formula.

For example, consider the curve F(z, y) = 23 + y® — x%y2 — } (%2 + »?) = 0 and
the surface z = F(x, y). The common real solutions of

F/=822—2xy?2—z =0, F =8y2—-2z% —y=0, F(z,y)=0
x Yy

are the singular points. The real solutions of F, =0, F, =0 are (0, 0), (1, 1),
(3, 3) and of these the first two satisfy F(z, y) =0 but the last does not. The
singular points of the curve are therefore (0, 0) and (1, 1). The test (34) of § 55
shows that (0, 0) is a maximum for z = F(x, y) and hence an isolated point of
F(x, y) = 0. The test also shows that (1, 1) is a minimax. To discuss the curve
F(x, y) = 0 near (1, 1) apply Taylor’s Formula.

0=F(z,y)=}(8h%*— 8hk + 3Kk?) + }(6h% — 12 h%k — 12 hk? 4+ 6 k%) + remainder
= }(8cos?¢p — 8sin g cos ¢ + 3sin? ¢)
+ r(cos’¢ — 2cos?psing — 2cos g sin ¢ + sind ) + - - -,
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if polar codrdinates h = rcos ¢, k = rsin¢ be introduced at (1, 1) and »2 be can-
celed. Now for very small values of r, the equation can be satisfied only when
the first parenthesis is very small. Hence the solutions of

3 —4sin2¢ =0, sin2¢ =4, or ¢ =24°17}, 65°42¢,
and ¢ + , are the directions of the tangents to F (x, ¥)=0. The equation F=0is

0= (1} —2sin2¢) + r(cos ¢ + sing) (1 — 14 sin2 ¢)

if only the first two terms are kept, and this will serve to sketch F(z, y) = 0 for
very small values of r, that is, for ¢ very near to the tangent directions.

58. It is important to obtain conditions for the maximum or minimum
of a function z = f(x, y) where the variables z, y are connected by a
relation F(z, y) = 0 so that z really becomes a function of x alone or y
alone. For it is not always possible, and frequently it is inconvenient,
to solve F(z, y) = 0 for either variable and thus eliminate that variable
from z = f(x, y) by substitution. When the variables «, y in z = f(z, y)
are thus connected, the minimum or maximum is called a constrained
minimum or maximwm ; when there is no equation F(z, ) = 0 between
them the minimum or maximum is called free if any designation is
needed.* The conditions are obtained by differentiating #z = f(x, y)
and F(x, y) = 0 totally with respect to . Thus

de _of  ofdy_ A0 _OF  oFdy_

de  ox  oyde de ¢x ' Oydx
and g%—%g=0, %30, F=0, ®)
where the first equation arises from the two above by eliminating dy/dx
and the second is added to insure a minimum or maximum, are the con-
ditions desired. Note that all singular points of F(x, y) = 0 satisfy the
first condition identically, but that the process by means of which it
was obtained excludes such points, and that the rule cannot be expected
to apply to them.

Another method of treating the problem of constrained maxima and
minima is to introduce « multiplier and form the function

z2=®(x, y) = f(x, y) + AF (2, y), A a multiplier. (6)
Now if this function # is to have a free maximum or minimum, then
@, =fi+\F,=0, ®, =f,+AF,=0. )

These two equations taken with F = 0 constitute a set of three from
which the three values «, y, A may be obtained by solution. Note that
* The adjective ** relative’’ is sometimes used for constrained, and **absolute” for

free; but the term ** absolute” is best kept for the greatest of the maxima or least of
the minima, and the term ** relative ”’ for the other maxima and minima.
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A cannot be obtained from (7) if both F; and F, vanish; and hence this
method also rejects the singular points. That this method really deter-
mines the constrained maxima and minima of f(r, y) subject to the
constraint F(z, y) = 0 is seen from the fact that if A be eliminated from
(7) the condition f; F, — f; F, = 0 of (5) is obtained. The new method
is therefore identical with the former, and its introduction is more a
matter of convenience than necessity. It is possible to show directly
that the new method gives the constrained maxima and minima. For
the conditions (7) are those of a free extreme for the function & (z, y)
which depends on two independent variables (x, y). Now if the equa-
tions (7) be solved for (x, y), it appears that the position of the maximum
or minimum will be expressed in terms of A as a parameter and that
consequently the point (x (), ¥ (\)) cannot in general lie on the curve
F(x, y) = 0; but if A be so determined that the point shall lie on this
curve, the function ®(z, y) has a free extreme at a point for which
F =0 and hence in particular must have a constrained extreme for the
particular values for which F(z, y) = 0. In speaking of (7) as the con-
ditions fat an extreme, the conditions which should be imposed on
the second derivative have been disregarded.

For example, suppose the maximum radius vector from the origin to the folium
of Descartes were desired. The problem is to render f(z, ¥) = 22 + ¥2 maximum
subject to the condition F(z, y) = z® + y® — 8axy = 0. Hence

2z + 3N (x2—ay) =0, 2y + 3N (¥ — ax) =0, ¥+ 9y —8ary=0
or 2z-3(y2—ax)—2y-3(x2—ay)=0, ¥4y —3axy=0

are the conditions in the two cases. These equations may be solved for (0, 0),
(1} a, 1} a), and some imaginary values. The value (0, 0) is singular and A cannot
be determined, but the point is evidently a minimum of 22 + y?2 by inspection. The
point (1} a, 1} @) gives A = — 1} a. That the point is a (relative constrained) maxi-
mum of 22 + y»? is also seen by inspection. There is no need to examine d?/. In
most practical problems the examination of the conditions of the second order
may be waived. This example is one which may be treated in polar codrdinates
by the ordinary methods ; but it is noteworthy that if it could not be treated that
way, the method of solution by eliminating one of the variables by solving the
cubic F(z, y) = 0 would be unavailable and the methods of constrained maxima
would be required.

EXERCISES

1. By total differentiation and division obtain dy/dx in these cases. Do not
substitute in (1), but use the method by which it was derived.
(a) ax? + 2bay + cy2—1=0, (B) z*+ y*=4a%xy, (v) (cosx)— (siny)*=0,
(8) (2 + ¥?)% = a%(22 — 32), (¢) € + e = 2ay, (¢) =2~ =tan—lay.

2. Obtain the second derivative d2y/dz? in Ex. 1 (a), (B), (¢), (¢) by differen-
tiating the value of dy/dx obtained above. Compare with use of (3).



122 DIFFERENTIAL CALCULUS

3. Prove @y _ F*F;, — 2F,F,F; + FQF;,’,.
dzﬁ F;a

_ 4. Find the radius of curvature of these curves:

@2t +yt=at, R=3G@m)}, (5 2t +it=0al, R=2Viz+y)/0,
(v) 222+ ayt=a?, () mpt=a(a—2), (¢ (az)?+ ()f=1.

5. Find ¢, ¥, ¥"” in case 28 + ¥ — 8 azy =0. <

6. Extend equations (3) to obtain " and reduce by Ex. 3.

7. Find tangents parallel to the z-axis for (z2 + »?)2 = 2 a2 (22 — ¥?).

8. Find tangents parallel to the y-axis for (22 + y2 + az)? = a2 (22 + ¥2).

9. If B2<ac in az? + 2bzy + cy? + fz + gy + h = 0, circumscribe about the
curve a rectangle parallel to the axes. Check algebraically.

10. Sketch 28 + y3 = 22y2 + } (22 + »?) near the singular point (1, 1).
11. Find the singular points and discuss the curves near them :
(a) 2 + ¢* = 3azy, ®) @+ 9% =2a*(@z*—¢?),
() e+t =2 —-7)? @) ¥°+ 22 =22 +

12. Make these functions maxima or minima subject to the given conditions.-
Discuss the work both with and without a multiplier:

(a) a + b » atanz + btany =c. . Ans. s.x_n_af'=z_4._‘ .
UCOST VCOSY siny v
B) #2 + 2, ax?+ 2bzy + cy?=/. Find axes of conic.’

(y) Find the shortest distance from a point to a line (in a plahe). o

13. Write the second and third total differentials of F (%, ) = 0-and compare
with (3) and Ex. 5. Try this method of calculating in Ex. 2. -

14. Show that Fdz + Fydy =0 does and should give the tangent line to
F(z, y) = 0 at the points (z, y) if dx = ¢ — & and dy = 9y — y, where £, 9 are the
coordinates of points other than (x, y) on the tangent line. Why is the equation
inapplicable at singular points of the curve ?

59. More general cases of implicit functions. The problem of
implicit functions may be generalized in two ways. In the first place
a greater number of variables may occur in the function, as

F(x):’bz):O, F(x,y,z,...,u)=0;

and the question may be to solve the equation for one of the variables
in terms of the others and to determine the partial derivatives of the
chosen dependent variable. In the second place there may be several
equations connecting the variables and it may be required to solve the
equations for some of the variables in terms of the others and to
determine the partial derivatives of the chosen dependent variables
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with respect to the independent variables. In both cases the formal
differentiation and attempted formal solution of the equations for the
derivatives will indicate the results and the theorem under which the
solution is proper. ’

‘Consider the case F(z, y, ) = 0 and form the differential.

dF (z, y, 2) = F,dx + F,dy + F]dz = 0. )

If z is to be the dependent variable, the partial derivative of z by « is
found by setting dy = 0 so that y is constant. Thus

b (d\__Fo oo 0 (d\_

we(@)-E = 5-@--% o
are obtained by ordinary division after setting dy = 0 and dz = O re-
spectively. If this division is to be legitimate, F, must not vanish at
the point considered. The immediate suggestion is the theorem: If,
when teal values (x,, 7,) are chosen and a real value z, is obtained
from F(z, x, y,) = 0 by solution, the function F(x, y, #) regarded as
a function of three independent variables (z, y, z) is continuous at
and near (r,, y,, %) and has continuous first partial derivatives and
F(x, y,, z,)+ 0, then F(x, y, z) =0 may be solved uniquely for
2= ¢(xr, y) and ¢ (r, y) will be continuous and have partial derivatives
(9) for values of (z, y) sufficiently near to (z,, ¥,)." S

The theorem is again proved by the Law of the Mean, and in a similar manner.
F(&',, Y, z) = F(Io, Yoy Zo) = F(Z, Y, z) = (hFa,: + kFl; + le,)-’to+0’l'Vo+0k.=o+01°

As F,, F,, Fare continuous and F(z,, ¥, %) # 0, it is possible to take & so
small that, when |h|< 8, |k]| <8, |!|< 3, the derivative | F|>m and | F;| < u, | F,| < p.
Now it is desired so to restrict &, k that + 6Fz' shall determine the sign of the
parenthesis. Let :

|z —ao|<imd/u, |y —y,|<imd/u, then |hF;+kE';j<ma

" and the signs of the parenthesis for (z, ¥, 2, + 8) and (z, ¥, z, — 8) will be opposite
since IFZ' |>m. Hence if (z, y) be held fixed, there is one and only one value of 2
for which the parenthesis vanishes between z, + § and z, — 5. Thuszis defined asa
single valued function of (z, y) for sufficiently small valuesof h =z — 2y, k =y — ¥,.

Also U Fi(@o+ 6k, yo + 6k, 2z, + 61) L Fe)
h F;(Io+0h1yo+0k,zo+0[) k Fz,("')

when k and h respectively are assigned the values 0. The limits exist when A= 0 or
k = 0. But in the first case I = Az = A,z is the increment of z when z alone varies,
and in the second case ! = Az =A,2. The limits are therefore the desired partial
derivatives of z by « and y. The proof for any number of variables would be
similar.
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If none of the derivatives F;, F,, F, vanish, the equation F(x,y,2)=0
may be solved for any one of the variables, and formulas like (9) will
express the partial derivatives. It then appears that

. dz\ [dx 0z0xr F,F,
<E><d_>= Geox FF, 10)
2\ (@) (dg\ _ 0 a by _
wnd @)@ B ~5a =1 an

in like manner. The first equation is in this case identical with (4)
of § 2 because if y is constant the relation F(z, y, 2) = 0 reduces to
G (x, z) = 0. The second equation is new. By virtue of (10) and simi-
lar relations, the derivatives in (11) may be inverted and transformed
to the right side of the equation. As it is assumed in thermodynamics
that the pressure, volume, and temperature of a given simple substance
are connected by an equation F(p, v, T) = 0, called the characteristic
equation of the substance, a relation between different thermodynamic
magnitudes is furnished by (11).
60. In the next place suppose there are two equations

F(x, y, u, v) =0, G, y, u,v) =0 '(12)

/

between four variables. Let each equation be differentiated.
dF = 0 = Fdx + F,dy + F,du + Fdv,
dG =0 = G dx + G,dy + G.du + G dv. 13)

If it be desired to consider w, v as the dependent variables and z, y as
independent, it would be natural to solve these equations for the differ-
entials du and dv in terms of dx and dy; for example,

. _ (FiGL — FiGL)dw + (FGy — F,G))dy

d
F.G, — F,G,

(13)
The differential dv would have a different numerator but the same de-
nominator. The solution requires F,G, — F, G, #+ 0. This suggests the
desired theorem: If (u,, v,) are solutions of F = 0, G = 0 corresponding
to (x,, 9,) and if F G, — F,;G, does not vanish for the values (x,, ,, #,, v,),
the equations F = 0, G = 0 may be solved for u = ¢ (z, ¥), v = ¢ (x, ¥)
and the solution is unique and valid for (x, y) sufficiently near (z,, 7,)
— it being assumed that F and G regarded as functions in four variables
are continuous and have continuous first partial derivatives at and near
(%4s Yy» Uy v,) 5 Moreover, the total differentials du, dv are given by (13")
and a similar equation.
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The proof of this theorem may be deferred (§ 64). Some observations
should be made. The equations (13) may be solved for any two vari-
ables in terms of the other two. The partial derivatives

ou (w, 1/) ou(x, 1?) ox (u, v) ox (1, ) 14

ox ox ou - ou a4
of « by x or of « by « will naturally depend on whether the solution
for u is in terms of (, y) or of (x, v), and the solution for x is in (u, v)
or (u, ). Moreover, it must not be assumed that 0u/0x and ox/0u are
reciprocals no matter which meaning is attached to each. In obtaining
relations between the derivatives analogous to (10), (11), the values of
the derivatives in terms of the derivatives of F and G may be found or
the equations (12) may first be considered as solved.

Thus if u=¢(,y), : du = ¢ dz + ¢ydy,
v=y(, ), dv = ‘pa:d‘x + %d?/
Then dz = M , dy = = ¥adut gl
oYy — DY ¢z¢’y - ¢y¢’z
and E“—‘#ﬁy ff___l_:—‘#y/_”’ etc.
o oy, — oY, o oY, — d¥.
cuér ovexr
Hence ——4+—-——=1, 15
en cx cu + ox ¢v (19

as may be seen by direct substitution. Here u, v are expressed in terms of x, y for

the derlvatxves u 1 V3 and x, y are considered as expressed in terms of u, v for the
derivatives z,,, .

wr

61. The questions of free or constrained maxima and minima, at any
rate in so far as the determination of the conditions of the first order is
concerned, may now be treated. If F(x, y, #) = 0 is given and the max-
ima and minima of z as a function of (x, y) are wanted,

F(r, y,2)=0, F)(x, y,2)=0, F(x,y,2)=0 (16)
are three equations which may be solved for i, y, z. If for any of these
solutions the derivative F, does not vanish, the surface z = ¢ (=, ») has
at that point a tangent plane parallel to z = 0 and there is a maximun,
minimum, or minimax. To distinguish between the possibilities further
investigation must be made if necessary ; the details of such an investi-
gation will not be outlined for the reason that special methods are
usually available. The conditions for an extreme of u as a function of
(x, y) defined implicitly by the equations (13') are seen to be

F.G,—F,G,=0, F,G,—F,G,=0, F=0, G=0. (17)

The four equations may be solved for x, y, «, v or merely for x, y.
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Suppose that the maxima, minima, and minimax of » = f(z, y, 2) sub-
ject either to one equation F(x, %, ) = 0 or two equations F(z, y, ) = 0,
G (z, y, z) = 0 of constraint are desired. Note that if only one equation
of constraint is imposed, the function » = f(, ¥, 2) becomes a function
of two variables; whereas if two equations are imposed, the function «
really contains only one variable and the question of a minimax does
not arise. The method of multipliers is again employed. Consider

®(x,y,2)=f+AF or <I>=f+XF+;u.G 18
as the case may be. The conditions for a free extreme of ® are
@, =0, ®, =0, &, =0." 19

These three equations may be solved for the codordinates x, y, 2 which
will then be expressed as functions of A or of A and u according to the
case. If then A or A and u be determined so that (x, y, 2) satisfy F =0
or F= 0 and G = 0, the constrained extremes of u =f(z, y, 2) will be
found except for the examination of the conditions of higher order.

As a problem in constrained maxima and minima let the axes of the section of
an ellipsoid by a plane through the origin be determined. Form the function
Ly

X
<1>=a;2+;/2+z2+>\<—2 7

2
+z—2-—1)+#(lx+my+nz)
(5 C

by adding to #2 + y2 + 2%, which is to be made extreme, the equations of the ellipsoid
and plane, which are the equations of constraint. Then apply (19). - Hence

ez 1Bi=0, y4rl
a

® z B
-m=0 A=4+=n=0
2 b2+2m v EF c2+2n

taken with the equations of ellipsoid and plane will determine z, y, 2, \, x. If the
equations are multiplied by z, y, z and reduced by the equations of plane and
ellipsoid, the solution for X is N =— 2 =— (22 + 92 + 22). The three equations
then become

_1 pla? _ 1 pmb? 1 unc?

=sn_a y—érz—bﬂ' z=§r2—c3’ with e 4+ my + nz=0.

2q? m2b? n2c? .
Hence g + R + o 0 determines 72. - (20)

The two roots for r are the major and minor axes of the ellipse in which the plane
cuts the ellipsoid. The substitution of «, y, z above in the ellipsoid determines

u_ al \? bm \2 en \2 22 y? 22
Z_<r2—a2)+(r2—b2)+<r2-—c2) since a—2+b—2+c—2=1. (21)

Now when (20) is solved for any particular root r and the value of u is found by
(21), the actual codrdinates , y, z of the extremities of the axes may be found.
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EXERCISES
1. Obtain the partial derivatives of z by z and y directly from (8) and not by
substitution in (9). Where does the solution fail ?
2 2 22 1
-_— p —_= ]_ = —)
@ G+tpta=0 B z+y+z s
(7) @+ 9%+ 222 =a%? + %2 + c%2%,  (3) ayz=c.
2. Find the second derivatives in Ex. 1 (a), (8), () by repeated differentiation.
3. State and prove the theorem on the solution of F(z, v, 2, u) = 0.

4. Show that the product a,Er of the coefficient of expansion by the modulus
of elasticity (§ 52) is equal to the rate of rise of pressure with the temperature if
the volume is constant.

5. Establish the proportion Eg: Er = C,: C, (see § 52).

6. If F(z, y, z, u) = 0, show Guirty oz uer

— = ——=1.
drcyézou | oxéu

7. Write the equations of tangent plane and normal line to F(x, y, z) = 0 and
find the tangent planes and normal lines to Ex. 1(8), d) atz =1,y =1.

8. Find, by using (18), the indicated derivatives on the assumption that either
x, y or u, v are dependent and the other pair independent :

(@) W+vo+a8—8y=0, w+v®+yP+382=0, u,u,u), v

B)z+y+utv=a, 24y ul4v2=0», Ty UL, Uy O
(v) Find dy in both cases if «, v are independent variables.

cuoy , ovoy .
9. Prove — -+ ——= =0if F(z, y, 4, ) = 0,-G(x, y, u, v) = 0.

az au + ax av ( ] y t] ) bl ( y’ £ )

10. Find du and the derivatives u,, u/, u, in case
22 4+ Y2 4+ 22 = uy, zy = u? + v + w?, Yz = uow.
11. If F(z, y, 2) = 0, G (&, v, 2) = 0 define a curve, show that
T — 2z, _ ¥ — Y, _ z—z,
e - Fe),” (Fle— K, (58, - F&),
is the tangent line to the curve at (z,, ¥, 2,). Write the normal plane.

12. Formulate the problem of implicit functions occurring in Ex. 11.
13. Find the perpendicular distance from a point to a plane.

14. The sum of three positive numbers is z + ¥ + z = N, where N is given.
Determine z, y, z so that the product z?y9zr shall be maximum if p, g, r are given.
Ans. z:y:z: N=p:q:r:(p+gq+71).

15. The sum of three positive numbers and the sum of their squares are both
given., Make the product a maximum or minimum.

. 16. The surface (z2+ y2+22)2=ax2+by2+c2? is cut by the plane i+ my+nz=0.

: 2
Find the maximum or minimum radius of the section. Ans. 2 i 0.
r= —
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17. In case F(z, y, u, v) = 0, G(z, y, u, v) = O consider the differentials

cv v o oz oy oy
dv=—dr+ —d de = —du + — dv, dy = —du + —dv.
ox +2y ¥ ou u+av ! Y= u+6v
Substitute in the first from the last two and obtain relations like (15) and Ex. 9.

18. If f(z, ¥, 2) is to be maximum or minimum subject to the constraint
F(x, y, z) = 0, show that the conditions are that dz:dy :dz =0:0:0 are indeter-
minate when their solution is attempted from

fidz + fjdy + fdz=0 and FJdz+ F,dy + F,dz=0.
From what geometrical considerations should this be obvious ? Discuss in connec-

tion with the problem of inscribing the maximum rectangular parallelepiped in
the ellipsoid.” These equations,

dz:dy:dz=fF, — f,F, : [, F,— f,F, :fFy—f,F,=0:0:0,
may sometimes be used to advantage for such problems.

19. Given the curve F(z, y, 2) = 0, G (, ¥, 2z) = 0. Discuss the conditions for
the highest or lowest points, or more generally the points where the tangent is
parallel to z =0, by treating u = f(x, ¥, 2) = 2z as a maximum or minimum sub-
ject to the two constraining equations F =0, G =0. Show that the condition
F.G, = F,G, which is thus obtained is equivalent to setting dz = 0 in

Fldz + F;dy + Fdz=0 and GJdz+ G;dy + GJdz=0.
20. Find the highest and lowest points of these curves:
. 22 yz' 22
(@ 22+ y?=224+1, z+y +22=0, (B) Ei+b3+§=l,lz+my+nz=0.

21. Show that F,dz + F,dy + F,dz2=0, withdz=¢{ — 2, dy=n—y,dz=¢—z2,
is the tangent plane to the surface F(z, y, z) = 0 at (x, , 2). Apply to Ex. 1.

22. Given F(z, y, u, v) =0, G(z, ¥, u, v) = 0. Obtain the equations
éeF ¢Feu oFev oF ¢Feu  oFév _

- ‘—_=01 0,

PYRES

ex euex  evéex oy cuey  evey
eG@  eGeuw  eGev ¢eG@  eGeu  oGov
—t—=+-==0 —+_——+—-==0
cr  cucx cvcx ¢y oucy ovoy
and explain their significance as a sort of partial-total differentiation of F =0
and G =0. Find u_ from them and compare with (13"). Write similar equations
where z, y are considered as functions of (u, v). Hence prove, and compare with
(15) and Ex. 9,

eudy ey ma wam_

dyou eyov | eyew  oyev

23. Show that the differentiation with respect to x and y of the four equations

under Ex. 22 leads to eight equations from which the eight derivatives
c%u 2u &2u c2u &% o2
el - ) el 3 tey Y
cx? cxcy eyox cy? cx? oy?

may be obtained. Show thus that formally u;, = u,7.
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62. Functional determinants or Jacobians. Let two functions
U= ¢(.r, ) b= '/’(‘T} ¥) (22)

of two independent variables be given. The continuity of the functions
and of their first derivatives is assumed throughout this discussion
and will not be mentioned again. Suppose that there were a relation
F(u, v) =0 or F(¢, y) = 0 between the functions. Then

F(¢7 ‘I’) = 0) Fl:‘#a’: + F':‘/’a: = 0’ Fn:‘l’:; + FJ‘/’I; = 0. (23)

The last two equations arise on differentiating the first with respect to
x and y. The elimination of F, and F, from these gives

Y ,=¢; % agu,vz <u,v>=0 o4

The determinant is merely another way of writing the first expression ;
the next form is the customary short way of writing the determinant
and denotes that the elements of the determinant are the first deriva-
tives of v and v with respect to « and y. This determinant is called the
Junctional determinant or Jacobian of the functions «, v or ¢, ¢ with
respect to the variables x, ¥ and is denoted by J. It is seen that: If
there is a functional relation F(¢, ¢) =0 between two functions, the
Jacobian of the functions vanishes identically, that is, vanishes for all
values of the variables (z, y) under consideration.

Conversely, if the Jucobian vanishes identically over a two-dimensional
region for (x, y), the functions are connected by a functional relation.
For, the functions u, v may be assumed not to reduce to mere constants
and hence there may be assumed to be points for which at least one of
the partial derivatives ¢, ¢,, ¢, ¥, does not vanish. Let ¢, be the
derivative which does not vanish at some particular point of the region.
Then u = ¢ (2, ¥) may be solved as « = x(u, y) in the vicinity of that
point and the result may be substituted in v.

- o .
e oy w = %aq vi-
ox Ou Ox o
A =— 55 4 _'=_ Y 94!
but o= ayon 4 5, =g (B ) (24"

by (11) and substitution. Thus ov/0y = J/¢,; and if J =0, then
ov/dy = 0. This relation holds at least throughout the region for which
¢, # 0, and for points in this region ¢v /0y vanishes identically. Hence
v does not depend on y but becomes a function of w alone. This es-
tablishes the fact that » and u are functionally connected.
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These considerations may be extended to other cases. Let

u=¢(,y,2), v=y(, ¥, z)r w=x(,y, ). (25)
If there is a functional relation F(u, v, w) = 0, differentiate it.

F.¢.+ Fyy, + F, x; 0, ¢ Vi Xs
Fip, + Fiyy + Fux, = 0, ¢, ¥ x|=0, (26)
F.$, + F, + Fox, =0, ¢, ¥ X

(¢ ¥, X) — 0 (u, v, w) =J=0

0(x,y,2) O(x,9,2) )

The result is obtained by eliminating F;, F;, F, from the three equations.
The assumption is made, here as above, that F,, F,, F, do not all vanish;
for if they did, the three equations would not imply J=0. On the
other hand their vanishing would imply that F did not contain «, v, w,
— as it must if there is really a relation between them. And now con-
versely it may be shown that if J vanishes identically, there is a func-
tional relation between u, v, w. Hence again the necessary and suffictent
conditions that the three functions (25) be functionally connected is that
their Jacobian vanish.

or

The proof of the converse part is about as before. It may be assumed that at
least one of the derivatives of u, v, w or ¢, ¥, x by «, ¥, 2 does not vanish. Let
¢, # 0 be that derivative. Then u = ¢(z, ¥, z) may be solved as z = w(u, ¥, 2)
and the result may be substituted in v and w as

v=y (@, %)=y ¥2), w=xE&7y2)=x(,7s2).
Next the Jacobian of v and w relative to ¥ and z may be written as

ov aw , 0% , 0%
a ay '/’z"—'l"ﬁy Xx"—+xy
v aw ,aa:
oo |HatH A
v x — b/t x|, ¥ — /%0
- 7 +¢1 ’ ’ ’ +xz 7’ ’ ’
'l’z Xz ¢z/¢x z \0: —¢z/¢x
1 ,w;x,, y by ey ¥, J
=—=| ¥z, +¢ 7 Vs Y Y =
¢,["¢, Xa ’x, e, Cles val]l es

As J vanishes identically, the Jacobian of v and w expressed as functions of y, z,
and u vanishes. Hence by the case previously discussed there is a functional rela-
tion F (v, w) = 0 independent of y, z; and as v, w now contain u, this relation may
be considered as a functional relation between u, v, w

63. If in (22) the variables u, v be assigned constant values, the
equations define two curves, and if u, v be assigned a series of such
values, the equations (22) define a network of curves in some part of the
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xy-plane. If there is a functional relation u = F(v), that is, if the
Jacobian vanishes identically, a constant value of » implies a constant
value of » and hence the locus for which v is constant is also a locus
for which « is constant; the set of v-curves coincides with the set of
u-curves and no true network is formed. This
case is uninteresting. Let it be assumed that y
the Jacobian does not vanish identically and
even that it does not vanish for any point (x, y)
of a certain region of the ay-plane. The indi-
cations of § 60 are that the equations (22) may
then be solved for «, ¥ in terms of w, v at any
point of the region and that there is a pair of
the curves through each point. It is then proper to consider (u, v) as
the cobrdinates of the points in the region. To any point there corre-
spond not only the rectangular codrdinates (x, y) but also the curvi-
linear coérdinates (u, v).

The equations connecting the rectangular and curvilinear codrdinates
may be taken in either of the two forms

O|

u=¢(@y), v=y@y) or xz=f(u,v), y=g(v), (22
each of which are the solutions of the other. The Jacobians

J<u, v) (ar, y) 1 @0
z, Yy u, v

. . (z+dyx, y+dyV)
are reciprocal each to each; and this rela- Y|, v+dv)
(x+dz, y+dy)

tion may be regarded as the analogy of (u+du, v+dv)
ru)‘

the relation (4) of § 2 for the case of vidy
@ +duz, v+ du v)

the function y = ¢ (x) and the solution I

z = f(y) = ¢~'(y) in the case of a single (""u wranl*F V)

variable. The differential of arc is 0 X
ds® = dx* + dy* = Edu® 4+ 2 Fdudv 4 Gdv?, (28)

(Ve (Y i iy (e (o
E —<au>+<au>’ F=uto T ouao G“<3u>+<av>‘

The differential of area included between two neighboring u-curves and
two neighboring v-curves may be written in the form

dA = J( )dudv = dudv + <"’ ”)- (29)

Y

)

These statements will now be proved in detail.
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To prove (27) write out the Jacobians at length and reduce the result.

ou ov oxr oy
J(u, v>J(z,y>= x o . u ou

&Ly Y U, v ou ov oxr oy
a_y @ oy oV
ouor ovoxr ouoy  ovey
wou  exeov oxeu  omov
T|wos oz ey wy
you oOyov oyou oy ov

where the rule for multiplying determinants has been applied and the reduction
has been made by (15), Ex. 9 above, and similar formulas. If the rule for multi-
plying determinants is unfamiliar, the Jacobians may be written and multiplied
without that notation and the reduction may be made by the same formulas as
before. : .

To establish the formula for the differential of arc it is only necessary to write
the total differentials of dz and dy, to square and add, and then collect. To obtain
the differential area between four adjacent curves consider the triangle determined
by (u, v), (u + du, v), (¥, v + dv), which is half that area, and double the result.
The determinantal form of the area of a triangle is the best to use.

de dy| |Zaw Zau| |Z ¥
ou cu cu cu

= ex 2 = ax 2 dudv.
—dv —yav @ %9
ov ov v ¢ov

dA =2.

DO | =

dyr  dyy

The subscripts on the differentials indicate which variable changes; thus d.x, d.y
are the coordinates of (u + du, v) relative to (u, v). This method is easily extended
to determine the analogous quantities in three dimensions or more. It may be
noticed that the triangle does not look as if it were half the area (except for infin-
itesimals of higher order) in the figure ; but see Ex. 12 below.

It should be remarked that as the differential of area ¢4 is usually
considered positive when du and dv are positive, it is usually better to
replace J in (29) by its absolute value. Instead of regarding (u, v) as
curvilinear codrdinates in the xy-plane, it is possible to plot them in
their own ww-plane and thus to establish by (22') a transformation of
the xy-plane over onto the uv-plane. A small area in the xy-plane then
becomes a small area in the wv-plane. If J > 0, the transformation is
called direct; but if J < 0, the transformation is called perverted. The
significance of the distinction can be made clear only when the ques-
tion of the signs of areas has been treated. The transformation is called
conformal when elements of arc in the neighborhood of a point in the
xy-plane are proportional to the elements of arc in the neighborhood of
the corresponding point in the ww-plane, that is, when

dst = dax® + dy? = k(du® + dv®) = kdo® (30)
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For in this case any little triangle will be transformed into a little tri-
angle similar to it, and hence angles will be unchanged by the transfor-
mation. That the transformation be conformal requires that F = 0 and
E = G. It is not necessary that E = G = k be constants; the ratio of
similitude may be different for different points.

64. There remains outstanding the proof that equations may be solved
in the neighborhood of a point at which the Jacobian does not vanish.
The fact was indicated in § 60 and used in § 63.

THEOREM. Let p equations in n + p variables be given, say,

Fy(y, @y o0y @ayp) = 0, F,=0,--, F,=0. (31)

Let the p functions be soluble for «,, «,, ---, z,, when a particular set
Xy 4130 " "3 Lnt py, OF the other n variables are given. Let the functions
and their first derivatives be continuous in all the n 4 p variables in the
neighborhood of (x,, ,, - -+, X, 4 ,)- Let the Jacobian of the functions

with respect to x,, x,, - -, 2,,

ox ox
J(ﬂ’_’Fp>= :1 :1 * 0, (32
xX v, X * M
R 2 S P
o, a‘lp Tior " L+ pYo

fail to vanish for the particular set mentioned. Then the p equations
may be solved for the p variables «,, ,, - - -, ,, and the solutions will be
continuous, unique, and differentiable with continuous first partial
derivatives for all values of x,.,, ---, 2 sufficiently near to the
values 2,11y ** 'y Lntpyor

TueoreM. The necessary and sufficient condition that a functional
relation exist between p functions of p variables is that the Jacobian
of the functions with respect to the variables shall vanish identically,
“that is, for all values of the variables.

n+p

The proofs of these theorems will naturally be given by mathematical induction.
Each of the theorems has been proved in the simplest cases and it remains only to
show that the theorems are true for p functions in case they are for p — 1. Expand
the determinant J.

oF, eF, oF, .
J=Jla—zll+JZaT:+-~-+JpaT;, Jy, ++ -, Jp, minors.
For the first theorem J 0 and hence at least one of the minors J, - - -, J, must
fail to vanish. Let that one be J;, which is the Jacobian of F,, - - -, F), with respect
to &,, + -+, T,. By the assumption that the theorem holds for the case p — 1, these

» — 1 equations may be solved for z,, -+, @, in terms of the n 4 1 variables x,, .



134 DIFFERENTIAL CALCULUS

Zp+1, ** *y Tn+py and the results may be substituted in F,. It remains toshow that
F, = 0 is soluble for z,. Now

aF, _oF, oFyor, | OF i

=J/J; #0. 32
dz, ~ oz, ox, o, ozp o, Ih# 62)
For the derivatives of z,, - - -, Z, with respect to z, are obtained from the equations
0_6F+6F8z2+ +6_F2%’ veey 0=a_F”+@P% ...+a_FPaﬁ’
ox, 0x,0x, oxp 0x, ox, o0x, ox, 0xp 0%,

resulting from the differentiation of F, =0, ..., F, =0 with respect to z,. The
derivative oz;/éx, is therefore merely J;/J;, and hence dF,/dx, = J/J, and does
not vanish. The equation therefore may be solved for z, in terms of xp 44, -- -,
Za 4+ p, and this result may be substituted in the solutions above found for x,, - - -, Z,..
Hence the equations have been solved for z,, z,, - -+, Z, in terms of z, 41, -+, Tn4p
and the theorem is proved.

For the second theorem the procedure is analogous to that previously followed.

If there is a relation F(u,, --, up) = 0 between the p functions
u1=¢1(119"'amp)1"'v up=¢1’($1?"'7zp)v
differentiation with respect to «,, - -+, &p gives p equations from which the deriva-

Upy s o2y Wp
Tys* s Tp
dition desired. If conversely this Jacobian vanishes identically and it be assumed
that one of the derivatives of u; by z;, say ou,/ox,, does not vanish, then the solution
2, = w(Uy, Ty, - -+, &p) may be effected and the result may be substituted in wu,,

-+, Up. The Jacobian of u,, - -, u, with respect to z,, - - -, , will then turn out
to be J + ¢u,/éx, and will vanish because J vanishes. Now, however, only p — 1
functions are involved, and hence if the theorem is true for p — 1 functions it must
be true for p functions.

tives of F by u,, - -, Up may be eliminated and J ( ) = 0 becomes the con-

EXERCISES

1. If u=ax+by+c and v=a’z + b’y + ¢’ are functionally dependent, the
lines u = 0 and v = 0 are parallel ; and conversely.

2. Prove z + ¥ + 2, 2y + yz + 22, 22 + y? + 22 functionally dependent.

. fu=ax+by+cz+d, v=az+by+cz+d, w=a"2+0y+cz2+d”
are functionally dependent, the planes u = 0, v = 0, w = 0 are parallel to a line,
4. In what senses are 2—1/ and y, of (24) and % and E ! of (82) partial or total
1 Zy
derivatives ? Are not the two sets completely analogous ?

5. Given (25), suppose % x” # 0. Solve v = y and w = x for ¥ and z, substi-
z Xz ’
tute in u = ¢, and prove ou/ex = J + ‘P" X,,
’ z xl

6. If u = u(z, ¥), v =0(z, ¥), and z =z (£, 1), ¥ = ¥ (¢, ), prove

) 67763 @

State the extension to any number of variables. How may (27") be used to prove
(27) ? Again state the extension to any number of variables.
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7. Prove dV = J(M) dudvdw = dudodw ~ J(m) is the element of
u, v, W, T, Yy 2

volume in space with curvilinear codrdinates u, v, w = consts.

8. In what parts of the plane can u = &2 + 2, v = zy not be used as curvi-
linear codrdinates ? Express ds? for these coordinates.

9. Prove that 2u = 22 — y2, v = zy is a conformal transformation.

u

v . .
- y Y= - is a conformal transformation.
u? 4 v? u? 4 v?

10. Prove that z =

11. Define conformal transformation in space. If the transformation
T =au+ bv + cw, y=au+ bv+ cw, z=a"u+b"v+ c"’w
is conformal, is it orthogonal ? See Ex. 10 ({), p. 100.
12. Show that the areas of the triangles whose vertices are
(u, v), (w + du, v), (u, v+ dv) and (u+ du, v + dv), (u + du, v), (4, v + dv)
are infinitesimals of the same order, as suggested 1n § 63.

13. Would the condition F = 0 in (28) mean that the set of curves u = const.
were perpendicular to the set v = const. ?

14. Express E, F, G in (28) in terms of the derivatives of u, v by z, y.

15. If 2 =¢(s,t), y =¥ (3, t), 2= x(8,t) are the parametric equations of a
surface (from which 8, ¢ could be eliminated to obtain the equation between

z, ¥, z), show
% J("_“’) + J(‘f’l) and find .
ex s, 8t oy
65. Envelopes of curves and surfaces. Let theequation F(x, y,a)=0
be considered as representing a family of curves where the different
curves of the family are obtained by assigning different values to the
parameter @. Such families are illustrated by

(x—al+y*=1 and ar+yla=1, (33)

which are circles of unit radius centered on the x-axis and lines which
cut off the area } @® from the first quadrant. As & changes, the circles.
remain always tangent to the two lines y = 4 1 and
the point of tangency traces those lines. Again, as
« changes, the lines (33) remain tangent to the hyper-
bola xy = k, owing to the property of the hyperbola
that a tangent forms a triangle of constant area with
the asymptotes. The lines y = + 1 are called the
envelope of the system of circles and the hyperbola
xy = k the envelope of the set of lines. In general, if'there is a curve
to which the curves of a family F(x, y, @) = 0 are tangent and if the
point of tangency describes that curve us a varies, the curve is called
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the envelope (or part of the envelope if there are several such curves)
of the family F(x, y, ) = 0. Thus any curve may be regarded as the
envelope of its tangents or as the envelope of its circles of curvature.

To find the equations of the envelope note that by definition the
enveloping curves of the family F(z, y, «) = 0 are tangent to the envelope
and that the point of tangency moves along the envelope as @ varies.
The equation of the envelope may therefore be written

z = ¢(a), y=y(e) with F(¢,y,a)=0, (34)
where the first equations express the dependence of the points on the
envelope upon the parameter a and the last equation states that each
point of the envelope lies also on some curve of the family F(z, y,a) = 0.
Differentiate (34) with respect to @. Then

F$/(a) + Fy/(a) + Fi=0. (35)

Now if the point of contact of the envelope with the curve F = 0 is an
ordinary point of that curve, the tangent to the curve is
Fj(x—x)+ F(y—y,)=0; and F/¢'+ Fy'=0,
since the tangent direction dy:dx = y': ¢' along the envelope is by
definition identical with that along the enveloping curve; and if the
point of contact is a singular point for the enveloping curve, F; = F, = 0.
Hence in either case F, = 0.
Thus for points on the envelope the two equations

F(x, y, @)= 0, Fy(z,y,a)=0 - (36)

are satisfied and the equation of the envelope of the family F = 0 may
be found by solving (36) to find the parametric equations x = ¢(a),
y = y(a) of the envelope or by eliminating a between (36) to find the
equation of the envelope in the form ®(x,y) = 0. It should be remarked
that the locus found by this process may contain other curves than the
envelope. For instance if the curves of the family F = 0 have singular
points and if x = ¢(a), y = ¢ (a) be the locus of the singular points
as a varies, equations (34), (35) still hold and hence (36) also. The
rule for finding the envelope therefore finds also the locus of singular
points. Other extraneous factors may also be introduced in performing
the elimination. It is therefore important to test graphically or analyt-
ically the solution obtained by applying the rule.

As a first example let the envelope of (zx — a)? + y2 = 1 be found.
F@,y,q)=@—a)?+y?—-1=0, F,=—2@x—a)=0.

a

The elimination of a from these equations gives y2 — 1 =0 and the solution
for a givesz = a, y =+ 1. The loci indicated as envelopes are y = 4 1. It is
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geometrically evident that these are really envelopes and not extraneous factors.
But as a second example consider az + y/a = 1. Here

F@,y,a)=az+y/a—-1=0, F,=z—y/a®>=0.

The solution is y = /2, * = 1/2a, which gives zy = . This is the envelope; it could
not be a locus of singular points of F = 0 as there are none. Suppose the elimina-
tion of a be made by Sylvester's method as

—y/a? +0/a +z2+0a=0 -y 0 =z O
0/a? ~y/a +0+za=0 and 00—y 0=z —0:
y/a® —1/a +z+0a=0 y—-1 =z 0o 7’
0/a®? +y/a —1l+za=0 0 y-—-1 1=z

the reduction of the determinant gives xy (4zy — 1) = 0 as the eliminant, and con-
tains not only the envelope 4zy = 1, but the factors £ = 0 and y = 0 which are
obviously extraneous.

As a third problem find the envelope of a line of which the length lntercepted
between the axes is constant. The necessary equations are

Z4i¥=1, a4+ p=K, Zda+%dg=0, ada+pig=o.
a B a? B2

Two parameters a, 8 connected by a relation have been introduced; both equations
have been differentiated totally with respect to the parameters; and the problem
is to eliminate a, 8, da, dg from the equations. In this case it is simpler to carry
both parameters than to introduce the radicals which would be required if only
one parameter were used. The elimination of da, dg from the last two equations
givesz:y = a®: 8% or Vz:Vy = a:B. From this and the first equation,

1 1 1 . 1

a A+ B 3 E 148
66. Consider two neighboring curves of F(x, y, @) = 0. Let (x,, 7,)
be an ordinary point of @ = a and (x,+ «x, y,+ dy) of @, + da. Then’

F(x, + dx, y, + dy, &)+ da) — F(x,, ¥,, &,)
= Fjdx + F,dy 4+ Fida =0 37

and hence % + y¥ = k¥,

holds except for infinitesimals of higher order. The distance from the
point on @, + da to the tangent to &, at (r, y,) is
Fjix 4+ Fdy = &+ Fade
+VF2+F?  ~NF24+FP

=dn (38)

except for infinitesimals of higher order. This distance is of the first
order with da, and the normal derivative da/dn of § 48 is finite except
when F;=0. The distance is of higher order than de, and da/dn is
infinite or dn/da is zero when F;= 0. It appears therefore that the
envelope is the locus of points at which the distunce between two neigh-
boring curves is of higher order than de. This is also apparent geomet-
rically from the fact that the distance from a point on a curve to the
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tangent to the curve at a neighboring point is of higher order (§ 36). '
Singular points have been ruled out because (38) becomes indetermi-
nate. In general the locus of singular points is not tangent to the
curves of the family and is not an envelope but an extraneous factor;
in exceptional cases this locus is an envelope.

If two neighboring curves F(z, y, @) = 0, F(x, y, « + Ac) = 0 inter-
sect, their point of intersection satisfies both of the equations, and hence
also the equation )

1 ,
v [F(z, y, @ + Aa) — F(z, y, @) ]=F; (%, y, @ + 0Aa) = 0.

If the limit be taken for Aa = 0, the limiting position of the intersec-
tion satisfies F, = 0 and hence may lie on the envelope, and will lie on
the envelope if the common point of intersection is remote from singular
points of the curves F(x, y, @)= 0. This idea of an envelope as the
limit of points in which neighboring curves of the family intersect is
valuable. It is sometimes taken as the definition of the envelope. But,
unless imaginary points of intersection are considered, it is an inade-
quate definition; for otherwise y = (x — )® would have no envelope
according to the definition (whereas y = 0 is obviously an envelope) and
a curve could not be regarded as the envelope of its osculating circles.

Care must be used in applying the rule for finding an envelope. Otherwise not
only may extraneous solutions be mistaken for the envelope, but the envelope may
be missed entirely. Consider

y—sinar=0 or a—z-lsin-ly =0, (39)

where the second form is obtained by solution and contains a multiple valued
function. These two families of curves are identical, and it is geometrically clear
that they have an envelope, namely y = + 1. This is precisely what would be
found on applying the rule to the first of (89) ; but if the rule be applied to the
second of (39), it is seen that F, = 1, which does not vanish and hence indicates no
envelope. The whole matter should be examined carefully in the light of implicit
functions.

Hence let F(z, y, a) = 0 be a continuous single valued function of the three
variables (z, y, a) and let its derivatives F, F;, F, exist and be continuous. Con-
sider the behavior of the curves of the family near a point (x,, y,) of the curve for
a = a, provided that (z,, y,) is an ordinary (nonsingular) point of the curve and
that the derivative F(z,, ¥o, a,) does not vanish. As F, # 0 and either F, # 0
or F, # 0 for (z,, ¥y, a,), it is possible to surround (z,, ¥,) With a region so small
that F(z, y, @) = 0 may be solved for a = f(z, ¥) which will be single valued and
differentiable; and the region may further be taken so small that F, or F, remains
different from 0 throughout the region. Then through every point of the region
there is one and only one curve a = f(«, ¥) and the curves have no singular points
within the region. In particular no two curves of the family can be tangent to
each other within the region.



PARTIAL DIFFERENTIATION; IMPLICIT 139

Furthermore, in such a region there is no envelope. For let any curve which

traverses the region be ¢ = ¢ (t), ¥ = ¢ (t). Then
a®) =@, ¥), aO=LfF O+

Along any curve a =f(z, y) the equation f/dz + f,dy = 0 holds, and if z = ¢ (t),
¥ =y (t) be tangent to this curve, dy = dr =y :¢” and a’(f) =0 or a = const.
Hence the only curve which has at each point the direction of the curve of the
family through that point is a curve which coincides throughout with some curve
of the family and is tangent to no other member of the family. Hence there is no
envelope. The result is that an envelope can be present only when F, = 0 or when
F,=F,; =0, and this latter case has been seen to be included in the condition
F,=0. If F(z, y, a) were not single valued but the branches were separable, the
same conclusion would hold. Hence in case F(z, y, «) is not single valued the loci
over which two or more values become inseparable must be added to those over
which F, = 0 in order to insure that all the loci which may be envelopes are taken
into account.

67. The preceding considerations apply with so little change to other
cases of envelopes that the facts will merely be stated without proof.
Consider a family of surfaces F(x, y, 2, @, 8) = 0 depending on two
parameters. The envelope may be defined by the property of tangency
as in § 65; and the conditions for an envelope would be

F(z,y,2,a B)=0, F,=0, Fy=0. - (40)
These three equations may be solved to express the envelope as

= 4’(“, ,B), y= ‘/’(“’ 13)7 z= X(a’ ﬁ)

parametrically in terms of @, 8; or the two parameters may be elimi-
nated and the envelope may be found as ®(x, y, 2) = 0. In any case
extraneous loci may be introduced and the results of the work should
therefore be tested, which generally may be done at sight.

It is also possible to determine the distance from the. tangent plane
of one surface to the neighboring surfaces as

Fldx + F,dy + Fdz _ Fda + Fgdf — dn, (41)
and to define the envelope as the locus of points such that this distance
is of higher order than |da|+ |dB|. The equations (40) would then also
follow. This definition would apply only to ordinary points of the sur-
faces of the family, that is, to points for which not all the derivatives
F;, F,, F; vanish. But as the elimination of , 8 from (40) would give
an equation which included the loci of these singular points, there
would be no danger of losing such loci in the rare instances where they,
too, happened to be tangent to the surfaces of the family.
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The application of implicit functions as in § 66 could also be made in this case
and would show that no envelope could exist in regions where no singular points
occurred and where either F, or Fy failed to vanish. This work could be based
either on the first definition involving tangency directly or on the second definition
which involves tangency indirectly in the statements concerning infinitesimals of
higher order. It may be added that if F(z, y, 2, @, 8) = 0 were not single valued,
the surfaces over which two values of the function become inseparable should be
added as possible envelopes.

A family of surfaces F(z, y, 2, ) = 0 depending on a single param-
eter may have an envelope, and the envelope is found from

F(x,y,2a)=0, F)(x,y,2,a)=0 42)
by the elimination of the single parameter. The details of the deduction
of the rule will be omitted. If two neighboring surfaces intersect, the
limiting position of the curve of intersection lies on the envelope and
the envelope is the surface generated by this curve as a varies. The
surfaces of the family touch the envelope not at a point merely but
along these curves. The curves are called characteristics of the family.
In the case where consecutive surfaces of the family do not intersect
in a real curve it is necessary to fall back on the conception of imagi-
naries or on the definition of an envelope in terms of tangency' or
infinitesimals ; the characteristic curves are still the curves along
which the surfaces of the family are in contact with the envelope and
along which two consecutive surfaces of the family are distant from
each other by an infinitesimal of higher order than da.

A particular case of importance is the envelope of a plane which
depends on one parameter. The equations (42) are then

Ax 4+ By + Cz+ D=0, Az +B'y+ C'24+D'=0, (43)

where A, B, C, D are functions of the parameter and differentiation
with respect to it is denoted by accents. The case where the plane
moves parallel to itself or turns about a line may be excluded as trivial.
As the intersection of two planes is a line, the characteristics of the
system are straight lines, the envelope is a ruled surface, and a plane
tangent to the surface at one point of the lines is tangent to the surface
throughout the whole extent of the line. Cones and cylinders are exam-
ples of this sort of surface. Another example is the surface enveloped
by the osculating planes of a curve in space; for the osculating plane
depends on only one parameter. As the osculating plane (§ 41) may be
regarded as passing through three consecutive points of the curve, two
consecutive osculating planes may be considered as having two consecu-
tive points of the curve in common and hence the characteristics are
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the tangent lines to the curve. Surfaces which are the envelopes of a
plane which depends on a single parameter are called developable surfaces.
A family of curves dependent on two parameters as

F(x, y, 2, @, B) =0, G, ¥, 2 B)=0 (44)
is called a congruence of curves. The curves may have an envelope, that
is, there may be a surface to which the curves are tangent and which
may be regarded as the locus of their points of tangency. The envelope
is obtained by eliminating @, 8 from the equations

F=0, G=0, F,Gg— FgG;=0. (45)
To see this, suppose that the third condition is not fulfilled. The equa-
tions (44) may then be solved as & = f'(z, ¥, #), B8 = g (%, y, #). Reason-
ing like that of § 66 now shows that there cannot possibly be an
envelope in the region for which the solution is valid. It may therefore
be inferred that the only possibilities for an envelope are contained in
the equations (45). As various extraneous loci might be introduced in
the elimination of @, B from (45) and as the solutions should therefore
be tested individually, it is hardly necessary to examine the general
question further. The envelope of a congruence of curves is called the
Jocal surface of the congruence and the points of contact of the curves
with the envelope are called the focal points on the curves.

EXERCISES

1. Find the envelopes of these families of curves. In each case test the answer
or its individual factors and check the results by a sketch :

(@ v=2az+at, (B =a@—a), ()y=ax+k/a,
@) a+a)y=2% (Jy=a@+a)}, -()y¥=a@—a)
2. Find the envelope of the ellipses 2/a? + y2/b% = 1 under the condition that
(@) the sum of the axes is constant or (8) the area is constant.

3. Find the envelope of the circles whose center is on a given parabola and
which pass through the vertex of the parabola.

4. Circles pass through the origin and have their centers on 22 — 2 = ¢2. Find
their envelope. Ans. A lemniscate.

5. Find the envelopes in these cases:
(@)  + zya = sin—lzy, B) ¢+ a=vers~ly + V2y — 13,
M y+a=vi-1/z.
6. Find the envelopes in these cases :
2z
az z =1, R A
(@) +ﬁy+aB (ﬁ) M i

—-+ +——1 th.ha-y k3.
™ 7 B

7. Find the envelopes in Ex. 6 (a), B)ifa=gorif a=—8.

1
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8. Prove that the envelope of F(z, ¥, 2, @) = 0 is tangent to the surface along
the whole characteristic by showing that the normal to F(z, y, z, @) = 0 and to the
eliminant of ¥ = 0, F, = 0 are the same, namely

FJ:F,:F, and F)+ F;aa_‘:;p,;+ F;%‘:F,’+ F,i_‘:
where a(z, ¥, 2) is the function obtained by solving F; = 0. Consider the problem
also from the point of view of infinitesimals and the normal derivative.

9. If there is a curve ¢ = ¢ (a), ¥ = ¥ (a), 2 = x (a) tangent to the curves of
the family defined by F(z, 9, z, @) = 0, G (%, ¥, 2, a) = 0 in space, then that curve
is called the envelope of the family. Show, by the same reasoning as in § 65 for
the case of the plane, that the four conditions F =0, G =0, F, =0, G; = 0 must
be satisfied for an envelope ; and hence infer that ordinarily a family of curves in
space dependent on a single parameter has no envelope.

10. Show that the family F(z, v, 2, @) =0, F,(z, y, 2, a) = 0 of curves which
are the characteristics of a family of surfaces has in general an envelope given by
the three equations F=0, F; =0, F,, = 0.

11. Derive the condition (45) for the envelope of a two-parametered family of
curves from the idea of tangency, as in the case of one parameter.

12. Find the envelope of the. normals to a plane curve y = f(z) and show that
the envelope is the locus of the center of curvature.

13. The locus of Ex. 12 is called the evolute of the curve y = f(z). In these cases
find the evolute as an envelope :
(a) y =22, (B) = = asint, y = bcost, (7) 22y = a?,
(8) y?=2mz, (¢) z=a(fd —sinf), y = a(l — cos¥h), (¢) ¥y = coshz.
14. Given a surface z = f(z, ). Construct the family of normal lines and find
their envelope.

15. If rays of light issuing from a point in a plane are reflected from a curve in
the plane, the angle of reflection being equal to the angle of incidence, the envelope
of the reflected rays is called the caustic of the curve with respect to the point.
Show that the caustic of a circle with respect to a point on its circumference is a
cardioid.

16. The curve which is the envelope of the characteristic lines, that is, of the
rulings, on the developable surface (43) is called the cuspidal edge of the surface.
Show that the equations of this curve may be found parametrically in terms of the
parameter of (43) by solving simultaneously

Az +By+Cz4+D=0,A2+By+C24+D=0,4"24+By+C’24+D"=0
for z, y, z. Consider the exceptional cases of cones and cylinders.

17. The term ** developable *’ signifies that a developable surface may be developed
or mapped on a plane in such a way that lengths of arcs on the surface become equal
lengths in the plane, that is, the map may be made without distortion of size or
shape. In the case of cones or cylinders this map may be made by slitting the cone
or cylinder along an element and rolling it out upon a plane. What is the analytic
statement in this case ? In the case of any developable surface with a cuspidal
edge, the developable surface being the locus of all tangents to the cuspidal edge,
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the length of arc upon the surface may be written as do? = (dt + ds)? + t?ds2/R?,
where s denotes arc measured along the cuspidal edge and ¢ denotes distance along
the tangent line. This form of de? may be obtained geometrically by infinitesimal
analysis or analytically from the equations
z=fE+16), y=9@E)+1E), z=r()+H(E)

of the developable surface of which & = f(8), ¥ = g(8), z = h(s) is the cuspidal edge.
It is thus seen that do? is the same at corresponding points of all developable sur-
faces for which the radius of curvature R of the cuspidal edge is the same function
of 8 without regard to the torsion ; in particular the torsion may be zero and the
developable may reduce to a plane.

18. Let the line £ = az + b, ¥ = cz + d depend on one parameter 8o as to gen-
erate a’'ruled surface. By identifying this form of the line with (43) obtain by
substitution the conditions

Aa+ Bc+C=0, Aa+ Bc+C =0 or Aa’+ B’ =0

Ab+ Bd+ D=0, Ab+Bd+D =0 AY + Bd'=0
as the condition that the line generates a developable surface.

a’c’l_
or [y g]=0

68. More differential geometry. The representation’

F(x,y,2) =0, or z=f(z,y) (46)
or = ¢(u,v), y =y (u, v), z = x(u, v)
of a surface may be taken in the unsolved, the solved, or the parametric
form. The parametric form is equivalent to the solved t:orm provided
u, v be taken as x, y. The notation

_ 0z 0z _ 0% _ 0% _ 0%
p—gx‘y g—-az/'y r—a—xg: 8—5@: t_ﬁ
isadopted for the derivatives of z with respect to « and y. The applica-

tion of Taylor’s Formula to the solved form gives

Az = ph + gk + }(rh® + 2 shk + th*) + - - 47
with 2 = Az, £ = Ay. The linear terms phA -+ ¢k cqQnstitute the differ-
ential dz and represent that part of the increment of 2 which would be
obtained by replacing the surface by its tangent plane. Apart from
infinitesimals of the third order, the distance from the tangent plane up
or down to the surface along a parallel to the z-axis is given by the
quadratic terms } (rA® + 2 shk + t&%).

Hence if the quadratic terms at any point are a positive definite form
(§ 55), the surface lies above its tangent plane and is concave up; but
if the form is negative definite, the surface lies below its tangent plane
and is concave down or convex up. If the form is indefinite but not
singular, the surface lies partly above and partly below its tangent
plane and may be called concavo-convex, that is, it is saddle-shaped. If
the form is singular nothing can be definitely stated. These statements
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are merely generalizations of those of § 55 made for the case where the
tangent plane is parallel to the xy-plane. It will be assumed in the
further work of these articles that at least one of the derivatives r, s, ¢
is not 0. _

To examine more closely the behavior of a surface in the vicinity of
a particular point upon it, let the xy-plane be taken in coincidence with
the tangent plane at the point and let the point be taken as origin.
Then Maclaurin’s Formula is available.

z = }(r2® + 2sxy + ty’) + terms of higher order 48
= } p*(r cos? @ 4 2 s sin 6 cos 6 + ¢ sin® ) + higher terms, (48)

where (p, ) are polar codrdinates in the xy-plane. Then

R (l,A.)2 dp

is the curvature of a normal section of the surface. The sum of the
curvatures in two normal sections which are in perpendicular planes
may be obtained by giving 6 the values 6 and 6 + }#. This sum
reduces to » + ¢ and is therefore independent of 6.

As the sum of the curvatures in two perpendicular normal planes is
constant, the maximum and minimum values of the curvature will be
found in perpendicular planes. These values of the curvature are called
the principul values and their reciprocals are the principal radii of
curvature and the sections in which they lie are the principal sections.
If s = 0, the principal sections are § = 0 and 6 = } 7; and conversely
if the axes of # and y had been chosen in the tangent plane so as to be
tangent to the principal sections, the derivative s would have vanished.
The equation of the surface would then have taken the simple form

, # = §(rz" 4 ty°) + higher terms. (50)
The principal curvatures would be merely » and ¢, and the curvature
in any normal section would have had the form
1 = cos’ § + sin® § = rcos? 6 + ¢ sin? 6.

R~ R R,

7%
1=reos’0+2.«;sin00039+tsin’0=d2—:-[1+<k>] (49)

If the two principal curvatures have opposite signs, that is, if the
signs of » and ¢ in (50) are opposite, the surface is saddle-shaped.
There are then two directions for which the curvature of a normal sec-
tion vanishes, namely the directions of the lines

0=+tan'V—R,/R, or V[r|z=x Vt|y.

These are called the asymptotic directions. Along these directions the
surface departs from its tangent plane by infinitesimals of the third
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order, or higher order. If a curve is drawn on a surface so that at each
point of the curve the tangent to the curve is along one of the asymp-
totic directions, the curve is called an asymptotic curve or line of the
surface. As the surface departs from its tangent plane by infinitesimals
of higher order than the second along an asymptotic line, the tangent
plane to a surface at any point of an asymptotic line must be the oscu-
lating plane of the asymptotic line.

The character of a point upon a surface is indicated by the Dupin
indicatrix of the point. The indicatrix is the conic

—+L =1, cfx=}(+ 1), (1)

which has the principal directions as the directions of its axes and the
square roots of the absolute values of the principal radii of curvature
as the magnitudes of its axes. The conic may be regarded as similar to
the conic in which a plane infinitely near the tangent plane cuts the
surface when infinitesimals of order higher than the second are neg-
lected. In case the surface is concavo-convex the indicatrix is a hyper-
bola and should be considered as either or both of the two conjugate
hyperbolas that would arise from giving z positive or negative values
in (51). The point on the surface is called elliptic, hyperbolic, or
parabolic according as the indicatrix is an ellipse, a hyperbola, or a pair
of lines, as happens when one of the principal curvatures vanishes.
These classes of points correspond to the distinctions definite, indetinite,
and singular applied to the quadratic form »2* + 2 sik + i

Two further results are noteworthy. Any curve drawn on the surface
differs from the section of its osculating plane with the surface by
infinitesimals of higher order than the second. For as the osculating
plane passes through three consecutive points of the curve, its inter-
section with the surface passes through the same three consecutive
points and the two curves have contact of the second order. It follows
that the radius of curvature of any curve on the surface is identical
with that of the curve in which its osculating plane cuts the surface.
The other result is Meusnier’s Theorem : The radius of curvature of an
oblique section of the surface at any point is the projection upon the
plane of that section of the radius of curvature of the normal section
which passes through the same tangent line. In other words, if the
radius of curvature of a normal section is known, that of the oblique
sections through the same tangent line may be obtained by multiplying
it by the cosine of the angle between the plane normal to the surface
and the plane of the oblique section.
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The proof of Meusnier’s Theorem may be given by reference to (48). Let the
z-axis in the tangent plane be taken along the intersection with the oblique plane.
Neglect infinitesimals of higher order than the second. Then

y=9¢@) =}ar?, z2=1(2"+ 280y + ty°) = }ra? (48)

will be the equations of the curve. The plane of the section is az — ry = 0, as may
be seen by inspection. The radius of curvature of the curve in this plane may be
found at once. For if u denote distance in the plane and perpendicular to the
z-axis and if » be the angle between the normal plane and the oblique plane
az—1ry =0,
u=zsecv=ycscyr =}rsecr.-z2 =}acscr-22

The form u = } rsec » - 22 gives the curvature as rsecv. But the curvature in the
normal section is r by (48”). As the curvature in the oblique section is sec » times
that in the normal section, the radius of curvature in the oblique section is cos»
times that of the normal section. Meusnier’s Theorem is thus proved.

69. These investigations with a special choice of axes give geometric proper-
ties of the surface, but do not express those properties in a convenient analytic
form ; for if a surface z = f(z, ¥) is given, the transformation to the special axes
is difficult. The idea of the indicatrix or its similar conic as the section of the
surface by a plane near the tangent plane and parallel to it will, however, deter-
mine the general conditions readily. If in the expansion

Az — dz = } (rh* + 2 shk + tk?) = const. (52)

the quadratic terms be set equal to a constant, the conic obtained is the projection
of the indicatrix on the zy-plane, or if (52) be regarded as a cylinder upon the
zy-plane, the indicatrix (or similar conic) is the intersection of the cylinder with
the tangent plane. As the character of the conic is unchanged by the projection,
the point on the surface is elliptic if s < rt, hyperbolic if s* > rt, and parabolic if
s2 = rt. Moreover if the indicatrix is hyperbolic, its asymptotes must project into the
asymptotes of the conic (52), and hence if dz and dy replace & and k, the equation

rdz? + 2 sdedy + tdy? = 0 (53)

may be regarded as the differential equation of the projection of the asymptotic lines
on the xy-plane. If r, s, t be expressed as functions £, /77, f;, of (z, y) and (53) be
factored, the integration of the two equations M (z, y)dz + N (z, y)dy thus found
will give the finite equations of the projections of the asymptotic lines and, taken
with the equation z = f(z, ), will give the curves on the surface.

To find the lines of curvature is not quite so simple ; for it is necessary to deter-
mine the directions which are the projections of the axes of the indicatrix, and
these are not the axes of the projected conic. Any radius of the indicatrix may
be regarded as the intersection of the tangent plane and a plane perpendicular to
the zy-plane through the radius of the projected conic. Hence

z—zo=p(z—:c0)+q(y_yo), (J:—J'Jo)k=(y—y0)h

are the two planes which intersect in the radius that projects along the direction
determined by A, k. The direction cosines

h:k:ph+ gk
VR + k2 + (ph + gk)?

and h:k:0 (54)
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are therefore those of the radius in the indicatrix and of its projection and they
determine the cosine of - the angle ¢ between the radius and its projection. The
square of the radius in (52) is .

h? + k2, and (h? + k?)sec?¢ = h? + k2 + (ph + gk)?
is therefore the square of the corresponding radius in the indicatrix. To deter-

mine the axes of the indicatrix, this radius is to be made a maximum or minimum
subject to (52). With a multiplier A, ’

h + ph 4 gk + N(rh 4 8k) =0, k+ph+qgk+N@Sh+tk)=0
are the conditions required, and the elimination of \ gives
R2[3(1+ p?) — pgr] + Rk [t (1 + p%) — (1 + ¢9)] — K2[t(1 + ¢¥) — pgt] = 0
as the equation that determines the projection of the axes. Or

(1 + p?)dzx + pgdy _ pgdz + (1 + ¢%)dy
rdz+sdy  sdz 4+ tdy
18 the differential equation of the projected lines of curvature.
In addition to the asymptotic lines and lines of curvature the geodesic or shortest
lines on the surface are important. These, however, are better left for the methods
of the calculus of variations (§ 1569). The attention may therefore be turned to
finding the value of the radius of curvature in any normal section of the surface.
A reference to (48) and (49) shows that the curvature is

1 _ 2z rh*+ 2shk + tk* _ rh® + 2shk + th?

R P2 - Pi! - h2 + k2
in the special case. But in the general case the normal distance to the surface is
(Az — dz) cos v, with sec ¥ = V1 + p? + ¢2, instead of the 2z of the special case, and
the radius p? of the special case becomes p?sec2¢ = h% + k2 + (ph + gk)? in the
tangent plane. Hence

1 2(Az—dz)cosy _ rB 4+ 2s8lm 4 tm?

R A2 + k% 4 (ph + gk)? \/1+p2+q2
where the direction cosines {, m of a radius in the tangent plane have been intro-
duced from (54), is the general expression for the curvature of a normal section.
The form

(55)

(56)

1_ rh2 + 2 shk + tk? 1
B™ R+ +(ph+qk)* Vit p? + ¢
where the direction %, k of the projected radius remains, is frequently more con-

venient than (56) which contains the direction cosines I, m of the original direction
in the tangent plane. Meusnier's Theorem may now be written in the form

cosv ri2 4 2slm + tm?
e —

B Virp+d
where » is the angle between an oblique section and the tangent plane and where
1, m are the direction cosines of the intersection of the planes.

The work here given has depended for its relative simplicity of statement upon
the assumption of the surface (46) in solved form. It is merely a problem in
implicit partial differentiation to pass from p, g, r, 8, t to their equivalents in terms
of F,, F,, F, or the derivatives of ¢, ¥, x by «, 8.

(569

(57)
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EXERCISES

1. In (49) show % T + ! —+ ———t cos26 + 8sin20 and find the directions of

maximum and minimum R If B, and R, are the maximum and minimum values
of R, show

11
4 = t d —— =1t~ s
R +R r+ an Rle 8

Half of the sum of the curvatures is called the mean curvature; the product of the
curvatures is called the total curvature.

2. Find the mean curvature, the total curvature, and therefrom (by construct-
ing and solving a quadratic equation) the principal radii of curvature at the origin :

(@) z=2y, @B z=2+zy+1% (1) 2=2z@+).
3. In the surfaces (a) z =zy and (8) z = 222 + y2 find at (0, 0) the radius of
curvature in the sections made by the planes
(@) z+y =0, B z+y+2z=0, M z+y+22=0,
(d) z—2y =0, () z—2y+2=0, (z+2y+42=0.
The oblique sections are to be treated by applying Meusnier’s Theorem.
4. Find the asymptotic directions at (0, 0) in Exs. 2 and 8.

5. Show that a developable surface is everywhere parabolic, that is, that 7t — 82 =0
at every point ; and conversely. To do this consider the surface as the envelope of
its tangent plane z — px — q.¥ = 2, — Doy — Yo¥or Where Dy, qo, Zo, Yoy 2, are func-
tions of a single parameter a. Hence show

J(pm %) =0=(rt—s), and J(Poa 29 — P — ‘10710) = (82 — 1t)q.
Zor Yo Zg+ Yo
The first result proves the statement ; the second, its converse.

6. Find the differential equations of the asymptotic lines and lines of curvature
on these surfaces :

(@) z =uzy, (B) z = tan—1(y/x), (v) 22 4+ y% = coshz, ) zyz=1.
7. Show that the mean curvature and total curvature are

1(_1__*__) r(l+q2)+t(l+p‘*‘)—2pqs 1 _ n—s
2\R, R, 2(1+p2 + g3t BB, (1+20+ )

8. Find the principal radii of curvature at (1, 1) in Ex. 6.

9. An umbilic is a point of a surface at which the principal radii of curvature
(and hence all radii of curvature for normal sections) are equal. Show that the

conditions are —~ 2 ¢ for an umbilic, and determine the umbilics of

1+7 2 1+¢
the ellipsoid with semiaxes a, b, c.




CHAPTER VI ‘
COMPLEX NUMBERS AND VECTORS

70. Operators and operations. If an entity u is changed into an
entity » by some law, the change may be regarded as an operation per-
formed upon u, the operand, to convert it into v; and if f be introduced
as the symbol of the operation, the result may be written as v = fu.
For brevity the symbol f is often called an operator. Various sorts
of operand, operator, and result are familiar. Thus if « is a positive
number #, the application of the operator +/ gives the square root ; if «
represents a range of values of a variable z, the expression f(z) or fr
denotes a function of x; if » be a function of z, the operation of dif-
ferentiation may be symbolized by I and the result Du is the deriva-

tive; the symbol of definite integration f (*)dx converts a function

« () into a number; and so on in great variety.

The reason for making a short study of operators is that a consider-
able number of the concepts and rules of arithmetic and algebra may
be so defined for operators themselves as to lead to a caleulus of opera-
tions which is of frequent use in mathematics ; the single application to
the integration of certain differential equations (§ 95) is in itself highly
valuable. The fundamental concept is that of a product: If w is oper-
ated upon by f to give fu=v and if v is operated upon by g to give gv = w,

so that SJu=nv, gv = gfu = w, gﬁ(, = w, (1)

then the operation indicated as gf which converts w directly into w i3
called the product of f by g. If the functional symbols sin and log be
regarded as operators, the symbol log sin could be regarded as the
product. The transformations of turning the xy-plane over on the
xz-axis, so that ' =a, y' = — y, and over the y-axis, so that »' = — xz,
y' =y, may be regarded as operations ; the combination of these opera-
tions gives the transformation ' = — x, y' = — g, which is equivalent
to rotating the plane through 180° about the origin.

The products of arithmetic and algebra satisfy the commutative law
gf = fy, that is, the products of g by fand of f by g are equal. This
is not true of operators in general, as may be seen from the fact that

149
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log sin x and sin log « are different. Whenever the order of the factors
is immaterial, as in the case of the transformations just considered, the
operators are said to be commutative. Another law of arithmetic and
algebra is that when there are three or more factors in a product, the
factors may be grouped at pleasure without altering the result, that is,

h(gf) = (hg)f = hyf. @
This is known as the associative law and operators which obey it are
called associative. Only associative operators are considered in the
work here given.
For the repetition of an operator several times

ff"_‘fg, fff’:fa: S = ®3)
the usual notation of powers is used. The law of indices clearly holds ;
for f™+* means that f is applied m + » times successively, whereas
J™f™ means that it is applied » times and then m times more. Not
applying the operator f at all would naturally be denoted by f?, so that
S« = u and the operator f° would be equivalent to multiplication by 1;
the notation f° =1 is adopted.
" If for a given operation f there can be found an operation g such
that the product fy = f° =1 is equivalent to no operation, then g is
called the ¢nverse of f and notations such as

fr1=1, 9= f‘l—?’ ff“=f7—1 ©)

are regularly borrowed from arithmetic and algebra. Thus the inverse
of the square is the square root, the inverse of sin is sin~’, the inverse

of the logarithm is the exponential, the inverse of Dis |. Some oper-

ations have no inverse; multiplication by 0 is a case, and so is the
square when applied to a negative number if only real numbers are
considered. Other operations have more than one inverse; integra-
tion, the inverse of D, involves an arbitrary additive constant, and the
inverse sine is a multiple valued function. It is therefore not always
true that £~'f =1, but it is customary to mean by f~! that particular
inverse of f for which f~'f = ff~'=1. Higher negative powers are
defined by the equation f~—*= (f~")" and it readily follows that
Sf~"=1, as may be seen by the example

PP = F S = = g =
The law of indices f™f" = f™*" also holds for negative indices, except

in so far as f~'f may not be equal to 1 and may be requn'ed in the
reduction of f™f™ to f™+n
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If w, v, and » + v are operands for the operator f and if
S(u +v) = fu+fo, ®)

so that the operator applied to the sum gives the same result as the
sum of the results of operating on each operand, then the operator
S is called linear or distributive. If f denotes a function such that
f(x + y)=f(x) + f(»), it has been seen (Ex. 9, p. 45) that f must be
equivalent to multiplication by a constant and fr = Cz. For 'a less
specialized interpretation this is not so; for

D(u+ v)=Du+ Dv and f(u+v)=fu+fv

are two of the fundamental formulas of calculus and show operators
which are distributive and not equivalent to multiplication by a constant.
Nevertheless it does follow by the same reasoning as used before (Ex. 9,
p- 45), that fnu = nfu if f is distributive and if » is a rational number.

Some operators have also the property of addition. Suppose that u
is an operand and f, g are operators such that fu and gu are things that
may be added together as fu + gu, then the sum of the operators, £+ g,
is defined by the equation (f+ g)u = fu + gu. If furthermore the
operators f, g, h are distributive, then

h(f+g9)=nf+Lg and (f+g)h=/rh+ gh, (6
and the multiplication of the operators becomes itself distributive. To
prove this fact, it is merely necessary to consider that

LL(F + 9)u] = h(fu+ gu) = hfi + hu
and (f + 9) (hu) = fhu + ghu.

Operators which are associative, commutative, distributive, and which
admit addition may be treated algebraically, in so far as polynomials are
concerned, by the ordinary algorisms of algebra ; for it is by means
of the associative, commutative, and distributive laws, and the law of
indices that ordinary algebraic polynomials are rearranged, multiplied
out, and factored. Now the operations of multiplication by constants
and of differentiation or partial differentiation as applied to a function
of one or more variables z, ¥, #, - -- do satisfy these laws. For instance

¢(Du) = D(cw), D,Dju=D,Du, (D, + D)Du=DDu+DDu. (7)
Hence, for example, if y be a function of x, the expression

. Dn]/+”1Dn-1y+'”+”n—l])!/+”u.7/7 )
where the coefficients « are constants, may be written as
DO +a D4 a,_ D+ a)y )
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and may then be factored into the form
[(P—a)(D—a)---(D—a,_)(D = a)]y, (89

where a,, a,, - - -, @, are the roots of the algebraic polynomial
2+ ag” 4,y + a,=0.

EXERCISES

1. Show that (fgh)~! = h=1g—1f-1, that is, that the reciprocal of a product of
operations is the product of the reciprocals in inverse order.

2. By deﬁnitiop the operator gfg—! is called the transform of f by g. Show
that (a) the transform of a product is the product of the transforms of the factors
taken in the same order, and (8) the transform of the inverse is the inverse of the
transform.

3. If s # 1 but s2 = 1, the operator s is by definition said to be involutory. Show
that (@) an involutory operator is equal to its own inverse ; and conversely B) if
an operator and its inverse are equal, the operator is involutory ; and (v) if the
product of two involutory operators is commutative, the product is itself involu-
tory ; and conversely (8) if the product of two involutory operators is involutory,
the operators are commutative.

4. If f and g are both distributive, so are the products fy and gf.
5. If fis distributive and n rational, show fnu = nfu.

6. Expand the following operators first by ordinary formal multiplication and
second by applying the operators successively as indicated, and show the results
are identical by translating both into familiar forms.

az d
(@) (D= 1)(D—2y, Ans. L3 12y,

(& @-1)DD+ly, () DD-2D+ DD+
7. Show that (D — a) [ear f e M‘de] = X, where X is a function of z, and
hence infer that ee f e~ 4x(x)dz is the inverse of the operator (D — a) (x).
8. Show that D(ea*y) = eax(D + a)y and hence generalize to show that if
P (D) denote any polynomial in D with constant coefficients, then
P (D) - exry = ¢P(D + a)y.
Apply this to the following and check the results.
(a) (D*—38D + 2)e27y = e2=(D2 + D)y = e‘"(% + Z—Z),
(8) (*—8D—2)ey, (v) (D*—3D+2)ey.
9. If y is a function of z and z = et show that
D,y = e~tDy, D¥y = e-2tD,(D,— 1)y, - - -, D’y = e=2tD(Dy—1)-- - (D —p + 1) 7.

10. Is the expression (hD, + kD,)», which occurs in Taylor’s Formula (§ 54),
the nth power of the operator hD; 4+ kD, or is it merely a conventional symbol ?
The same question relative to (xD, + yD,)* occurring in Euler’s Formula (§ 53) ?
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71. Complex numbers. In the formal solution of the equation
ax® + bx 4 ¢ = 0, where §* < 4 ac, numbers of the form m +n V—1,
where m and n are real, arise. Such numbers are called compler or
itmaginary ; the part m is called the real part and n V=1 the pure
imaginary part of the number. It is customary to write V=1=iand
to treat ¢ as a literal quantity subject to the relation ¢* = —1. The defini-
tions for the equality, addition, and multiplication of complex num-

bers are a+bi=c+di ifandonly if a=e¢ b=d,

[e+bi]+[c+di]=(+e)+ (@ +d)| ()
[a + bi][c + di] = (ac — bd) + (ad + be) i.

It readily follows that the commutative, associative, and distributive
laws hold in the domain of complex numbers, namely,

a+B=B+a @+B+y=a+(B+y),
af = Ba, (2B) y = @ (By), (10)
a(B+v) =aB +ay, ('1.+/3)7=a7+3*/,

where Greek letters have been used to denote complex numbers.
Division is accomplished by the method of rationalization.
a+bi_atbic—di _ (ac+bd)+ (be —ald)i 1
c+di c+dic—di A+ & an

This is always possible except when ¢ + &* = 0, that is, when both ¢
and d are 0. A complex number is defined as 0 when and only when
its real and pure imaginary parts are both zero. With this definition 0
has the ordinary properties that @ + 0 = @ and @0 = 0 and that «/0 is
impossible. Furthermore if « product af vanishes, either & or B vanishes.

For suppose -
[a 4+ bi] [c + di] = (ac — bd) + (ad 4 bc) i = 0.
Then ac—bd=0 and ad+bc=0, 12)

from which it follows that either « =6 =0 or e =d = 0. From the
fact that a product cannot vanish unless one of its factors vanishes
follow the ordinary laws of cancellation. In brief, «ll the elementary
laws of real algebra hold also for the algebra of complex nwmbers.

By assuming a set of Cartesian codrdinates in the xy-plane and asso-
ciating the number « + i to the point (a, b), a graphical representation
is obtained which is the counterpart of the number scale for real num-
bers. The point («, 0) alone or the directed line from the origin to the
point (@, ) may be considered as representing the number « + bi.
If oP and 0Q are two directed lines representing the two numbers
« 4+ bi and ¢ + di, a reference to the figure shows that the line which
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represents the sum of the numbers is OR, the diagonal of the parallelo-
gram of which OP and 0Q are sides. Thus the geometric law for adding
complex numbers is the same as the law for compounding forces and is
known as the parallelogram law. A segment AB of a line possesses
magnitude, the length 4B, and direction, the
direction of the line AB from 4 to B. 4
quantity which has magnitude and direction is
called a vector; and the parallelogram law is
called the law of vector addition. Complex num- g
bers may therefore be regarded as vectors.

From the figure it also appears that 0Q and PR have the same mag-
nitude and direction, so that as vectors they are equal although they
start from different points. As OP + PR will be regarded as equal to
OP + 0Q, the definition of addition may be given as the triangle law
instead of as the parallelogram law ; namely, from the terminal énd P
of the first vector lay off the second vector PR and close the triangle
by joining the initial end O of the first vector to the terminal end R of
the second. The absolute value of a complex number a + ¢ is the
magnitude of its vector OP and is equal to Va? + &% the square root ‘of
the sum of the squares of its real part and of the coefficient of its pure
imaginary part. The absolute value is denoted by |a + b¢|as in the case
of reals. If @ and 8 are two complex numbers, the rule |a|+|8| = |« + 8|
is a consequence of the fact that one side of a triangle is less than the
sum of the other two. If the absolute value is given and the initial end
of the vector is fixed, the terminal end is thereby constrained to lie
upon a circle concentric with the initial end.

72. When the complex nrumbers are laid off from the origin, polar
coordinates may be used in place of Cartesian. Then

. EBlareprad

r=Va+1, ¢=tan"%/a* a=rcos¢, b=rsing
and a 4 i = r(cos ¢ + isin ¢).
The absolute value r is often called the modulus or magmtude of the
complex number; the angle ¢ is called the angle or argument of the
number and suffers a certain indetermination in that 2 nmr, where n is
a positive or negative integer, may be added to ¢ without affecting the
number. This polar representation is particularly useful in discussing
products and quotients. For if

ax=r (cos ¢, + isin ¢,), = r,(cos ¢, + isin ¢,),
then = rp,[cos (¢, + ¢,) + isin (¢, + ¢)],

* As both cos ¢ and sin ¢ are known, the quadrant of this angle is determined.

- (@3)

(14)
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as may be seen by multiplication according to the rule. Hence the
magnitude of a product is the product of the magnitudes of the factors,
and the angle of a product is the sum of the angles of the factors; the
general rule being proved by induction.

The interpretation of multiplication by a complex number as an oper-
ation is illuminating. Let 8 be the multiplicand and « the multiplier.
As the product eB has a magnitude equal to the product of the magni-
tudes and an angle equal to the sum of the angles, the factor a used as
a multiplier may be interpreted as effecting the rotation of 8 through
the angle of @ and the stretching of B8 in the ratio ||:1. From the
geometric viewpoint, therefore, multiplication by a complex number is
an operation of rotation and stretching in the plane. In the case of
@ = cos ¢ + ¢sin ¢ with » =1, the operation is only of rotation and
hence the factor cos ¢ + ¢sin ¢ is often called a cyclic factor or versor.
In particular the number ¢ = V—1 will effect a rotation through 90°
when used as a multiplier and is known as a quadrantal versor. The
series of powers ¢, = —1, @ = — 4, i* =1 give rotations through 90°,
180° 270° 360°. This fact is often given as the reason for laying off
pure imaginary numbers & along an axis at right angles to the axis
of reals.

As a particular product, the nth power of a complex number is

a" = (a + )" =[r(cos ¢ + isin ¢)]* = r*(cos ne + isinne); (15)
and (cos ¢ + isin ¢)* = cos ne + i sin ne, 15"

which is a special case, is known as De Moivre’s Theorem and is of use
in evaluating the functions of n¢; for the binomial theorem may be
applied and the real and imaginary parts of the expansion may be
equated to cos n¢ and sin n¢. Hence

08 . = COS"p — ﬂ”2;112 cos™~ ¢ sin’p

+ n(n—1) (7"4_' 2)(n—3) cos™~4¢ sin‘p — - - - (16)
sin n¢ = n cos® !¢ sin ¢ — M_;M cos™ 3¢ sin’p + - - ..

As the nth root Va of @ must be a number which when raised to the
nth power gives @, the nth root may be written as

Va = /r(cos $/n + isin ¢ /n). @n
The angle ¢, however, may have any of the set of values
4’7 ¢+27T, ¢+471’, Tty ¢+2(n_1)‘"‘)
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and the nth parts of these give the n different angles

.‘?, 15+2_'n', £+é§, %_,_ﬂ”_;lﬁ (18)

n n n n ’

Hence there may be found just n different nth roots of any given com-
plex number (including, of course, the reals).

The roots of unity deserve mention. The equation z» = 1 has in the real domain
one or two roots according as n is odd or even. But if 1 be regarded as a complex
number of which the pure imaginary part is zero, it may be represented by a point
at a unit distance from the origin upon the axis of reals; the magnitude of 1is 1
and the angle of 1is 0, 27, ..., 2(n — 1)7. The nth roots of 1 will therefore have
the magnitude 1 and one of the angles 0, 27 /n, ---, 2(n — 1)w/n. The n nth roots
are therefore

27 .. 27 47 . . 47w
1, a=cos7+1,sm7, a2=cos—+zsm7, sy

2(n; yw isin2(n ym

ar—1= cos
and may be evaluated with a table of natural functions. Now &» — 1 =0 is factor-
able as (x — 1)(@" -1+ a»—2+ ... 4+ & + 1) = 0, and it therefore follows that the
nth roots other than 1 must all satisfy the equation formed by setting the second
factor equal to 0. As «a in particular satisfies this equation and the other roots are
a2, ..., an—1, it follows that the sum of the n nth roots of unity is zero.

EXERCISES
1. Prove the distributive law of multiplication for complex numbers.

2. By definition the pair of imaginaries a 4 bi and a — bi are called conjugate
imaginaries. Prove that (a) the sum and the product of two conjugate imaginaries
are real ; and conversely (g8) if the sum and the product of two imaginaries are both
real, the imaginaries are conjugate.

3. Show that if P(z, y) is a symmetric polynomial in # and y with real coeffi-
cients so that P(x, y) = P(y, ), then if conjugate imaginaries be substituted for &
and y, the value of the polynomial will be real.

4. Show that if a + bi is a root of an algebraic equation P(z) =0 with real
coefficients, then a — bi is also a root of the equation.

5. Carry out the indicated operations algebraically and make a graphical repre-
sentation for every number concerned and for the answer :

(@ 1+9% ) Q+V8)(1-9), () B+V-2)(4+V-0),

1+ 14iv8 5
O YOI O BoivE
— Q)2 1 1 —1+\/—_3>8
(m (1 T O metoe © (——2 -

6. Plot and find the modulus and angle in the following cases:

(@ —2, (B —2V=1, (3)8+4i, ()31—3V=-3.
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7. Show that the modulus of a quotient of two numbers is the quotient of the moduli
and that the angle is the angle of the numerator less that of the denominator.
8. Carry out the indicated operations trigonometrically and plot:
(@) The examples of Ex. 5, ® Vi+ivVi—i, (v V=2+2V3i
@) (Viti+Vi-iy, () VV2+V=2, (1) V2+2V3i
(n) V16(cos200° + isin200°,  (6) V—1, () VBi.

9. Find the equations of analytic geometry which represent the transforma-
tion equivalent to multiplication by ¢ = — 1+ vV —38.

10. Show that |z — a|=r, where z is a variable and « a fixed complex number,
is the equation of the circle (z — a)? 4 (y — b)2 = 2.

11. Find cos 6z and cos8z in terms of cosz, and sin 8z and sin 7z in terms of
sinz.

12. Obtain to four decimal places the five roots V1.

13. If z=z + iy and 2’ =2’ + iy, show that 2’ = (cos ¢ — ising)z— a is the
formula for shifting the axes through the vector distance « = a + i to the new
origin (a, b) and turning them through the angle ¢. Deduce the ordinary equa-
tions of transformation.

14. Show that [z — a|= k|z — 8], where k is real, is the equation of a circle;
specify the position of the circle carefully. Use the theorem : The locus of points
whose distances to two fixed points are in a constant ratio is a circle the diameter
of which is divided internally and externally in the same ratio by the fixed points.

15. The transformation z’ = :%: » where a, b, ¢, d are complex and ad — bc # 0,
z

is called the general linear transformation of z into z’. Show that
ca +d
g +d
Hence infer that the transformation carries circles into circles, and points which

divide a diameter internally and externally in the same ratio into points which
divide some diameter of the new circle similarly, but generally with a different ratio.

| —a’|=k|z—B'| becomes [z— a|=k

-|lz=B|.

73. Functions of a complex variable. Let z = + iy be a complex
variable representable geometrically as a variable point in the ay-plane,
which may be called the complex plane. As z determines the two real
numbers « and y, any function F(x, y) which is the sum of two single
valued real functions in the form

F(z, y) = X (x, y) + iY (x, y) = R(cos ® + i sin P) 19
will be completely determined in value if 2 is given. Such a function
is called a complex function (and not a function of the complex variable,
for reasons that will appear later). The magnitude and angle of the
function are determined by

R=VET P, cos@=1,sine=7. (20)
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The function F is continuous by definition when and only when both
X and Y are continuous functions of (x, y); R is then continuous in
(z, y) and F can vanish only when R = 0; the angle ® regarded as a
function of (x, ») is also continuous and determinate (except for the
additive 2 n7r) unless R = 0, in which case X and Y also vanish and the
expression for ® involves an indeterminate form in two variables and
is generally neither determinate nor continuous (§ 44).

If the derivative of F with respect to z were sought for the value
z = a + ib, the procedure would be entirely analogous to that in the
case of a real function of a real variable. The increment Az = Az + Ay
would be assumed for z and AF would be computed and the quotient
AF/Az would be formed. Thus by the Theorem of the Mean (§ 46),

AF _ AX 4iAY _ (X, +i¥)Ax 4 (X, 4 i¥)) Ay
Az Az +iAy Ax + Ay

+4 @)

where the derivatives are formed for (a, 0) and where ¢ is an infinitesi-
mal complex number. When Az approaches 0, both Ax and Ay must
approach 0 without any implied relation between them. In general the
limit of AF/Az is a double limit (§ 44) and may therefore depend on
the way in which Az and Ay approach their limit 0.

Now if first Ay = 0 and then subsequently Az = 0, the value of the
limit of AF/Az is X + ¢Y taken at the point (@, ); whereas if first
Az = 0 and then Ay =0, the value is — iX; + ¥,;. Hence if the limit
of AF/Az is to be independent of the way in which Az approaches 0, it
is surely necessary that

6X , 0¥ 09X oY
wt'm oyt
0X oY X oYy
or —3;‘.—_3;/— and ay——%' (22)

And conversely if these relations are satisfied, then

AF 0X .,0Y oY . 0X

(i) =5 -5) e

and the limit is X/ + ¢¥, = Y, — X, taken at the point (e, b), and is
independent of the way in which Az approaches zero. The desirability
of having at least the ordinary functions differentiable suggests the
definition: A complex function F(z, y) = X (x, y) + i¥(x, y) is con-
sidered as a function of the complex variable z = x 4 ity when and only
when X and Y are in general differentiable and satisfy the relations (22).
In this case the derivative is
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dF _0X _.0Y _9Y .9X

1)y = ¢85 22 e SR i
PO =~ %" '

(23)

These conditions may also be expressed in polar coérdinates (Ex. 2).

A few words about the function & (x, y). This is a multiple valued function of
the variables (z, ¥), and the difference between two neighboring branches is the con-
stant 2. The application of the discussion of § 45 to this case shows at once that,
in any simply connected region of the complex plane which contains no point (a, b)
such that R (a, b) = 0, the different branches of & (z, y) may be entirely separated
so that the value of & must return to its initial value when any closed curve is de-
scribed by the point (z, ). If, however, the region is multiply connected or contains
points for which R = 0 (which makes the region multiply connected because these
points must be cut out), it may happen that there will be circuits for which &,
although changing continuously, will not return to its initial value.. Indeed if it can
be shown that & does not return to its initial value when changing continuously as
(x, ¥) describes the boundary of a region simply connected except for the excised
points, it may be inferred that there must be points in the region for which R = 0.

An application of these results may be made to give a very simple demonstration
of the fundamental theorem of algebra that every equation of the nth degree has at least

one root. Consider the function w

- . =1
FO=2+am 4+ taz+ =X 1) +i¥@y), = 2 %5/ dp

where X and Y are found by writing z as z 4+ iy and expanding and rearrangigg. '
The functions X and Y will be polynomials in (z, ) and will therefore be every-
where finite and continuous in (z, ). Consider the angle ® of F. Then

@:ang.ofF=ang.ofz"(l+a;‘+---+::—‘11+a—:)=ang.ofzu+a,ng.of(1+---).
- Z .

Next draw about the origin a circle of radius r so large that

4
z

An -1
zn—1

L
"

=&|+ +|_a"‘1|+|a;"l<e'

o+
r m-1 ™

+

Then for all points z upon the circumference the angle of F is
$ = ang. of F = n(ang. of 2) + ang. of (1 + 1), [n])<e.

Now let the point (z, ) describe the circumference. The angle of z will change by
2 7 for the complete circuit. Hence ¢ must change by 2 nw and does not return to
its initial value. Hence there is within the circle at least one point (a, b) for which
R (a, b) = 0 and consequently for which X (a, b) = 0 and Y (a, b) = 0 and F(a, b)=0.
Thus if @ =a + b, then F(a) =0 and the equation F(z) = 0 is seen to have at
least the one root a. It followsthatz — « is a factor of F(2) ; and hence by induc-
tion it may be seen that F(z).= 0 has just n roots.

74. The discussion of the algebra of complex numbers showed how
the sum, difference, product, quotient, real powers, and real roots of
such numbers could be found, and hence made it possible to compute
the value of any given algebraic expression or function of z for a given
value of 2. It remains to show that any algebraic expression in z is
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really a function of z in the sense that it has a derivative with respect
to 2, and to find the derivative. ‘Now the differentiation of an algebraic
function of the variable « was made to depend upon the formulas of dif-
ferentiation, (6) and (7) of § 2. A glance at the methods of derivation
of these formulas shows that they were proved by ordinary algebraic
manipulations such as have been seen to be equally possible with imagi-
naries as with reals. It therefore may be concluded that an algebraic
expression in z has a derivative with respect to z and that derivative
may be found just as if z were a real variable.

The case of the elementary functions e, log 2, sinz, cosz, --- other
than algebraic is different; for these functions have not been defined
for complex variables. Now in seeking to define these functions when
is complex, an effort should be made to define in such a way that: 1°
when z is real, the new and the old definitions become identical ; and
2° the rules of operation with the function shall be as nearly as possi-
ble the same for the complex domain as for the real. Thus it would be
desirable that De* = ¢ and e*** = ¢%¢¥, when 2 and w are complex.
With these ideas in mind one may proceed to define the elementary
functions for complex arguments. Let

¢ = R (x, y)[cos ®(z, y) + isin @ (x, y)]. 24)
The derivative of this function is, by the first rule of (23),

0 , 0 .
De* = a—w(Rcos@) +ig (R sin ®)
= (R,cos® — Rsin®-®,)+ ¢ (R;sin ® + R cos - ),

and if this is to be identical with e above, the equations

R, cos ® — RP,sin® = R cos & or R,=R

R;sin ® + R®,cos ® = Rsin & ;=0
must hold, where the second pair is obtained by solving the first. If
the second form of the derivative in (23) had been used, the results
would have been R, =0, & =1. It therefore appears that if the
derivative of ¢%, however computed, is to be ¢?, then

R,=R, R;=0, /=0, &/ =1
are four conditions imposed upon R and ®. These conditions will be
satisfied if R = ¢ and ® = y.* Hence define
ef = "t = ¢"(cos y + ¢ sin y). (25)

* The use of the more general solutions R = Ge*, ® = y + C would lead to expressions
which would not reduce to e when y = 0 and z = x or would not satisfy ez +® = ezew.
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With this definition De* is surely ¢, and it is readily shown that the
exponential law ¢*+¥ = ¢%¢” holds.
For the special values } 7ri, 7i, 2 i of 2z the value of ¢* is

Am=i ei=—1 =1
Hence it appears that if 2 n7ri be added to 2, ¢* is unchanged ;
e+ = ¢z period 2. (26)

Thus in the complex domain e has the period 2 i, just as cos = and
sin = have the real period 2. This relation is inherent; for

e =cos y+ isiny, e ¥ =cosy— isiny,
eV 4 eV . ey — eV .
and cosy=—(p > siny=—p—- 27
The trigonometric functions of a real variable y may be expressed in
terms of the exponentials of yi and — yi. As the exponential has been
defined for all complex values of 2, it is natural to use (27) to define
the trigonometric functions for complex values as
e et s — e
cosz=—2—; sSinz = —éi—. (27')
With these definitions the ordinary formulas for cos (2 + w), Dsinz, - ..
may be obtained and be seen to hold for complex arguments, just as the
corresponding formulas were derived for the hyperbolic functions (§ 5).
As in the case of reals, the logarithm log # will be defined for com-
plex numbers as the inverse of the exponential. Thus

if e =w, then logw =z+ 2nmi, (28)

where the periodicity of the function e* shows that the logarithm is not
uniquely determined but admits the addition of 2nri to any one of its
values, just as tan—!x admits the addition of nw. If w is written as a
complex number « + ‘v with modulus » = V&2 4+ +* and with the angle
¢, it follows that

w=1u+4 1 =1r(co8 ¢ + ¢sin ¢) = re¥ = s+, (29)
and log w = log r + ¢i = log Vu? + v* 4 ¢ tan™ (v/u)

is the expression for the logarithm of w in terms of the modulus and
angle of w; the 2 nmi may be added if desired.

To this point the expression of a power «? where the exponent 4 is
imaginary, has had no definition. The definition may now be given in
terms of exponentials and logarithms. Let

@ = ¢?6¢  or log a® = blog a.
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In this way the problem of computing a® is reduced to one already
solved. From the very definition it is seen that the logarithm of a
power is the product of the exponent by the logarithm of the base, as
in the case of reals. To indicate the path that has been followed in
defining functions, a sort of family tree may be made.

real numbers, real angles, z
real powers and real trigonometric functions,
roots of reals, z» cosz, sinx, tan—1z, ...
1 I '
exponentials, logarithms real powers and roots

of reals, ez, logz of imaginaries, 2»
[

LT
exponentials of imaginaries, ez

logarithms of imaginaries, logz . trigonometric functions
. 3 | of imaginaries
imaginary powers, z*

EXERCISES

1. Show that the following complex functions satisfy the conditions (22) and
are therefore functions of the complex variable z. Find F’(z):

(@) 22— y? + 2izy, (B) 2 —3(zy? + 2% — 9%) + i(B 2% — y® — Bay),
z .Y 1Y

(-y)m—zm, (8) log Va? + y2 + itan 15,

(€) e*cosy + iezsiny, (¢) sinzsinhy + icosx coshy.

2. Show that in polar codrdinates the conditions for the existence of F’(z) are
eX = lz, oY =_12x with F’(z) = <£ + ig)(cow — isin ¢).
cr r 0 or r 0 cr or .
3. Use the conditions of Ex. 2 to show from Dlogz = z—1 that logz = log r + ¢i.
4. From the definitions given above prove the formulas

(a) sin(z + ty) = sinx coshy + icoszsinhy,
(B) cos(x + iy) = cosx coshy — isinzsinhy,

. sin2z 4 isinh2y
tan (z =
™ @+ cos2x 4+ cosh2y

5. Find to three decimals the complex numbers which express the values of :
(a) e, ® ¢ () AV ® 1=,
(€) sin} i, (¢) cosi, (n) sin(3 + }\/--—3), (6) tan(—1—i),
(¢) log(=1), () logi, (%) log(}+3V=38), (i) log(—1—4).

6. Owing to the fact that log a is multiple valued, ab is multiple valued in such
a manner that any one value may be multiplied by e2»7, Find one value of each
of the following and several values of one of them:

: i 8, ’
@2 @#n @V 03 (Grivoer
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7. Show that Dat = atloga when a and z are complex.

8. Show that (a®)c = ab<; and fill in such other steps as may be suggested by
the work in the text, which for the most part has merely been sketched in a broad
way.

9. Show that if f(z) and g(z) are two functions of a complex variable, then
f(2) £ 9(2), af(z) with @ a complex constant, f(z)g(z), f(z)/g(z) are also func-
tions of z.

10. Obtain logarithmic expressions for the inverse trigonometric functions.
Find sin—1i.

75. Vector sums and products. As stated in § 71, a vector is a quan-
tity whieh has magnitude and direction. If the magnitudes of two
vectors are equal and the directions of the two vectors are the same,
the vectors are said to be equal irrespective of the
position which they occupy in space. The vector
— @ is by definition a vector which has the same
magnitude as @ but the opposite direction. The
vector mea is a vector which has the same direction
as a (or the opposite) and is m (or — m) times as
long. The law of vector or geometric addition is
the parallelogram or triangle law (§ 71) and is still
applicable when the vectors do not lie in a plane
but have any directions in space; for any two vec-
tors brought end to end determine a plane in which the construction
may be carried out. Vectors will be designated by Greek small letters
or by letters in heavy type. The relations of equality or similarity
between triangles establish the rules

a+B=B+a, a+(B+y)=(a+B)+7y, m(a+pB)=ma+mB (30)

as true for vectors as well as for numbers whether real or complex. A
vector is said to be zero when its magnitude is zero, and it is writ-
ten 0. From the definition of addition it follows that
@+ 0=a. In fact as far as addition, subtraction, and
multiplication by numbers are concerned, vectors obey
the same formal luws as numbers.

A vector p may be resolved into components par-
allel to any three given vectors @, 8, y which are not
parallel to any one plane. For let a parallelepiped

_ be constructed with its edges parallel to the three
given vectors and with its diagonal equal to the vector whose compo-
nents are desired. The edges of the parallelepiped are then certain
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multiples xa, yB, 2y of @, B, y; and these are the desired components
of p. The vector p may be written as

p=xa + yB + zy.* (31)
It is clear that two equal vectors would necessarily have the same
components along three given directions and that the components of a
zero vector would all be zero. Just as the equality of two complex

numbers involved the two equalities of the respective real and imagi-
nary parts, so the equality of two vectors as

p=xa+yB+zy=za+yB+zy=p (31)
involves the three equations x = 2', y = ', 2 = 2.

As a problem in the use of vectors let there be given the three vectors a, 8, v
from an assumed origin O to three vertices of a parallelogram ; required the vector
to the other vertex, the vector expressions for the sides and diagonals of the paral-
lelogram, and the proof of the fact that the diagonals bisect
each other. Consider the figure. The side AB is, by the
triangle law, that vector which when added to 04 = «
gives OB =B, and hence it must be that AB =g— a.
In like manner AC = vy — a. Now OD is the sum of OC
and CD,and CD = AB; hence OD = v + 8 — «. The diag-
onal AD is the difference of the vectors OD and 04, and
is therefore v + 8 — 2 a. The diagonal BC is ¥y — 8. Now the vector from O to the
middle point of BC may be found by adding to OB one half of BC. Hence this
vectoris B + 4 (v — B) or } (8 + 7). Inlike manner the vector to the middle point of
ADisseentobe a + (v + 8 — 2 a) or } (v + B), which is identical with the former.
The two middle points therefore coincide and the diagonals bisect each other.

Let @ and B be any two vectors, |e| and | 8| their respective lengths,
and Z (e, B) the angle between them. For convenience the vectors may
be considered to be laid off from the same origin. The product of the
lengths of the vectors by the cosine of the angle between the vectors
is called the scalar product,

scalar product = @« = |||B| cos £ (@, B), (32)

of the two vectors and is denoted by placing a dot between the letters.
This combination, called the scalar product, is a number, not a vector.
As |B|cos £ (a, B) is the projection of B upon the direction of , the
scalar product may be stated to be equal to the product of the length
of either vector by the length of the projection of the other upon it.
In particular if either vector were of unit length, the scalar product
would be the projection of the other upon it, with proper regard for

* The numbers z, y, z are the oblique coordinates of the terminal end of p (if the

initial end be at the origin) referred to a set of axes which are parallel to a, 8, ¥ and
upon which the unit lengths are taken as the lengths of a, 8, v respectively.-
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the sign; and if both vectors are unit vectors, the product is the cosine
of the angle between them.

The scalar product, from its definition, is commautative so that a«f=p-a.
Moreover (ma)+8 = a+(mB) = m (@), thus allowing a numerical factor
m to be combined with either factor of the product. Furthermore the
distributive law

@B+y)=aBtay or (a+p)ry=ay+pfy (33)
is satisfied as in the case of numbers. For if @ be written as the product
aa, of its length a by a vector @, of unit length in the direction of e,
the first equation becomes

aap(B+y) =aap B+ aapy or ap(B+y)=ap B+ apny
And now a,+(8 + v) is the projection of the sum 8 4 y upon the direc-
tion of @, and @,+8 + a,+y is the sum of the projections of 8and y upon
this direction; by the law of projections these are equal and hence the
distributive law is proved.

The associative law does not hold for scalar products; for (a.B8)y
means that the vector y is multiplied by the number a.8, whereas
@ (B+y) means that « is multiplied by (B.y), a very different matter.
The laws of cancellation cannot hold ; for if

aB=0, then |a|B]cosZ (e, B)=0, (34)

and the vanishing of the scalar product a8 implies either that one of
the factors is 0 or that the two vectors are perpendicular. In fact
s = 0 is called the condition of perpendicularity. It should be noted,

however, that if a vector p satisfies .

pea =0, pB=0, py=0, (35)
three conditions of perpendicularity with three vectors a, 8, y not
parallel to the same plane, the inference is that p = 0.

76. Another product of two vectors is the vector product,

vector product = axB = v|a||8|sin £ (a, B), (36)

where v represents a vector of unit length normal to the plane of &
and B upon that side on which rotation from a to

B through an angle of less than 180° appears posi- ax8

tive or counterclockwise. Thus the vector product )

is itself a vector of which the direction is perpen- B

dicular to each factor, and of which the magni- a

tude is.the product of the magnitudes into the

sine of the included angle. The magnitude is therefore equal to the
area of the parallelogram of which the vectors @ and B are the sides.
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The vector product will be represented by a cross inserted between the
letters.

As rotation from 8 to & is the opposite of that from « to S, it follows
from the definition of the vector product that

Bxa = — axB, not axf = Bxa, - @37

and the product is not commutative, the order of the factors must be
carefully observed. Furthermore the equation
axf = v|a||B]sin £ (a, ) = 0 €

implies either that one of the factors vanishes or that the vectors @ and
B are parallel. Indeed the condition axB = 0 is called the condition of
parallelism. The laws of cancellation do not hold. The associative law
also does not hold ; for (axB)xy is a vector perpendicular to @xf and v,
and since @xf is perpendicular to the plane of @ and B, the vector (ax8)xy
perpendicular to it must lie in the plane of « and B; whereas the vec-
tor ax(Bxy), by similar reasoning, must lie in the plane of B and y; and
hence the two vectors cannot be equal except in the very special case
where each was parallel to 8 which is common to the two planes.

But the operation (ma)xB = ax(mB) = m(axp), which consists in
allowing the transference of a numerical factor to any position in the
product, does hold ; and so does the distributive law

ax(B+y) =axB+axy and (¢+B)xy=axy+ By, (39)
the proof of which will be given below. In expanding according to
the distributive law care must be exercised to keep the order of the
factors in each vector product the same on both sides of the equation,
owing to the failure of the commutative law; an interchange of the
order of the factors changes the sign. It might seem as if any algebraic
operations where so many of the laws of elementary algebra fail as in
the case of vector. products would be too restricted to be very useful;
that this is not so is due to the astonishingly great number of problems
in which the analysis can be carried on with only the laws of addition
and the distributive law of multiplication combined with the possibility
of transferring a numerical factor from one position to another in a
product; in addition to these laws, the scalar product -8 is commuta-
tiveand the vector product axf is commutative except for change of sign.

In addition to segments of lines, plane areas may be regarded as
vector quantities ; for a plane area has magnitude (the amount of the
area) and direction (the direction of the normal to its plane). To specify
on which side of the plane the normal lies, some convention must be
made. If the area is part of a surface inclosing a portion of space, the
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normal is taken as the exterior normal. If the area lies in an isolated
plane, its positive side is determined only in connection with some
assigned direction of description of its bounding curve; the rule is: If
a person is assumed to walk along the boundary of an area in an
assigned direction and upon that side of the plane which

causes the inclosed area to lie upon lis left, he is said 4

to be upon the positive side (for the assigned direction

of description of the boundary), and the vector which

represents the area is the normal to that side. It has

been mentioned that the vector product represented

an area.

That the projection of a plane area upon a given plane gives an area
which is the original area multiplied by the cosine of the angle between
the two planes is a fundamental fact of projection, following from the
simple fact that lines parallel to the intersection of the two planes are
unchanged in length whereas lines perpendicular to the intersection
are multiplied by the cosine of the angle between the planes. As the
angle between the normals is the same as that between the planes, tie
projection of an area upon « plane and the projection of the vector rep-
resenting the area upon the normal to the plune are equivalent. The
projection of a closed area upon a plane is zero; for the area in the
projection is covered twice (or an even number of times) with opposite
signs and the total algebraic sum is therefore 0.

To prove the law ax(B + y) = axB + axy and illustrate the use of
the vector interpretation of areas, construct a triangular prism with the
triangle on B, y, and B+ y as base and « as lateral edge. The total
vector expression for the surface of this prism is

Bxa + yxa + ax(B+y) + §(Bxy) — 5 By =0,

. and vanishes because the surface is closed. A cancel-
lation of the equal and opposite terms (the two
bases) and a simple transposition combined with the

‘rule Bxa = — axf gives the result

ax(B+y) =— pxa — yxa = axf + axy.

A system of vectors of reference which is particularly useful consists
of three vectors i, j, k of unit length directed along the axes X, ¥, Z
drawn so that rotation from X to Y appears positive from the side of
the xy-plane upon which Z lies. The components of any vector r drawn
from the origin to the point (x, y, z) are

xi, yj, 2k, and r=uwxi+ yj+ 2k
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The products of i, j, k into each other are, from the definitions,
ji=jj=kk=1,
joj = joi = jok = kej = kei = ik = 0,
ixi =jxj=kxk =0,
ixj=—jxi =k, jxk=—k><j=i, kXi=—ixk=j.
By means of these products and the distributive laws for scalar and
vector products, any given products may be expanded. Thus if
ea=ai+aj+ak and B=10i40,j+ bk,
then af = ab + ab, + ab, 41)
axB = (ab, — ad)i + (e, — apy)j+ (4,0, — ap)k,
by direct multiplication. In this way a passage may be made from
vector formulas to Cartesian formulas whenever desired.

(40)

EXERCISES
1. Prove geometrically that a + (8 + v) = (@ + B) + v and m(a + B) = ma + mg.

2. If a and B are the vectors from an assumed origin to 4 and B and if C
divides A B in the ratio m : n, show that the vector to C is v = (na + mg)/(m + n).

3. In the parallelogram A BCD show that the line BE connecting the vertex to
the middle point of the opposite side CD is trisected by the diagonal AD and
trisects it.

4. Show that the medians of a triangle meet in a point and are trisected.

5. If m; and m, are two masses situated at P, and P,, the center of gravity or
center of mass of m; and m, is defined as that point G on the line P, P, which
divides P, P, inversely as the masses. Moreover if G, is the center of mass of a
number of masses of which the total mass is M, and if G, is the center of mass of
a number of other masses whose total mass is M,, the same rule applied to M, and
M, and G, and G, gives the center of gravity G of the total number of masses.
Show that
mr, + myI, and F="™N + mory 4 - 4 m"r"=%,

m1+mg ml+7ng+"'+mn m
where T denotes the vector to the center of gravity. Resolve into components to
show

I=

- Zmx _ 3ZImy - Zmz
T=—y Y=——y Z2=—-"
Zm Zm zm
6. If « and B are two fixed vectors and p a variable vector, all being laid off
from the same origin, show that (p — g)«cx = 0 is the equation of a plane through

the end of B8 perpendicular to a.

7. Let a, B, v be the vectors to the vertices 4, B, C of a triangle. Write the
three equations of the planes through the vertices perpendicular to the opposite
sides. Show that the third of these can be derived as a combination of the other
two; and hence infer that the three planes have a line in common and that the
perpendiculars from the vertices of a triangle meet in a point.
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8. Solve the problem analogous to Ex. 7 for the perpendicular bisectors of the
sides.

9. Note that the length of a vector is Vaea. If a, 8, and y = 8 — a are the
three sides of a triangle, expand y+y = (8 — a)+(8 — «) to obtain the law of cosines.

10. Show that the sum of the squares of the diagonals of a parallelogram equals
the sum of the squares of the sides. What does the difference of the squares of the
diagonals equal ?

11. Show that ap a and (axf)xa are the components of 8 parallel and perpen-

. Qe
dicular to a by showing 1° that these vectors have the right direction, and 2° that
they have the right magnitude.

12. If a, B, v are the three edges of a parallelepiped which start from the same
vertex, show that (axp)ey is the volume of the parallelepiped, the volume being
considered positive if i lies on the same side of the plane of a and g with the
vector axf.

13. Show by Ex. 12 that (axB)sy = a+(8xy) and (axB)sy = (8xy)-a; and hence
infer that in a product of three vectors with cross and dot, the position of the cross
and dot may be interchanged and the order of the factors may be permuted cyc-
lically without altering the value. Show that the vanishing of (axpg)ey or any of
its equivalent expressions denotes that a, 8, v are parallel to the same plane ; the
condition axBsy = 0 is called the condition of complanarity.

14. Assuming a = ai + a,j + a;k, B =bi + bj + bk, v =¢ i + C,j + ¢k,
expand a.y, a8, and ax(Bxy) in terms of the coefficients to show
ax(Bxy) = (@) B — (a-B)v; and hence (axB)xy = (a+7)B— (v+6) .

15. The formulas of Ex. 14 for expanding a product with two crosses and the
rule of Ex. 18 that a dot and a cross may be interchanged may be applied to expand

(axB)x(yxd) = (asyx8) B — (Beyxd) @ = (axP+d) ¥ — (axP+y)
and (@xB)+(x3) = (awy) (B+3) — (B+7) (x+d).
16. If a and B are two unit vectors in the zy-plane inclined at angles § and ¢
to the z-axis, show that
a=1icosf + jsind, B=1icos¢ + jsing;
and from the fact that a«8 = cos(¢ — ) and axp = ksin(¢ — 6) obtain by multi-
plication the trigonometric formulas for sin (¢ — 6) and cos(¢ — 6).

17. 1f I, m, n are direction cosines, the vector li + mj + nk is a vector of unit
length in the direction for which !, m, n are direction cosines. Show that the
condition for perpendicularity of two directions (I, m, n) and (I, m’, n’) is
W+ mm +an’ =0.

18. With the same notations as in Ex. 14 show that

ij k a, a, ag

aa=al+al+al and axB=|a, a, a;| and axBy=|b b, by
b, b, € ¢ €
1 02 Ds 1 G C
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19. Compute the scalar and vector products of these pairs of vectors :

61+ 0.3j— 5k i+2)+3k itk
(@ {0.1i—4.2j+2.5k, @) {—3i—2j+k, ™ {j+i,

20. Find the areas of the parallelograms defined by the pairs of vectors in
Ex. 19. Find also the sine and cosine of the angles between the vectors.

21. Prove ax[Bx(yx8)] = (asyx8) B — asByxd = Bed axy — Boy axd.
22. What is the area of the triangle (1, 1, 1), (0, 2, 8), (0, 0, — 1) ?

77. Vector differentiation. As the fundamental rules of differentia-
tion depend on the laws of subtraction, multiplication by a number,
the distributive law, and the rules permitting rearrangement, it follows
that the rules must be applicable to expressions' containing vectors
without any changes except those implied by the fact that ax8 + Bxa.
As an illustration consider the application of the definition of differen-
tiation to the vector product uxv of two vectors which are supposed
to be functions of a numerical variable, say . Then

A(uxv) = (4 4+ Au)x(V + AV) — uxv
= UxAV +4 Auxv 4 AuxAv,

A(uxv) uxﬂ + ﬂxv + AuxAv

)

Ax Ar  Ax Ax
duxv) .. A(uxv) _ dv  du
Iz et A Y ta ™

Here the ordinary rule for a product is seen to hold, except that
the order of the factors must not be interchanged. .

The interpretation of the derivative is important. Let the variable
vector r be regarded as a function of some variable, say x, and suppose
r is laid off from an assumed origin’'so that, as = varies,
the terminal point of r describes a curve. The incre-
ment Ar of r corresponding to Az is a vector quantity
and in fact is the chord of the curve as indicated.
The derivative

dr .. Ar d .

zz-=hmA_;’ E—E:hm%:t (42)
is therefore a vector tangent to the curve; in particular if
the variable » were the arc s, the derivative would have
the magnitude unity and would be a unit vector tangent to the curve.

The derivative or differential of a vector of constant length is per-
pendicular to the vector. This follows from the fact that the vector
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then describes a circle concentric with the origin. It may also be seen
analytically from the equation

d (Ter) = drer + redr = 2 redr = d const. = 0. (43)

If the vector of constant length is of length unity, the increment Ar is
the chord in a unit circle and, apart from infinitesimals of higher
order, it is equal in magnitude to the angle subtended at the center.
Consider then the derivative of the unit tangent t to a curve with
respect to the arcs. The magnitude of dt is the angle the tangent turns
through and the direction of dt is normal to t and hence to the curve.

The vector quantity
" curvature C = % = % ) 44)

therefore has the magnitude of the curvature (by the definition in § 42)
and the direction of the interior normal to the curve.

This work holds equally for plane or space curves. In the case of a space curve
the plane which contains the tangent t and the curvature C is called the osculating
plane (§ 41). By definition (§ 42) the torsion of a space curve is the rate of turning
of the osculating plane with the are, that is, dy/ds. To find the torsion by vector
methods let ¢ be a unit vector C/VC.C along C. Then as t and ¢ are perpendicular,
n = txc is a unit vector perpendicular to the osculating plane and dn will equal dy
in magnitude. Hence as a vector quantity the torsion is

dn _ d(txc) de dc
T= t —=t 45
i as ds ot “as’ “9)
where (since dt/ds = C, and c is parallel to C) the first term ¢

drops out. Next note that dn is perpendicular to n because it

is the differential of a unit vector, and is perpendicular to t
because dn = d (txc) = txdc and t.(txdc) = 0 since t, t, dc are

necessarily complanar (Ex. 12, p. 169). Hence T is parallel t
to c. It is convenient to consider the torsion as positive when 4

the osculating plane seems to turn in the positive direction when

viewed from the side of the normal plane upon which t lies. An inspection of the
figure shows that in this case dn has the direction — cand not + c. Ascis a unit
vector, the numerical value of the torsion is therefore — c.T. Then

T=—cT=— c.txﬂ: [ c.txi_c_
ds ds~/C.C
dr 1 d 1 dr 1
= — cotx +C——— | = —ctx— (45"
[ds“’ Vve. ds \/C-C] ds* \/C.C
4. & r'.r” r
cCass .

where differentiation with respect to s is denoted by accents.

78. Another sort of relation between vectors and differentiation
comes to light in connection with the normal and directional deriva-
tives (§ 48). If F(x, y, ) is a function which has a definite value at
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each point of space and if the two neighboring surfaces F = C and
F = C + dC are considered, the normal derivative of F is the rate of
change of F along the normal to the surfaces and
is written dF/dn. The rate of change of F along
the normal to the surface F = C is more rapid than
along any other direction; for the change in F be-
tween the two surfaces is dF = dC and is constant,
whereas the distance dn between the two surfaces is
least (apart from infinitesimals of higher order) along the normal. In
fact if dr denote the distance along any other direction, the relations
shown by the figure are

dr=secfdn and ——= T ©08 0. (46)

If now n denote a vector of unit length normal to the surface, the
product ndF/dn will be a vector quantity which has both the magnitude
and the direction of most rapid increase of F. Let

dF '
n%-—VF—gra/dF (€]
be the symbolic expressions for this vector, where VF is read as “del F”
and grad F is read as “ the gradient of F.” If dr be the vector of which
dr is the length, the scalar product ndr is precisely cos 6dr, and hence
it follows that

drvF=dF ad rvF=2, (48)

where r, is a unit vector in the direction dr. The second of the equa-
tions shows that the directional derivative in any direction is the com-
ponent or projection of the gradient in that direction.

From this fact the expression of the gradient may be found in terms
of its components along the axes. For the derivatives of F along the
axes are 0F/ox, 0F/0y, 0F/0z, and as these are the components of VF
. along the directions i, j, k, the result is

OF  .O0F oF

VF=gra,dF=la+]@+k—a:~
Y. (49)
Hence V=ia+]@+k$

may be regarded as a symbolic vector-differentiating operator which
when applied to F gives the gradient of F. The product
0

0 0
dreVF = (da: P + dy @ + dz $>F =dF (50)
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is immediately seen to give the ordinary expression for dF. From this
form of grad F it does not appear that the gradient of a function is
independent of the choice of axes, but from the manner of derivation
of VF first given it does appear that grad F is a definite vector quan-
tity independent of the choice of axes.

In the case of any given function F the gradient may be found by
the application of the formula (49); but in many instances it may also
be found by means of the important relation dr«VF = dF of (48). For
instance to prove the formula V(FG) = FVG + GVF, the relation may
be applied as follows:

dr.V(FG) = d(FG) = FdG + GdF ,
= Fd1.VG + Gdr.VF = dr+(FVG + GVF).

Now as these equations hold for any direction dr, the dr may be can-
celed by (35), p. 165, and the desired result is obtained. '

The use of vector notations for treating assigned practical problems involving
computation is not great, but for handling the general theory of such parts of
physics as are essentially concerned with direct quantities, mechanics, hydro-
mechanics, electromagnetic theories, etc., the actual use of the vector algorisms
considerably shortens the formulas and has the added advantage of operating
directly upon the magnitudes involved. At this point some of the elements of
mechanics will be developed.

79. According to Newton’s Second Law, when a force acts upon a
particle of mass m, the rate of change of momentum is equal to the
Jorce acting, and takes place in the direction of the force. It therefore
appears that the rate of change of momentum and momentum itself
are to be regarded as vector or directed magnitudes in the application
of the Second Law. Now if the vector r, laid off from a fixed origin
to the point at which the moving mass m is situated at any instant of
time ¢, be differentiated with respect to the time ¢, the derivative dr/d¢
is a vector, tangent to the curve in which the particle is moving and of
magnitude equal to ds/d¢ or v, the velocity of motion. As vectors*,
then, the velocity v and the momentum and the force may be written as

v=£, mv, F=£(mv).
dt d 51)
H Fem® et if =T,
ence ST MaET™ M AT g T s

From the equations it appears that the force F is the product of the
mass m by a vector £ which is the rate of change of the velocity regarded

* In applications, it is usual to denote vectors by heavy type and to denote the magni-
tudes of those vectors by corresponding italic letters.
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as a vector. The vector f is called the acceleration; it must not be con-
fused with the rate of change dv/d¢ or d’s/dt* of the speed or magnitude
of the velocity. The components f, f,, f; of the acceleration along the
axes are the projections of f along the directions i, j, k and may be
written as f.i, f.j, fek. Then by the laws of differentiation it follows

that
. i d (v ) _
fo=ti= dt . dt dt
. d*(rei
or fo=1ti= tﬂ" dt“ dt2
d*x
Hence ‘f‘;=ﬁ’ j;’—-cﬁz, f'_ﬁ,

and it is seen that the components of the acceleration are the acceler-
ations of the components. If X, ¥, Z are the components of the force,
the equations of motion in rectangular codrdinates are

d*r &y d*
md_t“=X’ mW—Y, m-‘-i?=Z. (52)
Instead of resolving the acceleration, force, and displacement along
the axes, it may be convenient to resolve them along the tangent and
normal to the curve. The velocity v may be written as vt, where v is

the magnitude of the velocity and t is a unit vector tangent to the
curve. Then dv _d(t) dv dt

f=="w —att'w
dt dtds v
But a—aa—Cv—En, (53)
where R is the radius of curvature and n is a unit normal. Hence
d’s 2 ) d’s v? ,
f= dt2t+ n, f,—a‘zr f"—E' (53)

It therefore is seen that the component of the acceleration along the
tangent is d%/d#’ or the rate of change of the velocity regarded as a
number, and the component normal to the curve is v*/R. If T and ¥
are the components of the force along the tangent and normal to the
curve of motion, the equations are

2

T= =
mfy =m 7

d’s
as’
It is noteworthy that the force must lie in the osculating plane.

If r and r + Ar are two positions of the radius vector, the area of
the sector included by them is (except for infinitesimals of higher order)
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AA = }rx(1r + Ar) = J rxAr, and is a vector quantity of which the
direction is normal to the plane of r and r + Ar, that is, to the plane
through the origin tangent to the curve. The rate of description of area,
or the areal velocity, is therefore

dA .. Ar dr

i lim ,}rxA—t = ,}rxa = lrxv. 54)
The projections of the areal velocities on the coordinate planes, which
are the same as the areal velocities of the projection of the motion on

those planes, are (Ex. 11 below)

10 de _ dy\  1fde_ i\ 10 dy  dr\ o
2<y at~ * dt)’ 2<z dt ”dt)’ 2(’” dt dt)' (54)
If the force F acting on the mass m passes through the origin, then

r and F lie along the same direction and rxF = 0. The equation of
motion may then be integrated at sight.

dv dv
m % = F, ’lnl'x-;t- =1rxF = O,
dv

I = % (rxv) =0,  rxv = const.

It is seen that in this case the rate of deseription of area is a constant
vector, which means that the rate is not only constant in magnitude
but is constant in direction, that is, the path of the particle 7 must lie
in a plane through the origin. When the force passes through a fixed
point, as in this case, the force is said to be central. Therefore when a
particle moves under the action of a central force, the motion takes place
in a plane passing through the center and the rate of description of
areas, or the areal velocity, is constant.

80. If there are several particles, say n, in motion, each has its own equation
of motion. These equations may be combined by addition and subsequent reduction.

d?r, d’r, d’r,

mlEE—=Fl, sz{=F2, KN m,W=F,.,
- d?r d?r, d?r,
and ml—tit_zl+m2722+“'+m"dtﬁ”=F1+F2+'”+F"’
der d?r, drr, 2
But mlﬁ+m2ﬁ+...+m,,?2"=ﬁ(mlr1+m2r2+---+m,.r,.)..
Let mI + Myt Mty =My +my 4o+ m)T=MT
or Fo by kgt o 4 Tty Zmr_ Zmr
my +my+ -+ my =m M
dir
Then M@=F,+F2+...+F,,=ZF. (65)
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Now the vector r which has been here introduced is the vector of the center of
mass or center of gravity of the particles (Ex. 5, p. 168). The result (55) states, on
comparison with (51), that the center of gravity of the n masses moves as if all the
mass M were concentrated at it and all the forces applied there.

The force F; acting on the ith mass may be wholly or partly due to attractions,
repulsions, pressures, or other actions exerted on that mass by one or more of the
other masses of the system of n particles. In fact let F; be written as

Fi=Fio+Fa+Fo+- -+ Fi,

where F; is the force exerted on m; by m; and Fy, is the force due to some agency
external to the n masses which form the system. Now by Newton’s Third Law,
when one particle acts upon a second, the second reacts upon the first with a
force which is equal in magnitude and opposite in direction. Hence to Fy above
there will correspond a force F;; = — F;; exerted by m; on m;. In the sum ZF; all
these equal and opposite actions and reactions will drop out and ZF; may be re-
placed by =Fy, the sum of the external forces. Hence the important theorem that :
The motion of the center of mass of a set of particles is as if all the mass were concen-
trated there and all the external forces were applied there (the internal forces, that is,
the forces of mutual action and reaction between the particles being entirely
neglected).

The moment of a force about a given point is defined as the product of the force
by the perpendicular distance of the force from the point. If r is the vector from
the point as origin to any point in the line of the force, the moment is therefore
rxF when considered as a vector quantity, and is perpendicular to the plane of the
line of the force and the origin. The equations of n moving masses may now be
combined in a different way and reduced. Multiply the equations by r,, 1,,---, 1,
and add. Then

mr,x % + m,yr,x tﬂ + oo 4 myr,x % =0,xF, + ,xF, + ... + r,xF,

dt dt
d d d
or m, d_trlxvl + m, x IxVy + .- 4+ m, Etr,.xv,, =1,xF; + 1,xF, + .- . + r,xF,
or %(mlrlxvl 4 MI,xV,y + - -+ 4 MuI,xVy) = ZrxF. (56)

This equation shows that if the areal velocities of the different masses are multiplied
by those masses, and all added together, the derivative of the sum obtained is equal
to the moment of all the forces about the origin, the moments of the different forces
being added as vector quantities.

This result may be simplified and put in a different form. Consider again the
resolution of F; into the sum F;o + F;; + --- + Fy,, and in particular consider the
action Fy and the reaction Fj, = — F;; between two particles. Let it be assumed
that the action and reaction are not only equal and opposite, but lie along the line
connecting the two particles. Then the perpendicular distances from the origin to
the action and reaction are equal and the moments of the action and reaction are
equal and opposite, and may be dropped from the sum Zr;xF;, which then reduces
to Z1;xF;o. On the other hand a term like m,r;xv; may be written as r;x(m;v;). This
product is formed from the momentum in exactly the same way that the moment
is formed from the force, and it is called the moment of momentum. Hence the
equation (56) becomes
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a
(tota.l moment of momentum) = moment of external forces.

Hence the result that, as vector quantities: The rate of change of the moment of
momentum of a system of particles i3 equal to the moment of the external forces (the
forces between the masses being entirely neglected under the assumption that action
and reaction lie along the line connecting the masses).

- EXERCISES
1. Apply the definition of differentiation to prove
(@) d(uev) = uedv + vedu, (B) d[ue(vxw)] = dus(vxW) + us(dvxW) + Us(VxdWw).
2. Differentiate under the assumption that vectors denoted by early letters of
the alphabet are constant and those designated by the later letters are variable :
(@) ux(vxw), (8) acost + bsint, (7) (ueu)uy,

(3) uxg—:, (e) u-(d_“xdg") (§) c(au).

dr dz?

3. Apply the rules for change of variable to show that f—s-: %;3“, where

accents denote differentiation with respect to . In case r = zi 4+ yj show that
1/VC.C takes the usual form for the radius of curvature of a plane curve.

4. The equation of the helix is r = ia cos ¢ + ja sin ¢ + kbp with s=Va2 + 12 ¢;
show that the radius of curvature is (a® + k?)/a.

5. Find the torsion of the helix. Itisb/(a? + k2).
6. Change the variable from 8 to some other variable ¢ in the formula for torsion.

7. Inthe following cases find the gradient either by applying the formula which
contains the partial derivatives, or by using the relation dr.VF = dF, or both:
(@) rr= 7%+ y? + 22 (B) logr, . (v) r=Vrer,
(8) log(z? + ¥?) = log [rr — (kem)?],  (e) (rxa)s(rxb).
8. Prove these laws of operation with the symbol V :
() V(F+G)=VF 4+ V@G, (B) G*V(F/G) = GVF — FVG.

9. If r, ¢ are polar codrdinates in a plane and r, is a unit vector along the radius
vector, show that dr,/dt = nd¢/dt where n is a unit vector perpendicular to the
radius. Thus differentiate r = rr, twice and separate the result into components
along the radius vector and perpendicular to it so that

dzr do\? d¢dr 1d dqs)
—r(— r— r2——).
= (dt)’ f=rm P a rdt( at
10. Prove conversely to the text that if the vector rate of description of area is.
constant, the force must be central, that is, rxF = 0.

11. Note that rxvei, rxvej, rxv.k are the projections of the areal velocities upon
the planesz =0, y = 0, z = 0. Hence derive (54') of the text.
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12. Show that the Cartesian expressions for the magnitude of the velocity and
of the acceleration and for the rate of change of the speed dv/dt are

v=Vz24+y2 422 f=Vr?riy?+27?, =22 TVY +2% tvy 2z ,
V&'t 4yt 4 22

where accents denote differentiation with respect to the time.

13. Suppose that a body which is rigid is rotating about an axis with the
angular velocity w = d¢/dt. Represent the angular velocity by a vector a drawn
along the axis and of magnitude equal to w. Show that the velocity of any point
in space is v = axr, where r is the vector drawn to that point from any point of
the axis as origin. Show that the acceleration of the point determined by r is in a
plane through the point and perpendicular to the axis, and that the components are

ax(axr) = (a-r)a — w?r toward the axis, (da/dt)xr perpendicular to the axis,

under the assumption that the axis of rotation is invariable.

14. Let T denote the center of gravity of a system of particles and r; denote the
vector drawn from the center of gravity to the ith particle so that r; = T + r; and
v, = ¥ + v;. The kinetic energy of the ith particle is by definition

%m.*v? =} MiVieVi = §my; (7 + V{)o(? + V,’)

Sum up for all particles and simplify by using the fact =m;r; = 0, which is due to
the assumption that the origin for the vectors r; is at the center of gravity. Hence
prove the important theorem : The total kinetic energy of a system is equal to the
kinetic energy which the total mass would have if moving with the center of gravity
plus the energy computed from the motion relative to the center of gravity as origin,

that is,
' T =}Zmp? =} M + L Sma2.

15. Consider a rigid body moving in a plane, which may be taken as the zy-
plane. Let any point r, of the body be marked and other points be denoted rela-
tive to it by . The motion of any point r’ is compounded from the motion of r,
and from the angular velocity a = kw of the body about the point r,. In fact the
velocity v of any point is v = v, + axr. Show that the velocity of the point denoted
by r' = kxV,/w is zero. This point is known as the instantaneous center of rotation
(§ 39). Show that the codrdinates of the instantaneous center referred to axes at
the origin of the vectors r are

Z:r-i:zo_‘%d_, y:l‘oj:yo-l-id%).

16. If several forces F,, F,, ..., F, act on a body, the sum R = ZF; is called
the resultant and the sum 2r;xF;, where 1; is drawn from an origin O to a point
in the line of the force Fy, is called the resultant moment about O. Show that the
resultant moments Mo and Mo, about two points are connected by the relation
Mo = Mo + Mo(Ry), where Mo (Rg) means the moment about O’ of the resultant
R considered as applied at 0. Infer that moments about all points of any line
parallel to the resultant are equal. Show that in any plane perpendicular to R
there is a point O’ given by r = RxMy/R-R, where O is any point of the plane,
such that My is parallel to R. : .

-



PART II. DIFFERENTIAL EQUATIONS

CHAPTER VII
GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems. The application of the differential
calculus to plane curves has given a means of determining some
geometric properties of the curves. For instance, the length of the
subnormal of a curve (§ 7) is ydy/dx, which in the case of the parabola
y¥*=4px is 2p, that is, the subnormal is constant. Suppose now it
were desired conversely to find all curves for which the subnormal is
a given constant m. The statement of this problem is evidently con-
tained in the equation

d
Y
Again, the radius of curvature of the lemniscate 7 = a? cos 2 ¢ is found
to be R = a?/3r, that is, the radius of curvature varies inversely as the
radius. If conversely it were desired to find all curves for which the
radius of curvature varies inversely as the radius of the curve, the state-
ment of the problem would be the equation
dr\?]}
> ()]
& rdr\t
22l £
"+ 2(7)
where £ is a constant called a factor of proportionality.*

Equations like these are unlike ordinary algebraic equations because,
in addition to the variables , y or », ¢ and certain constants m or %,
they contain also derivatives, as dy/dx or dr/d¢ and d’r/d¢? of one of
the variables with respect to the other. An equation which contains

=m or yy'=m or ydy=mdr.

* Many problems in geometry, mechanics, and physics are stated in terms of varia-
tion. For purposes of analysis the statement z varies as y, or < ¥, is written as « = ky,
introducing a constant % called a factor of proportionality to convert the variation into
an equation. In like manner the statement x varies inversely as , or x x 1/y, becomes
z = k/y, and z varies jointly with y and z becomes x = kyz.

179
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derivatives is called a differential equation. The order of the differential
equation is the order of the highest derivative it contains. The equa-
tions above are respectively of the first and second orders. A differen-
tial equation of the first order may be symbolized as ®(z, y, y") = 0,
and one of the second order as ®(z, y, ¥, ¥") = 0. A function y = f(x)
given explicitly or defined implicitly by the relation F(z, y)=0 is
said to be a solution of a given differential equation if the equation is
true for all values of the independent variable # when the expressions
for y and its derivatives are substituted in the equation.

Thus to show that (no matter what the value of a is) the relation
4day — 22+ 2a%logzx =0

gives a solution of the differential equation of the second order

L) YL

it is merely necessary to form the derivatives

dy a? dzy a?
2 —=2——, 20— =14 —
dr z adac2 +z2

and substitute them in the given equation together with y to see that

dy\? d*y)2 1 ( at x2 ( 2a® at
1 =) —22{—) =1+-—=(22—-2a2+ =) ——(1+—+—=)=0
+(dz) (da:‘~’ tral\® T +:c‘1) a@\' Tz +z‘>
is clearly satisfied for all values of z. It appears therefore that the given relation
for y is a solution of the given equation.

To integrate or solve a differential equation is to find all the functions
which satisfy the equation. Geometrically speaking, it is to find all the
curves which have the property expressed by the equation. In mechan-
ies it is to find all possible motions arising from the given forces. The
method of integrating or solving a differential equation depends largely
upon the ingenuity of the solver. In many cases, however, some method
is immediately obvious. For instance if it be possible to separate the
variables, so that the differential dy is multiplied by a function of y -
alone and dx by a function of x alone, as in the equation

¢ (y) dy = ¢ (x) dx, then f¢ (y) dy =f|[/ (x)de + C @)
will clearly be the integral or solution of the differential equation.

As an example, let the curves of constant subnormal be determined. Here
ydy=mdx and y2=2mx+ C.

The variables are already separated and the integration is immediate. The curves
are parabolas with semi-latus rectum equal to the constant and with the axis
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coincident with the axis of . If in particular it were desired to determine that
curve whose subnormal was m and which passed through the origin, it would
merely be necessary to substitute (0, 0) in the equation y2 = 2mz + C to ascertain
what particular value must be assigned to C in order that the curve pass through
(0, 0). The value is C = 0.

Another example might be to determine the curves for which the z-intercept
varies as the abscissa of the point of tangency. As the expression (§ 7) for the
z-intercept is ¢ — ydx/dy, the statement is

z—yg—;zla or (1—k)z=yg—;.
Hence - (1—k)@=% and (1-k)logy =logz + C.
v

If desired, this expression may be changed to another form by using each side of
the equality as an exponent with the base e. Then

el-Blgy — elgz+C or yl-k=eCx = Cx.
As Cis an arbitrary constant, the constant C’ = eCis also arbitrary and the solution
may simply be written as y1—* = Cz, where the accent has been omitted from the

constant. If it were desired to pick out that particular curve which passed through
the point (1, 1), it would merely be necessary to determine C from the equation

11-k = C1, and hence C=1.

As a third example let the curves whose tangent is constant and equal to a be
determined. The length of the tangent is ¥ V1 4+ y2/y’ and hence the equation is

\ vV 2 \/ 2 . 2
y__l_"lil_za or yﬂﬂ=a or 1=L—iy’.
v v*? v
The variables are therefore separable and the results are
Vaz— y2? —_— Va2 — y2
de=Y""Y3y and x+0=\/a2—y2—aloga+—a—y-.
Yy Yy

If it be desired that the tangent at the origin be vertical so that the curve passes
through (0, a), the constant C is 0. The curve is the tractrix or ** curve of pursuit”
as described by a calf dragged at the end of a rope by a person walking along
a straight line.

82. Problems which involve the radius of curvature will lead to differ-
ential equations of the second order. The method of solving such
problems is to reduce the equation, if possible, to one of the first order.
For the second derivative may be written as

dy'  dy'
! = d‘;: = d‘; y" (2)
_ a4t g+t a4+t ,
and R.— y" - dyy - dy' (2)

Lt
dx y dy
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is the expression for the radius of curvature. If it be given that the
radius of curvature is of the form f(x) ¢ (¥') or £ (¥) ¢ (¥),

1+ y?)t 1+
ey o S s000),  ©
dx ‘/ d y
the variables # and y' or y and ' are immediately separable, and an
integration may be performed. This will lead to an equation of the
first order; and if the variables are again separable, the solution may
"be completed by the methods of the above examples.

In the first place consider curves whose radius of curvature is constant. Then

(SR N TN SV A )
a eyt @ Viggr o
dz

where the constant of integration has been written as — C/a for future conven-
ience. The equation may now be solved for y’ and the variables become separated
with the results
y’=_x__;€__— or dy= %dx
Vat —(z— C)? Va2 —(z - C)?

Hence y—C=—+Va:i—@x—-0C)? or (z—C)*+ @wy—C)=a?
The curves, as should be anticipated, are circles of radius a and with any arbi-
trary point (C, C’) as center. Itshould be noted that, as the solution has required
two successive integrations, there are two arbitrary constants C and C’ of integra-
tion in the result.

As a second example consider the curves whose radius of curvature is double
the normal. As the length of the normal is ¥ V1 + y’2, the equation becomes

Q+V_"‘>*=2 14+ y2 or 1+y’2=12y'
y’di/ y’d_y,
dy dy

where the double sign has been introduced when the radical is removed by cancel-
lation. This is necessary ; for before the cancellation the signs were ambiguous
and there is no reason to assuma that the ambiguity disappears. In fact, if the
curve is concave up, the second derivative is positive and the radius of curvature
is reckoned as positive, whereas the normal is positive or negative according as
the curve is above or below the axis of z ; similarly, if the curve is concave down.
Let the negative sign be chosen. This corresponds to a curve above the axis and
‘concave down, or below the axis and concave up, that is, the normal and the radius
of curvature have the same direction. Then

dy _ _ 20y
v 1+ y7
where the constant has been given the form log 2 C for convenience. This expres-
sion may be thrown into algebraic form by exponentiation, solved for y’, and then

and logy = — log(1 + %) 4+ log 2 C,
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2C—y ydy

y1l+y?)=2C or y?= or =dzx
Y V2Coy—y?
Hence z—C = Cvers-l%—v2 Cy — 3.

The curves are cycloids of which the generating circle has an arbitrary radius C
and of which the cusps are upon the z-axis at the points C” 4+ 2kwC. If the posi-
tive sign had been taken in the equation, the curves would have been entirely
different ; see Ex. 6 (a). '

The number of arbitrary constants of integration which enter into
the solution of a differential equation depends on the number of inte-
grations which are performed and is equal to the order of the equation.
This results in giving a family of curves, dependent on one or more
parameters, as the solution of the equation. To pick out any particular
member of the family, additional conditions must be given. Thus, if
there is only one constant of integration, the curve may be required
to pass through a given point; if there are two constants, the curve
may be required to pass through a given point and have a given slope
at that point, or to pass through two given points. These additional
conditions are called initial conditions. In mechanics the initial condi-
tions are very important ; for the point reached by a particle describing
a curve under the action of assigned forces depends not only on the
forces, but on the point at which the particle started and the velocity
with which it started. In all cases the distinction between the constants
of integration and the given constants of the problem (in the foregoing
examples, the distinction between C, C' and m, %, «) should be kept
clearly in mind

EXERCISES

1. Verify the solutions of the differential equations: .

(@) zy+322=C, y+z+zy =0, B) 3y (Bex+ C)=1, zy’ +y+xiyter=0,

(v) (1+z)y2=1, 2z=Cer—C-le~v, (8) y+zy =z%y? ay=Cx+ C,

() ¥ +y/e=0, y=Clogz+ C,, () y=0Ce+ Cye?*, ¥y + 2y =3y,

My —y=x% y=Ce + e‘éf”<0l cosZ \2/3 + G, sinz—;ﬁg> — 22,

2. Determine the curves which have the following properties:

() The subtangent is constant ; y = Cx=. If through (2, 2), y = 21— mgm,

(8) The right triangle formed by the tangent, subtangent, and ordinate has the
constant area k/2 ; the hyperbolas zy 4+ Cy + k = 0. Show that if the curve passes
through (1, 2) and (2, 1), the arbitrary constant C is 0 and the given k is — 2.

() The normal is constant in length ; the circles (z — C)2 4+ y2 = k2.

(8) The normal varies as the square of the ordinate ; catenaries ky =cosh k(x— C).
If in particular the curve is perpendicular to the y-axis, C = 0.

(€) The area of the right triangle formed by the tangent, normal, and z-axis is
inversely proportional to the slope ; the circles (x — C)2 4+ y2 = k.
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3. Determine the curves which have the following properties:

(@) The angle between the radius vector and tangent is constant; spirals
r = Celd,

(8) The angle between the radius vector and tangent is half that between the
radius and initial line ; cardioids r = C(1.— cos ¢).

(v) The perpendicular from the pole to a tangent is constant ; r cos (¢ — C) = k.

(8) The tangent is equally inclined to the radius vector and to the initial line ;
the two sets of parabolas r = C/(1 £ cos ¢).

(€¢) The radius is equally inclined to the normal and to the initial line ; circles
r=Ccos¢ orlinesrcos¢p = C.

4. The arc s of a curve is proportional to the area A4, where in rectangular
codrdinates 4 is the area under the curve and in polar codrdinates it is the area
included by the curve and the radius vectors. From the equation ds = d4 show
that the curves which satisty the condition are catenaries for rectangular codrdi-
nates and lines for polar coordinates.’

5. Determine the curves for which the radius of curvature

(@) is twice the normal and oppositely directed ; parabolas (x — C)2 =C’(2y — ().
(B) is equal to the normal and in same direction ; circles (x — C)2 + y% = C"2.
() is equal to the normal and in opposite direction ; catenaries.

(8) varies as the cube of the normal ; conics kCy2 — C2(x + C)2=k.

() projected on the z-axis equals the abscissa ; circles.

(¢) projected on the z-axis is the negative of the abscissa ; catenaries.

(n) projected on the x-axis is twice the abscissa ; central conics.

(6) is proportional to the slope of the tangent or of the normal.

83. Problems in mechanics and physics. In many physical problems
the statement involves an equation between the rate of change of some
quantity and the value of that quantity. In this way the solution of
the problem is made to depend on the integration of a differential equa-
tion of the first order. If « denotes any quantity, the rate of increase
in « is dz/dt and the rate of decrease in z is — dz/dt; and consequently
when the rate of change of x is a function of x, the variables are
immediately separated and the integration may be performed. The
constant of integration has to be determined from the initial conditions ;
the constants inherent in the problem may be given in advance or their
values may be determined by comparing x and ¢ at some subsequent
time. The exercises offered below will exemplify the treatment of
such problems.

In other physical problems the statement of the question as a differ-
ential equation is not so direct and is carried out by an examination of
the problem with a view to stating a relation between the increments
or differentials of the dependent and independent variables, as in some
geometric relations already discussed (§ 40), and in the problem of the
tension in a rope wrapped around a cylindrical post discussed below.
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The method may be further illustrated by the derivation of the differ-
ential equations of the curve of equilibrium of a flexible string or
chain. Let p be the density of the chain so that pAs is the mass of
the length As; let X and Y be the components

of the force (estimated per unit mass) acting on y pYAs T+a?
the elements of the chain. Let 7T denote the

tension in the chain, and 7 the inclination of

the element of chain. From the figure it then pXAs
appears that the components of all the forces LA

acting on As are N X

(T + AT) eos (r + Ar) — Tcos 7 + XpAs =0,
(T+ AT)sin (r + A7) — T sint + YpAs = 0;

for these must be zero if the element is to be in a position of equi-
librium. The equations may be written in the form

A (T cos 7)+ XpAs = 0, A(Tsin7)+ YpAs = 0;

and if they now be divided by As and if As be allowed to approach
zero, the result is the two equations of equilibrium

d(pdx - a(rY -
d—s<T£>+PX_O’ ds(T ds>+PY—0’ ©)

where cos 7 and sin 7 are replaced by their values dz/ds and dy/ds.

If the string is acted on only by forces parallel to a given direction, let the
y-axis be taken as parallel to that direction. Then the component X will be zero
and the first equation may be integrated. The result is

d (. dz dr ds
aTs(TE) =0, TZ=c, T=cZ.
This value of T may be substituted in the second equation. There is thus obtained
a differential equation of the second order

d dy) _ yn .

—(C = Y=0 or C——— Y=o0. 4

= ( =) P i +p #)
If this equation can be integrated, the form of the curve
of equilibrium may be found.

Another problem of a different nature in strings is to
consider the variation of the tension in a rope wound around
a cylinder without overlapping. The forces acting on the
element As of the rope are the tensions T and T 4 AT, the
normal pressure or reaction R of the cylinder, and the force
of friction which is proportional to the pressure. It will
be assumed that the normal reaction lies in the angle Ag¢ and that the coefficient
of friction is 4 so that the force of friction is uR. The components along the radius
and along the tangent are
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(T + AT) sin Ap — R cos (fA¢) — wR sin (6A¢) = 0, 0<o<l,

(T + AT) cos Agp + R sin (§A¢) — uR cos (fAp) — T = 0.
Now discard all infinitesimals except those of the first order. It must be borne in
mind that the pressure R is the reaction on the infinitesimal arc As and hence is
itself infinitesimal. The substitutions are therefore Td¢ for (T + AT) sin Ag, R for
R cos §A¢, O for Rsin §A¢, and T + dT for (T + AT) cos Ap. The equatlons there-
fore reduce to two simple equations

Tdp — R =0, dT — R =0,
from which the unknown R may be eliminated with the result
dT=uTd¢p or T =Cetd or T = Tyerd,

where T, is the tension when ¢ is 0. The tension therefore runs up exponentially
and affords ample explanation of why a man, by winding a rope about a post, can
readily hold a ship or other object exerting a great force at the other end of the
rope. If uis 1/3, three turns about the post will hold a force 5685 T, or over 25
tons, if the man exerts a force of a hundredweight.

84. If a constant mass m is moving along a line under the influence
of a force F acting along the line, Newton’s Second Law of Motion (p. 13)
states the problem of the motion as the differential equation

dx
mf=F or moa=TF ®)
of the second order ; and it therefore appears that the complete solution
of a problem in rectilinear motion requires the integration of this equa~
tion. The acceleration may be written as

_dv_dvdx _ dv,
T %= wa ="
and hence the equation of motion takes either of the forms
m%:F or mv%:F. (GY)
It now appears that there are several cases in which the first integration
may be performed. For if the force is a function of the velocity or of
the time or a product of two such functions, the variables are separated
in the first form of the equation; whereas if the force is a function of
the velocity or of the coordinate x or a product of two such functions,
the variables are separated in the second form of the equation.

When the first integration is performed according to either of these
methods, there will arise an equation between the velocity and either
the time ¢ or the codrdinate x. In this equation will be contained a
constant of integration which may be determined by the initial condi-
tions, that is, by the knowledge of the velocity at the start, whether in
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time or in position. Finally it will be possible (at least theoretically)
to solve the equation and express the velocity as a function of the time
t or of the position x, as the case may be, and integrate a second time.
The carrying through in practice of this sketch of the work will be
exemplified in the following two examples.

Suppose a particle of mass m is projected vertically upward with the velocity V.
Solve the problem of the motion under the assumption that the resistance of the
air varies as the velocity of the particle. Let the distance be measured vertically
upward. The forces acting on the particle are two, — the force of gravity which is
the weight W = mg, and the resistance of the air which is kv. Both these forces
are negative because they are directed toward diminishing values of . Hence

mf=—mg — kv or m%’:—mg—kv,

where the first form of the equation of motion has been chosen, although in this
case the second form would be equally available. Then integrate.

& =—dt and log(g+£v)=—£t+ C.
k m m
g+ -0 :
m
As by the initial conditions v = ¥ when ¢ = 0, the constant C is found from
k
g+-—v k
k k m ——t
log(g+;V)=—;0+ C; hence — = "
g +‘;l.V

is the relation between » and ¢ found by substituting the value of C. The solution
for v gives .
dz m -=t m
=—=(— 1 4 m ——gq.
v ) ( % g+ ) € % 9

k
—_m(m T c
Hence z k(ky+V)e kgt+ .

If the particle starts from the origin £ = 0, the constant C is found to be
: 13
m/m m/m -t m
=—(— d =—(— l—e » )——gt.
(o] k(kg+V> and z k(kg+V)( e ) %7

Hence the position of the particle is expressed in terms of the time and the prob-
lem is solved. If it be desired to find the time which elapses before the particle
comes to rest and starts to drop back, it is merely necessary to substitute » = 0 in
the relation connecting the velocity and the time, and solve for the time ¢t = T';
and if this value of ¢ be substituted in the expression for z, the total distance X
covered in the ascent will be found. The results are

2
T=’l‘10g(1+iv), x=("_‘) [Ev-glog(uiv)].
k mg k] Lm myg

As a second example consider the motion of a particle vibrating up and down
at the end of an elastic string held in the field of gravity. By Hooke’s Law for
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elastic strings the force exerted by the string is proportional to the extension of
the string over its natural length, that is, F = kAl. Let [ be the length of the string,
A,l the extension of the string just sufficient to hold the weight W = mg at rest so
that kAl = mg, and let * measured downward be the additional extension of the
string at any instant of the motion. The force of gravity mg is positive and the
force of elasticity — k(A,l + z) is negative. The second form of the equation of
motion is to be chosen. Hence )

mvj—i:mg—k(Aol+z) or mvi-i:—la, since mg = kAl

Then mvdv = — kxdx or mv? = —kx? 4 C.

Suppose that £ = a is the amplitude of the motion, so that whenz = a the velocity
v = 0 and the particle stops and starts back. Then C = ka2. Hence

.,=dﬁ=\/E @2 — 22 or _d_‘”_=\[":dt,
dt m Va2 —z? m
. k . k
and gin-l1_=4/—t+ C or x=asin —t+C).
a m m

Now let the time be measured from the instant when the particle passes through
the position z = 0. Then C satisfies the equation 0 = a sin C and may be taken as
zero. The motion is therefore given by the equation = asin Vk/mt and is
periodic. While ¢ changes by 27 Vm/k the particle completes an entire oscilla-
tion. The time T = 2a Vm/k is called the periodic time. The motion considered
in this example is characterized by the fact that the total force — kx is propor-
tional to the displacement from a certain origin and is directed toward the origin.
Motion of this sort is called simple harmonic motion (briefly S. H. M.) and is of
great importance in mechanics and physics.

EXERCISES

1. The sum of $100 is put at interest at 4 per cent per annum under the condition
that the interest shall be compounded at each instant. Show that the sum will
amount to $200 in 17 yr. 4 mo., and to $1000 in 56 yr.

2. Given that the rate of decomposition of an amount z of a given substance is
proportional to the amount of the substance remaining undecomposed. Solve the
problem of the decomposition and determine the constant of integration and the
physical eenstant of proportionality if £ = 5.11 when ¢ =0 and z = 1.48 when
t =40 min. Ans. k = .0309.

3. A substance is undergoing transformation into another at a rate which is
assumed to be proportional to the amount of the substance still remaining untrans-
formed. If that amount is 35.6 when ¢ = 1 hr. and 13.8 when ¢ = 4 hr., determine
the amount at the start when ¢ = 0 and the constant of proportionality and find
how many hours will elapse before only one-thousandth of the original amount
will remain.

4. If the activity 4 of a radioactive deposit is proportional to its rate of
diminution and is found to decrease to } its initial value in 4 days, show that 4
satisfies the equation 4/4, = e~ 0173¢,
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5. Suppose that amounts a and b respectively of two substances are involved in
a reaction in which the velocity of transformation dx/dt is proportional to the prod-
uct (@ — ) (b — z) of the amounts remaining untransformed. Integrate on the
supposition that a = b.

» t la—x|b—2
log %’Q =(a—b)kt; andif 393 |0.4866|0.2342
ab—2) 1265|0.3879|0.1354

determine the product k (a — b).

6. Integrate the equation of Ex. 5if a = b, and determine ¢ and k if z = 9.87
when ¢ = 15 and z = 18.69 when ¢ = 56.
7. If the velocity of a chemical reaction in which three substances are involved

is proportional to the continued product of the amounts of the substances remaining,
show that the equation between ¢ and the time is

1 L b—c —b_ c—a c a—b .
= M I

8. Solve Ex. 7 if a=b#c; also when a=b=c. Note the very different
forms of the solution in the three cases. .

9. The rate at which water runs out of a tank through a small pipe issuing
horizontally near the bottom of the tank is proportional to the square root of the
" height of the surface of the water above the pipe. If -the tank is cylindrical and
half empties in 30 min., show that it will completely empty in about 100 min.

10. Discuss Ex. 9 in case the tank were a right cone or frustum of a cone.

11. Consider a vertical column of air and assume that the pressure at any level
is due to the weight of the air above. Show that p = p,e—** gives the pressure at
any height A, if Boyle’s Law that the density of a gas varies as the pressure be used.

12. Work Ex. 11 under the assumption that the adiabatic law pccpl+ repre-
sents the conditions in the atmosphere. Show that in this case the pressure would
become zero at a finite height. (If the proper numerical data are inserted, the
height turns out to be about 20 miles. The adiabatic law seems to correspond
better to the facts than Boyle’s Law.)

13. Let I be the natural length of an elastic string, let Al be the extension, and
assume Hooke’s Law that the force is proportional to the extension in the form
Al = ElF. Let the string be held in a vertical position so as to elongate under its
own weight W. Show that the elongation is {kW1l.

14. The density of water under a pressure of p atmospheres is p = 1 4 0.00004 p.
Show that the surface of an ocean six miles deep is about 600 ft. below the position
it would have if water were incompressible.

15. Show that the equations of the curve of equilibrium of a string or chain are
d [,.dr d [, rdp
—\(T— R =0, —(T—= =0
ds( d8)+P ’ ds( ds)+p¢

in polar codrdinates, where R and & are the components of the force along the
radius vector and perpendicular to it.
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16. Show that dT + pSds = 0 and T 4 pRN = 0 are the equations of equilib-
rium of a string if R is the radius of curvature and S and N are the tangential and
normal components of the forces.

17.* Show that when a uniform chain is supported at two points and hangs down
between the points under its own weight, the curve of equilibrium is the catenary.

18. Suppose the mass dm of the element ds of a chain is proportional to the pro-
jection dx of ds on the z-axis, and that the chain hangs in the field of gravity.
Show that the curve is a parabola. (This is essentially the problem of the shape
of the cables in a suspension bridge when the roadbed is of uniform linear density ;
for the weight of the cables is negligible compared to that of the roadbed.)

19. It is desired to string upon a cord a great many uniform heavy rods of
varying lengths so that when the chord is hung up with the rods dangling from it
the rods will be equally spaced along the horizontal and have their lower ends on
the same level. Required the shape the chord will take. (It should be-noted that
the shape must be known before the rods can be cut in the proper lengths to hang
as desired.) The weight of the chord may be neglected.

20. A masonry arch carries a horizontal roadbed. On the assumption that the
material between the arch and the roadbed is of uniform density and that each
element of the arch supports the weight of the material above it, find the shape of
the arch.

21. In equations (4') the integration may be carried through in terms of quadra-
tures if pY is a function of ¥ alone ; and similarly in Ex. 15 the integration may be
carried through if ® = 0 and pR is a function of r alone so that the field is central.
Show that the results of thus carrying through the integration are the formulas

_ Cdy o Cdr/r
S VG- T Vi
(fpYdy)'—C (fpBdr)*—C

22. A particle falls from rest through the air, which is assumed to offer a resist-
ance proportional to the velocity. Solve the problem with the initial conditions
v=0,x=0,%t=0. Show that as the particle falls, the velocity does not increase
indefinitely, but approaches a definite limit V" = mg/k.

z+ C

23. Solve Ex. 22 with the initial conditions v =v,, £ =0, t = 0, where v, is
greater than the limiting velocity V. Show that the particle slows down as it falls.

24. A particle rises through the air, which is assumed to resist proportionally to
the square of the velocity. Solve the motion. Hyperbolic functions are useful.

25. Solve the problem analogous to Ex. 24 for a falling particle. Show that
there is a limiting velocity ¥ = V'mg/k. If the particle were projected/down with
an initial velocity greater than V, it would slow down as in Ex. 23.

26. A particle falls towards a point which attracts it inversely as the square of the
distance and directly as its mass. Find the relation between z and t and determine
the total time T taken to reach the center. Initial conditionsv =0,z =a, t=0.

- S _ H
\’g’—ct=gcos'lg—w——a+\/az—z2, T=nk %(ﬂ) .
a - 2 a 2

* Exercises 17-20 should be worked «b initio by the method by which (4) were derived,
not by applying (4) directly.
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27. A particle starts from the origin with a velocity ¥ and moves in a medium
which resists proportionally to the velocity. Find the relations between velocity
and distance, velocity and time, and distance and time ; also the limiting distance
traversed. '

_k -k
v=V — kx/m, v= Ve "", ke=mV(l—e ""), mV/k.
28. Solve Ex. 27 under the assumption that the resistance varies as V.

29. A particle falls toward a point which attracts inversely as the cube of the
distance and directly as the mass. The initial conditions are 2 =a,v=0, t =0.
Show that 22 = a2 — kt2/a? and the total time of descent is T' = a2/V'k.

30. A cylindrical spar buoy stands vertically in the water. The buoy is pressed
down a little and released. Show that, if the resistance of the water and air be
neglected, the motion is simple harmonic. Integrate and determine the constants
from the initial conditions £ =0, v = V, t = 0, where  measures the displacement
from the position of equilibrium. ’

31. A particle slides down a rough inclined plane. Determine the motion. Note
that of the force of gravity only the component mgsini acts down the plane,
whereas the componentmg cos ¢ acts perpendicularly to the plane and develops the
force umg cosi of friction. Here i is the inclination of the plane and u is the
coefficient of friction.

32. A bead is free to move upon a frictionless wire in the form of an inverted
cycloid (vertex down). Show that the component of the weight along the tangent
to the cycloid is proportional to the distance of the particle from the vertex. Hence
determine the motion as simple harmonic and fix the constants of integration by
the initial conditions that the particle starts from rest at the top of the cycloid.

33. Two equal weights are hanging at the end of an elastic string. One drops
off. Determine completely the motion of the particle remaining.

34. One end of an elastic spring (such as is used in a spring balance) is attached
rigidly to a point on a horizontal table. To the other end a particle is attached.
If the particle be held at such a point that the spring is elongated by the amount
a and then released, determine the motion on the assumption that the coefficient
of friction between the particle and the table is x; and discuss the possibility of
different cases according as the force of friction is small or large relative to the
force exerted by the spring.

85. Lineal element and differential equation. The idea of a curve
as made up of the points upon it is familiar. Points, however, have no
extension and therefore must be regarded not as pieces of a curve but
merely as positions on it. Strictly speaking, the pieces of a curve are
the elements As of arc; but for many purposes it is convenient to re-
place the complicated element As by a piece of the tangent to the curve
at some point of the arc As, and from this point of view a curve is made
up of an infinite number of infinitesimal elements tangent to it. This
is analogous to the point of view by which a curve is regarded as made
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up of an infinite number of infinitesimal chords and is intimately related
to the conception of the curve as the envglope of its tangents (§ 65).
A point on a curve taken with an infinitesimal portion of the tangent
to the curve at that point is called a lineal element of the curve. These
concepts and definitions are clearly equally available in two or three
dimensions. For the present the curves under dis-

cussion will be plane curves and the lineal elements /_\

will therefore all lie in a plane. m
To specify any particular lineal element three

coordinates x, y, p will be used, of which the two (x, y) determine the

point through which the element passes and of which the third p is

the slope of the element. If a curve f(x, y) = 0 is given, the slope at

any point may be found by differentiation,

dy of ,of
p=o =% / 2’ 6
and hence the third coordinate p of the lineal elements of this particular
curve is expressed in terms of the other two. If in place of one curve
J(x, y) =0 the whole family of curves f(x, y¥) = C, where C is an
arbitrary constant, had been given, the slope p would still be found
from (6), and it therefore appears that the third cosrdinate of the lineal
elements of such a family of curves is expressible in terms of # and y.

In the more general case where the family of curves is given in the
unsolved form F(z, y, C)= 0, the slope p is found by the same formula
but it now depends apparently on C in addition to on x and y. If, how-
ever, the constant C be eliminated from the two equations

OF OF

F(,y,C)=0 and — +

ox r=0 R\

7
there will arise an equation ®(z, y, p) = 0 which connects the slope p
of any curve of the family with the coordinates (z, y) of any point
through which a curve of the family passes and at which the slope of
that curve is p. Hence it appears that the three coordinates (z, y, p) of
the lineal elements of all the curves of a family are connected by an equa-
tion ®(z, y, p) = 0, just as the coordinates (z, y, #) of the points of a
surface are connected by an equation ®(x, y, #) = 0. As the equation
®(x, y, ) =0 is called the equation of the surface, so the equation
®(x, y, p) = 0 is called the equation of the family of curves; it is, how-
ever, not the finite equation F(x, y, C) = 0 but the differential equation
of the family, because it involves the derivative p = dy/dx of y by =
instead of the parameter C.
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As an example of the elimination of a constant, consider the case of the parabolas
y?=Cz or y*z=C.
The differentiation of the equation in the second form gives at once
—y2/e2 4+ 2yp/x =0 or y=2zxp
as the differential equation of the family. In the unsolved form the work is
2yp=C, y:=2ypx, y=2zp.

The result is, of course, the same in either case. For the family here treated it
makes little difference which method is followed. As a general rule it is perhaps
best to solve for the constant if the solution is simple and leads to a simple form
of the function f(z, ) ; whereas if the solution is not simple or the form of the
function is complicated, it is best to differentiate first because the differentiated
equation may be simpler to solve for the constant than the original equation, or

because the elimination of the constant between the two equations can be con-
ducted advantageously.

If an equation @ (z, y, p) = 0 connecting the three coordinates of the
lineal element be given, the elements which satisfy the equation may
be plotted much as a surface is plotted; that is, a pair of values (zx, y)
may be assumed and substituted in the equation, the equation may then
. be solved for one or more values of p, and lineal elements with these
values of »p may be drawn through the point (z, ). In this manner the
elements through as many points as desired may be found. The de-
tached elements are of interest and significance chiefly from the fact
that they can be assembled into curves,— in fact, into the curves of a
family F(x, y, C) = 0 of which the equation ®(x, y, p) = 0 is the differ-
ential equation. This is the converse of the problem treated above and
requires the integration of the differential equation @ (x, y, p) = 0 for its
solution. In some simple cases the assembling may be accomplished
intuitively from the geometric properties implied in the equation, in
other cases it follows from the integration of the equation by analytic
means, in other cases it can be done only approximately and by methods
of computation. ’

As an example of intuitively assembling the lineal elements into curves, take
Vit .
Yy

The quantity Vr2 — y2 may be interpreted as one leg of a right triangle of which
y is the other leg and r the hypotenuse. The slope of the hypotenuse is then
+ y/ Vr2 — y? according to the position of the figure, and the differential equation
& (x, ¥, p) = O states that the codrdinate p of the lineal element which satisfies it
is the negative reciprocal of this slope. Hence the lineal element is perpendicular
to the hypotenuse. It therefore appears that the lineal elements are tangent to cir-
cles of radius » deseribed about points of the z-axis. The equation of these circles is

oz, y,p)=y*+9y2—1r2=0 or p=4
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(x— C)% + ¥2 =132, and this is therefore the integral of the differential equation.
The correctness of this integral may be checked by direct integration. For

p=%=;|: Tey—yg or %:dx or ViP—yi=z—C.

86. In geometric problems which relate the slope of the tangent of a
curve to other lines in the figure, it is clear that not the tangent but
the lineal element is the vital thing. Among such problems that of the
orthogonal trajectories (or trajectories under any angle) of a given family
of curves is of especial importance. If two families of curves are so
related that the angle at which any curve of one of the families cuts
any curve of the other family is a right angle, then the curves of either
family are said to be the orthogonal trajectories of the curves of the
other family. Hence at any point (z, ) at which two curves belonging
to the different families intersect, there are two lineal elements, one
belonging to each curve, which are perpendicular. As the slopes of two
perpendicular lines are the negative reciprocals of each other, it follows
that if the codrdinates of one lineal element are (x, ¥, p) the codrdinates
of the other are (z, y, —1/p); and if the cobrdinates of the lineal ele-
ment (x, y, p) satisfy the equation @ (x, y, p) = 0, the codrdinates of the
orthogonal lineal element must satisfy ®(x, y, —1/p) = 0. Therefore
the rule for finding the orthogonal trajectories of the curves F(x,y, C)= 0
is to find first the differential equation & (x, y, p) = 0 of the family, then
to replace p by —1/p to find the differential equation of the orthogonal
Jamily, and finally to integrate this equation to find the family. It may
be noted that if F(z) = X (x, ) + (Y (z, y) is a function of z =z + iy
(§ 73), the families X (z, y) = C and Y (, y) = K are orthogonal.

As a problem in orthogonal trajectories find the trajectories of the semicubical
parabolas (x — €)% = y2. The differential equation of this family is found as

8@—O=2yp, z—C=Gw?}, (Gwi=y or 3p=1h

This is the differential equation of the given family. Replace p by — 1/p and
integrate :

-—iz-_yi or 1+§py‘}=0 or dx+§y‘}dy=0, and z+?y§=C.
3p 2 2 . 8

Thus the differential equation and finite equation of the orthogonal family are found.
The curves look something like parabolas with axis horizontal and vertex toward
the right.

Given a differential equation ®(x, y, p) =0 or, in solved form,
p = ¢ (x,y); the lineal element affords a means for obtaining graphically
and numerically an approximation to the solution which passes through
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an assigned point P (x,, y,). For the value p, of p at this point may be
computed from the equation and a lineal element P P, may be drawn,
the length being taken small. As the lineal element is tangent to the
curve, its end point will not lie upon the curve but will depart from it
by an-infinitesimal of higher order. Next the slope p, of the lineal
element which satisfies the equation and passes

through P, may be found and the element P P, Br—F
may be drawn. This element will not be tangent
to the desired solution but to a solution lying near
that one. Next the element P,P;, may be drawn,
and so on. The broken line PP P,P,---is clearly '
an approximation to the solution and will be a better approximation
the shorter the elements PP, ., are taken. If the radius of curvature
of the solution at P, is not great, the curve will be bending rapidly and
the elements must be taken fairly short in order to get a fair approx-
imation; but if the radius of curvature is great, the elements need not
be taken so small. (This method of approximate graphical solution
indicates a method which is of value in proving by the method of
limits that the equation p = ¢ (x, y) actually has a solution; but that
matter will not be treated here.)

7
A’o(xoy Yor P

Let it be required to plot approximately that solution of yp + z = 0 which
passes through (0, 1) and thus to find the ordinate for z = 0.5, and the area under
the curve and the length of the curve to this point. Instead of assuming the lengths
of the successive lineal elements, let the
lengths of successive increments 6z of il ox 5y z; m '
z be taken as 6x = 0.1. At the start
2,=0,y,=1, and from p=—2/y it
follows that p, = 0. The increment &y
of y acquired in moving along the tan-
gent is 8y = pdx = 0. Hence the new,
point of departure (z,, ¥,) is (0.1, 1) and
the new slope is p; = — z,/y, = — 0.1.
The results of the work, as it is contin-
ued, may be grouped in the table. Hence it appears that the final ordinate is
y = 0.90. By adding up the trapezoids the area is computed as 0.48, and by find-
ing the elements 83 = vV 5x% + 3y the length is found as 0.51. Now the particular
equation here treated can be integrated.

e s 0. | 1.00 0.
0.1 0. 0.1 1.00|—0.1
0.1|—0.01]02]099|—0.2
0.1|—-0.02 03] 097 | —0.31
01|—0.03 |04 094 ]|—0.43
0.1 | —0.04 | 0.5 | 0.90 e

v OO

yw+z=0, ydy + zdx = 0, 22+ y2=C, and hence z24 y2=1

is the solution which passes through (0, 1). The ordinate, area, and length found
from the curve are therefore 0.87, 0.48, 0.52 respectively. The errors in the
approximate results to two places are therefore respectively 3, 0, 2 per cent. If éx
had been chosen as 0.01 and four places had been kept in the computations, the
errors would have been smaller.
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EXERCISES

1. In the following cases eliminate the constant C to find the differential equa-
tion of the family given:

(@) 22 =2Cy + C?, ®B) y=Cz+V1-C?
(v) 22— 9% =Cz, (%) y==ztan (z + O),
z? ¥? dz/)2 @ - —(a*— ) dy
— =1 Ans. (2) 2 —1 2 707 1.
) F—ctmr—c=" ns(da: + ” &
2. Plot the lineal elements and intuitively assemble them into the solution :
do

(@) yp+2=0, (B)2zp—y=0, ()r 1.

5 =
Check the results by direct integration of the differential equations.

3. Lines drawn from the points (& ¢, 0) to the lineal element are equally in-
clined to it. Show that the differential equation is that of Ex. 1 (). What are the
curves?

4. The trapezoidal area under the lineal element equals the sectorial area formed
by joining the origin to the extremities of the element (disregarding infinitesimals
of higher order). (a) Find the differential equation and integrate. (8) Solve the
same problem where the areas are equal in magnitude but opposite in sign. What .
are the curves ?

5. Find the orthogonal trajectories of the following families. Sketch the curves.

(a) parabolas y2? = 2 Cz, Ans. ellipses 222 + y2 = C.
(B) exponentials y = Ce¥=, Ans. parabolas } ky?2 + z = C.
() circles (zx — C)2 + y2 = a?, Ans. tractrices.

@ at—y2=C, () Cy2=2% () ad+yt=0ct
6. Show from the answer to Ex. 1 (¢) that the family is self-orthogonal and
illustrate with a sketch. From the fact that the lineal element of a parabola makes
equal angles with the axis and with the line drawn to the focus, derive the differ-
ential equation of all coaxial confocal parabolas and show that the family is self-
orthogonal.

7. 1f ®(z, y, p) = 0 is the differential equation of a family, show

Q(:c,y, lp—m>=0 and @(z,y,_p+"l)=0
mp, 1—mp

are the differential equations of -the family whose curves cut those of the given
family at tan—1m. What is the difference between these two cases ?

8. Show that the differential equations
dr d
<I>(@,r, ¢)=0 and <I>(-—r2d—‘f,'r, ¢)=0

define orthogonal families in polar codrdinates, and write the equation of the family
which cuts the first of these at the constant angle tan—1m.
9. Find the orthogonal trajectories of the following families. Sketch.

(@) r=eCo, B) r=C(1 — cos¢), (7) r=Cop, (8) 2= C2%cos2¢.
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10. Recompute the approximate solution of yp 4+ = 0 under the conditions of
the text but with éz = 0.05, and carry the work to three decimals.

11. Plot the approximate solution of p = zy between (1, 1) and the y-axis. Take
8z = — 0.2. Find the ordinate, area, and length. Check by integration and
comparison.

12. Plot the approximate solution of p = — z through (1, 1), taking éz = 0.1 and
following the curve to its intersection with the z-axis. Find also the area and the
length.

13. Plot the solution of p = V2 + y2 from the point (0, 1) to its intersection
with the z-axis. Take éz = — 0.2 and find the area and length.

14. Plot the solution of p = s which starts from the origin into the first quad-
rant (s is the length of the arc). Take éz = 0.1 and carry the work for five steps
to find the final ordinate, the area, and thelength. Compare with the true integral.

87. The higher derivatives ; analytic approximations. Although a
differential equation ®(x, y, ¥')=0 does not determine the relation
between x and y without the application of some process equivalent to
integration, it does afford a means of computing the higher derivatives
simply by differentiation. Thus

is an equation which may be solved for y" as a function of z, y, ¥';
and y" may therefore be expressed in terms of x and y by means of
®(x, y, ¥') = 0. A further differentiation gives the equation

Pe o, P o Fo #o
a2 = o T 2 Gy oy Y YoVt 2, YY"
G e o

ay y'ﬂ + a yH + a ',/”' 0
which may be solved for %" in terms of z, ¥, ¥', ¥"'; and hence, by the
preceding results, "' is expressible as a function of x and y; and so
on to all the higher derivatives. In this way any property of the inte-
grals of ®(x, y, ¥') = 0 which, like the radius of curvature, is expressi-
ble in terms of the derivatives, may be found as a function of = and y.

As the differential equation ®(x, y, y') = 0 defines »' and all the
higher derivatives as functions of wx, y, it is clear that the values of the
derivatives may be found as y;, 7, ¥, - -- at any given point (x,, y,).
Hence it is possible to write the series

,77

y=y+%n@—c)+iy@E@—z)+iy @—a)+- (8
If this power series in x — x, converges, it defines y as a function of
x for values of x near x; it is indeed the Taylor development of the
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Sfunction y (§ 167). The convergence is assumed. Then

Y=th+y(@—x)+ 3y @—z)+- -
It may be shown that the function y defined by the series actually
satisfies the differential equation & (x, y, ¥") = 0, that is, that

Q(KB) =¢[x? %"'?/3("‘”_%) + %:’/(;’(x—xo 2-'_' tty ?/6+3/¢’),(x_%) +-- ]=0
for all values of x near z,. To prove this accurately, however, is beyond
the scope of the present discussion; the fact may be taken for granted.

Hence an analytic expansion for the integral of a differential equa-
tion has been found.

As an example of computation with higher derivatives let it be required to deter-
mine the radius of curvature of that solution of y’ = tan (y/x) which passes through
(1, 1). Here the slope y{; j, at (1, 1) is tan 1 = 1.557.  The second derivative is

W _d Y ¥ Y
VeeTmM e e

&
From these data the radius of curvature is found to be
3 2
R=(l+y,2) =secg ad ’ R(1,1)=sec1——l—=3.260. .
v’ Ty —vy tanl—1

" The equation of the circle of curvature may also be found. For as y{;, ;, is positive,
the curve is concave up. Hence (1 — 8.250sin 1, 1 + 3.250 cos 1) is the center of
curvature ; and the circle is

@ + 1.736)% + (y — 2.757)% = (3.250)2.

As a second example let four terms of the expansion of that integral of
z tan ' = y which passes through (2, 1) be found. The differential equation may

be solved ; then
L tan_l(y), Ty _w—vy
&, dz? 22 4 o2

By _ @+ 1)@ -1y + @y — )y — 2ayy® + 23y

da? (x2 + y?)?
Now it must be noted that the problem is not wholly determinate ; for y” is multi-
ple valued and any one of the values for tan—!} may be taken as the slope of a
solution through (2, 1). Suppose that the angle be taken in the first quadrant ; then
tan—14 = 0.462. Substituting this in y”, we find ¥ ;, =— 0.0152 ; and hence may

4

be found y(5 ;, = 0.110. The series for y to four terms is therefore
y =14 0.462 (x — 2) — 0.0076 (x — 2)2 + 0.018 (z — 3)3.

It may be noted that it is generally simpler not to express the higher derivatives in
terms of ¢ and y, but to compute each one successively from the preceding ones.

88. Picard has given a method for the integration of the equation
y' = ¢ (, y) by successive approximations which, although of the highest
theoretic value and importance, is not particularly suitable to analytic
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uses in finding an approximate solution. The method is this. Let the
equation y' = ¢ (x, y) be given in solved form, and suppose (z,, y,) is
the point through which the solution is to pass. To find the first
approximation let y be held constant and equal to y,, and integrate the
equation y' = ¢ (x, y,). Thus

dy=¢(,y)dx; y=y,+ f =¢ (=, y,) dz = fy(), 9

where it will be noticed that the constant of integration has been chosen
so that the curve passes through (x,, 7,). For the second approximation
let y have the value just found, substitute this in ¢ (x, y), and integrate
again. Then

y=y+ f x«#[x’ Yo+ f ,¢ (@ .%)dw]dw = fy(®)- 9"

With this new value for y continue as before. The successive deter-
minations of y as a function of x actually converge toward a limiting
function which is a solution of the equation and which passes through
(x,, ¥,)- It may be noted that at each step of the work an integration
is required. The difficulty of actually performing this integration in
formal practice limits the usefulness of the method in such cases. It is
clear, however, that with an integrating machine such as the integraph
the method could be applied as rapidly as the curves ¢ (x, f(x)) could
be plotted.

To see how the method works, consider the integration of ¥’ = z + y to find the
integral through (1, 1). For the first approximation ¥ = 1. Then

dy = (z + 1) dz, y=3}22+2+ C, y=3122+ 22—} =1,(x).

From this value of y the next approximation may be found, and then still another :
dy=[z+@3Fe*+z—4lds, y=}+2?—4z+}=r@),
dy =[x + f,(z)] da, Y=o +38+ 1+ e+ A

In this case there are no difficulties which would prevent any number of appli-

cations of the method. In fact it isevident that if y’ is a polynomial in z and y, the
result of any number of applications of the method will be a polynomial in z.

The method of undetermined coefficients may often- be employed to
advantage to develop the solution of a differential equation into a
series. The result is of course identical with that obtained by the
application of successive differentiation and Taylor’s series as above;
the work is sometimes shorter. Let the equation be in the form
y' = ¢ (x, y) and assume an integral in the form

y=y0+a1(x—aco)-}-az(x—-aco2+aa(x—a'°)"+-~. 10)
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Then ¢ (x, ¥) may also be expanded into a series, say,
d(x,y) =4+ A, (x —x) + Ay(x —x ) + A (x — 2)° 4.
But by differentiating the assumed form for y we have
yY=a+2a,(@—x)+3a,(x— .xo)'z+ da,(x—x)+ .

Thus there arise two different expressions as series in x — x, for the
function ¢, and therefore the corresponding coefficients must be equal.
The resulting set of equations

a,=4, 20,=4,, 3a,=4, 4o, =4, - 1)

may be solved successively for the undetermined coefficients a,, a,, «,,
a,, - -- which enter into the assumed expansion. This method is partic-
ularly useful when the form of the differential equation is such that
some of the terms may be omitted from the assumed expansion (see

Ex. 14).

As an example in the use of undetermined coefficients consider that solution of
the equation ¥’ = V&2 4+ 32 which passes through (1, 1). The expansion will pro-
ceed according to powers of £ — 1, and for convenience the variable may be changed
tot =z — 1 so that

U_VETITEER, v=ltattattop ot

are the equation and the assumed expansion. One expression for ¥’ is
Y =a,+2a,t+3a? +4atd+--..

To find the other it is necessary to expand into a series in ¢ the expression

¥ =V + 82+ 8(1 + a,t + at? + a,t3)2

If this had to be done by Maclaurin’s series, nothing would be gained over the
method of § 87 ; but in this and many other cases algebraic methods and known
expansions may be applied (§ 32). First square y and retain only terms up to the
third power. Hence

v =2V14+3(1+8a)t+3(1+6a,+3a}) 2+ §(a,a,+ a5) 8.
Now let the quantity under the radical be called 1 + A and expand so that
V=2VI+h=2(1+Lh—}h?+ 5 1).
Finally raise % to the indicated powers and collect in powers of ¢. Then

t 2 3
Y=2+311+38a)(+1(1+6q, +3a12) + § (2,0, + a5)
— (1 +3ay)? — &1 +8a)(1+6a,+38af)|
+d(1+3a)?
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Hence the successive equations for determining the coefficients are a, = 2 and .

2a,=3}(1+8a)ora,=4
8a;=1(1+60,+3a])— (1 +38a,)? ora; = },
4a,=§(0,0y + a5) — s (1 +3a))(1 + 64, +3af) + ¢ (1 + 8a,)® or a, = }3.

Therefore to five terms the expansion desired is
y=14+2@-D+iE@-1)+HE -1+ Hi@E -1
The methods of developing a solution by Taylor’s series or by un-
determined coefficients apply equally well to equations of higher order.
For example consider an equation of the second order in solved form
y¥"' = ¢(x, y, ¥') and its derivatives

Y
=%ty oY

. _ 7% ¢ Y 7, , 0 K 2
o T 2oy T 2oy ¥ YoV 25,0, YY

2
_¢ "2 ¢ H ¢
+ ayﬂ y + a + “ '
Evidently the higher derivatives of ¥ may be obtained in terms of =,
¥, ¥'; and y itself may be written in the expanded form

Y=Y+ y@E—x)+ v @ — )" +3% ‘6’ ./f,>”(x —x,)° (12)
+ (@ — )t +

where any desired values may be attributed to the ordinate y, at which
the curve cuts the line x = x,, and to the slope y; of the curve at that
point. Moreover the coefficients y;, 4;”, - - - are determined in such a way
that they depend on the assumed values of y, and g;. It therefore is
seen that the solution (12) of the differential equation of the second
order really involves two arbitrary constants, and the justification of
writing it as F(x, y, C,, C,) = 0 is clear.

In following out the method of undetermined coefficients a solution
of the equation would be assumed in the form
Y=Y+ Yo( —xo)+ az(x - % '+ a’s(x—xo)s+ (“4(x_ Z,, e (13)
from which y'and y" would be obtained by differentiation. Then if the
series for y and y' be substituted in y" = ¢(z, y, ¥') and the result
arranged as a series, a second expression for y" is obtained and the
comparison of the coefficients in the two series will afford a set of equa~
tions from which the successive coefficients may be found in terms of
¥, and y; by solution. These results may clearly be generalized to the
case of differential equations of the mth order, whereof the solutions
will depend on = arbitrary constants, namely, the values assumed for
y and its first » — 1 derivatives when z =z,
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EXERCISES

1. Find the radii and circles of curvature of the solutions of the following equa-

tions at the points indicated :
(@) ¥ =V + 2 at (0, 1), B) v + = =0 at (z,, ¥,)-

2. Find g, = (5V2—2)/4if v = Va + 32

3. Given the equation y2y”® + zyy? — yy’ + 22 = 0 of the third degree in ¥’ so
that there will be three solutions with different slopes through any ordinary point
(#, ¥). Find the radii of curvature of the three solutions through (0, 1).

4. Find three terms in the expansion of the solution of ¥’ = e=¥ about (2, }).

5. Find four terms in the expansion of the solution of y =log sin zy about (} =, 1).

6. Expand the solution of y’ = zy about (1, y,) to five terms.

7. Expand the solution of ¥’ = tan (y/x) about (1, 0) to four terms. Note that
here z should be expanded in terms of ¥, not y in terms of z.

8. Expand two of the solutions of y2y”® + zyy? — yy’ + 22 = 0 about (— 2, 1)
to four terms.

9. Obtain four successive approximations to the integral of 3’ =y through (1, 1).

10. Find four successive approximations to the integral of ¥’ =z + y through
©, ¥o)-

11. Show by successive approximations that the integral of y’ = y through (0, ,)
is the well-known y = ye*.

12. Carry the approximations to the solution of ¢ = — z/y through (0, 1) as
far as you can-integrate, and plot each approximation on the same figure with the
exact integral.

13. Find by the method of undetermined coefficients the number of terms indi-
cated in the expansions of the solutions of these differential equations about the
points given :

(@) ¥ = Vz + y, five terms, (0, 1), B)v=Vz , four terms, (1, 3),
(v) ¥ =2+ y, n terms, (0, y,), @) y= Vx‘ + 2, four terms, (3, }). -

14. If the solution of an equation is to be expanded about (0, y,) and if the
change of z into — z and y” into — 3’ does not alter the equation, the solution is
necessarily symmetric with respect to the y-axis and the expansion may be assumed
to contain only even powers of x. If the solution is to be expanded about (0, 0)
and a change of z into — z and y into — y does not alter the equation, the solution
is symmetric with respect to the origin and the expansion may be assumed in odd
powers. Obtain the expansions to four terms in the following cases and compare
the labor involved in the method of undetermined coefficients with that which
would be involved in performing the requisite six or seven differentiations for the
application of Maclaurin’s series:

(@) ¥ = ﬁ about (0, 2), (8) ¥’ = sin zy about (0, 1),
(v) ¥ = ex about (0, 0), (8) ¥’ = z8y + zy® about (0, 0).

15. Expand to and including the term z*:
(a) ¥’ = y? + zy about z, = 0, ¥, = a,, ¥, = @, (by both methods),
(B) zy” + ¥’ + y = 0 about z, = 0, ¥y = a,, ¥ = — @, (by und. coeffs.).
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89. Integration by separating the variables. If a differential equa-
tion of the first order may be solved for y' so that

y=¢(@,y) or M(z,y)de+ N(z,y)dy=0 @

(where the functions ¢, M, N are single valued or where only one spe-
cific branch of each function is selected in case the solution leads to
multiple valued functions), the differential equation involves only the
first power of the derivative and is said to be of the first degree. If,
furthermore, it so happens that the functions ¢, M, N are products of
functions of x and functions of ¥ so that the equation (1) takes the form

Y= 8@ y) Or MR)M)dz+ N@)Np)dy=0, (2)
it is clear that the variables may be separated in the manner
dy M,(x) Ny(y)
=¢ (x)de or L rdx+2"Tdy=0 2
4’1(.’9) ¢1( ) Arl(x) “Igcl/) y ) ( ')

and the integration is then immediately performed by integrating each
side of the equation. It was in this way that the numerous problems
considered in Chap. VII were solved.

As an example consider the equation yy’ + zy? = z. Here

ydy + z(y*—1)dz =0 or yi’d_yl + zdz = 0,

and log(32—1)+3422=C or (y2—1)e*=C.

The second form of the solution is found by taking the exponential of both sides
of the first form after multiplying by 2.

In some differential equations (1) in which the variables are not
immediately separable as above, the introduction of some change of
variable, whether of the dependent or independent variable or both,
may lead to a differential equation in which the new variables are sepa-
rated and the integration may be accomplished. The selection of the
proper change of variable is in general a matter for the exercise of
ingenuity ; succeeding paragraphs, however, will point out some special

208
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types of equations for which a definite type of substitution is known
to accomplish the separation.
As an example consider the equation zdy — ydz = z Va2 + y2 dz, where the varia-

bles are clearly not separable without substitution. The presence of Vz? + y2
suggests a change to polar codrdinates. The work of finding the solution is:

z=rcosf, y=rsinf, dx =cos@dr—rsinfdf, dy=sinfdr + rcosfdf;
then zdy — ydx = r?df, = Va?+ y*dx =r?cos fd(r cosb).
Hence the differential equation may be written in the form

r2d§ =12 cos @d (r cos §) or sec@df = d(r cosb),
14 sinéd

and logtan (36 + w) =rcosd + C or log—w—:—o——=a:+ C.
V2 2
Hence _ﬁ_-l-x?/_t}{ = Ce*  (on substitution for 4).

Another change of variable which works, is to let ¥y = vz. Then the work is:

z (vdz + zdv) — vzdz = 22 V1 + v2dz or dv = V1 + v3dz.

dv
Then _IN/T_i =dzx, sinh-lv =2 4+ C, y = zsinh (z + C).
v A

This solution turns out to be shorter and the answer appears in neater form than
before obtained. The great difference of form that may arise in the answer when
different methods of integration are employed, is a noteworthy fact, and renders a
set of answers practically worthless; two solvers may frequently waste more time
in trying to get their answers reduced to a common form than each would spend in
solving the problem in two ways.

90. If in the equation y'= ¢ (x, y) the function ¢ turns out to be
¢ (y/x), a function of y/x alone, that is, if the functions Af and N are
homogeneous functions of x, y and of the same order (§ 53), the differ-
ential equation is said to be homogeneous and the change of variable
y = vx or & = vy will always result in separating the variables. The
statement may be tabulated as:

. dy _ (y . y=vx
if Y ¢<x>, substitute { or v, ®)

" A sort of corollary case is given in Ex. 6 below.

x
As an example take y(l + e:)d:c + e/ (y — z)dy = 0, of which the homogeneity
is perhaps somewhat disguised. Here it is better to choose £ = vy. Then

(l+e)dz+er(1—v)dy=0 and dx=vdy + ydv.

Hence v + ev)d; 14 e’)dv=0
P+ e)dy+y(l+e)dv o0 tiie

x
Hence logy +log(v+e)=C or z+ ye=C.
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If the differential equation may be arranged so that

Z—i + X (x)y = X,(x)y* or % + Y (y)z = Y, (y)a", @

where the second form differs from the first only through the inter-
change of x and y and where X, and X, are functions of x alone and
Y, and Y, functions of y, the equation is called a Bernoulli equation ; and
in particular if » = 0, so that the dependent variable does not occur on
the right-hand side, the equation is called linear. The substitution
which separates the variables in the respective cases is

y=ve JE@E or g = e ST, ®)

To show that the separation is really accomplished and to find a general
formula for the solution of any Bernoulli or linear equation, the sub-
stitution may be carried out formally. For

The substitution of this value in the equation gives
dv e~ Xz = X yrgmn [Tz o dv_ X, g0=m Xide gy,
dx 2 i 2
Hence v'=r=(1—n) f . m[Xdz gy when nw 1,*
or g = (1 — n)e»D S X,d:r[ f X0 [ Xz dx] . (6)

There is an analogous form for the second form of the equation.

The equation (z%y® + xy)dy = dzr may be treated by this method by writing it as

d-i';—yazzy"a:2 sothat Y, =—9, Y, =23, n=2.

dy
Then let z= ve‘f vy — vei ”
Then d—z—y:czd—ve%'ﬂ+vyeiw—yvei"’=@e*v’
dy dy d
and d_v ei L yév2e¥® or @ = y‘*e% 'ﬁdy,
dy v2
and —%:(y2—2)eiy’+0 or £=2—y2+ Ce-}'ﬂ.

This result could have been obtained by direct substitution in the formula
gl-n — (1 — n) e(n-l)f dev[fyze(l-u)f}',dy dy] ,

but actually to carry the method through is far more instructive.

* If n=1, the variables are separated in the original equation.
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EXERCISES

1. Solve the equations (variables immediately separable) :
(@) I+2)y +(1—y)zy =0, Ans. zy = Ce=-,
(8) a(zdy + 2 ydz) = zydy, (v) Vi—2dy +V1— y2de =0,
©G) Q+v)de— @+ Vity)A+oiay=o.

2. By various ingenious changes of variable, solve :

(@) @+ v)% =a?, Ans. x4+ y =atan(y/a + C).
(B) (z—y?%)dz + 2zydy =0, () 2dy — yda = (2* + y?) dz,
) y=x—y, () w+r+ac+1=0.

3. Solve these homogeneous equations : ‘
(a) (2\/51—3)1/4-1/:0, Ans. \/m+logy=0.

v

B) zer+y—2ay =0, Ans. y? (22 + y?) = Cxb.
(v) (% + ¥?)dy = zydz, @) oy —y=Vaz2 + 92

4. Solve these Bernoulli or linear equations :
(@) ¥ + y/x =93, Ans. zylogCzr 4+ 1=0.
(B) ¥ —ycscz =cosz — 1, Ans. y =sinx + Ctan}z.
() 2y’ + y=y?logz, Ans. y-1=logz + 1+ Cz.
(3) (1 +»?)de + (tan—1y — z)dy=0 () ydz + (ax?ym — 2z)dy = 0,
ey —ay=2z+1, (n) ¥ + 3 y2 = cosz.

5. Show that the substitution y = vz always separates the variables in the
homogeneous equation ¥’ = ¢ (y/x) and derive the general formula for the integral.

6. Let a differential equation be reducible to the form

dy (alz + by + c,) , a,b, — ab, # 0,

E="’ @, + byy + ¢, or a,b,—azb =0.

In case a)b, — ab; # 0, the two lines a,z + b,y +¢; =0 and a2 + by + ¢, =0
will meet in a point. Show that a transformation to this point as origin makes
the new equation homogeneous and hence soluble. In case a,b, — a,b, = 0, the
two lines are parallel and the substitution z = a,x 4 by or z=ax + by will
separate the variables,

7. By the method of Ex. 6 solve the equations:

(@) By—Tz+T)dz+(Ty—3z+3)dy=0, Ans. (y—z+1)%(y +2—1)"=C.
B) Cz+8y—56)y+Bx+2y—5)=0, (v) 4z+38y+1)de+ (x+y+1)dy=0,
(8) @2 +1) =4z + 2y — 1), 0 2= (1)

e \2z—2y+1

8. Show that if the equation may be written as W (xy)dx + zg (xy)dy = 0,

__~where f and g are functions of the product zy, the substitution v = xy will sepa-

rate the variables.

9. By virtue of Ex. 8 integrate the equations :
(@) (¥ + 22y — 2%y¥)dx + 223ydy = 0, Ans. ¢ + 22y = C (1 — 2p).
(8) (v + zy?)dz + (x — z?y)dy =0, ) A+ zy)ay?de + (zy — 1)zdy = 0.
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10. By any method that is applicable solve the following. If more than one
method is applicable, state what methods, and any apparent reasons for choos-

ing one:

(@) ¥ + ycosx = y*sin 2z, - (B) (2% + 3y%)dx = (x® + 2xy?)dy,

(v) dz+2y—1y +22+y+1=0, (3) w +nl=g2

(¢) ¥'siny + sinz cosy =sinz, ) Va2 +22(1—-y)=z+vy,

(n) @B+ +ay+ Dy + @ -2t —ay + Doy, (0) ¥ =sin(z—y),
-

() zydy — y?dz = (z + y)%e =dzx, (x) (1—y?)dr=azy(z+1)dy.

91. Integrating factors. If the equation Mdx + Ndy = O by a suita-
ble rearrangement of the terms can be put in the form of a sum of total
differentials of certain functions «, v,---, say

du+dv+4---=0, then u+v+4...=C (M

is surely the solution of the equation. In this case the equation is called
an exact differential equation. It frequently happens that although the
equation cannot itself be so arranged, yet the equation obtained from
it by multiplying through with a certain factor u(x, y¥) may be so
arranged. The factor u(z, y) is then called an integrating factor of the
given equation. Thus in the case of variables separable, an integrating
factor is 1/M,N,; for
1

(MM, dz + NN, dy] =223 g 4 50 4, o, (8)
MN,

Ny(=) My(y)
and the integration is immediate. Again, the linear equation may be
treated by an integrating factor. Let

dy + X ydx = X, dr and p= ef Hdz o 9
then eJ dy + Xlef Tl gy = e Tz x dx 10)

or d [3/ef “"""] = eJ xua= X, dx, and yef Didz — f e xax Xdre. (11)

In the case of variables separable the use of an integrating factor is
therefore implied in the process of separating the variables. In the
case of the linear equation the use of the integrating factor is somewhat
shorter than the use of the spbstitutién for separating the variables.
In general it is not possible to hit upon an integrating factor by inspec-
tion and not practicable to obtain an integrating factor by analysis, but
the integration of an equation is so simple when the factor is known,
and the equations which arise in practice so frequently do have simple
integrating factors, that it is worth while to examine the equation to
see if the factor cannot be determined by inspection and trial. To aid
in the work, the differentials of the simpler functions such as
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day = ady + ydz, §d(@ + y) = adx + ydy,
y _ zdy — ydx L% _ ydz — xdy
d.z == d tan v =Ty 12)

should be borne in mind.

Consider the equation (zte* — 2mzy?)de + 2ma2ydy = 0. Here the first term
zherdz will be a differential of a function of « no matter what function of z may be
assumed as a trial x. With u = 1/z* the equation takes the form :

ez +2m (”;ﬂ-@> de¢+mdy =0.

The integral is therefore seen to be e* + my?/z? = C without more ado. It may
be noticed that this equation is of the Bernoulli type and that an integration by
that method would be considerably longer and more tedious than this use of an
integrating factor. -

Again, consider (z + y)dx — (z — y)dy = 0 and let it be written as

zde + ydy + ydz —zdy =0; try u =1/(2?+9?);

zde + ydy | yde — zdy
22+ y? 22+ 2

and the integral is log V2 + 3% + tan—1(z/y) = C. Here the terms zdx + ydy

_ strongly suggested #2 4+ »? and the known form of the differential of tan—1(z/y)

corroborated the idea. This equation comes under the homogeneous type, but the
use of the integrating factor considerably shortens the work of integration.

then

=0 or —dlog(z2+y2)+dtan-1y 0,

92. The attempt has been to write Mdx + Ndy or u (Mdx + Ndy)
as the sum of total differentials du + dv + - - -, that is, as the differential
dF of the function % 4 v + ---, so that the solution of the equation
Mdx + Ndy = 0 could be obtained as F = C. When the expressions
are complicated, the attempt may fail in practice even where it theoreti-
cally should succeed. It is therefore of importance to establish condi-
tions under which a differential expression like Pdx + Qdy shall be the
total differential dF of some function, and to find a means of obtaining
F when the conditions are satisfied. This will now be done.

oF oF
Suppose Pdx + Qdy = dF = P dx + 8_3/ dy; (13)
_oF  _ _OF oP _0Q _ F
then P=% =% T iy

Hence if Pdx + Qdy is a total differential dF, it follows (as in § 52) that
the relation P, = Q; must hold. Now conversely if this relation does
hold, it may be shown that Pdx + Qdy is the total differential of a
function, and that this function is
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r= [ P@ s+ [y
v

or r= [“e@ nay+ [Pe v,
Y

where the fixed value , or y, will naturally be so chosen as to simplify
the integrations as much as possible.

To show that these expressions may be taken as F it is merely neces-
sary to compute their derivatives for identification with P and Q. Now

a4

oF _ 9
% fP(w, y)dw+—fQ(wo, y)dy =P (2, y),

9F3

e ,fP(w,y)dw+ fQ(wo,y)dy —'dew+Q(aco,y)

These differentiations, applied to the first form of F, require only the
fact that the derivative of an integral is the integrand. The first turns
out satisfactorily. The second must be simplified by interchanging the
order of differentiation by y and integration by x (Leibniz’s Rule,
§ 119) and by use of the fundamental hypothesis that P, = q}.

0 ® *oP
a—f Pdx 4 Q (=, y)=f a—dx+Q(xo, Y)

+ Q(xoy y)=Q(x, y).

£

*0
—f —de"'Q(xo, ./) Q(x’ 3/)

The identlty of P and Q with the derivatives of F is therefore estab-
lished. The second form of F would be treated similarly.

Show that (22 + logy)dz + z/ydy = 0 is an exact differential equation and obtain
the solution. Here it is first necessary to apply the test P, = Q. Now

0z _ 1
-—ac2+loy_— and —=-=-
( S Y) v

Hence the test is satisfied and the integral is obtained by applying the formula :
fz(ac‘-’ + logy)dz +f9dy =1:c3 +zlogy=C
0 Y 3
vy 1
= 2 = 23 =C.
or j; ydy+f(x + log 1) de a:logy+3:z:8 c
It should be noticed that the choice of z, = 0 simplifies the integration in the first
case because the substitution of the lower limit 0 is easy and because the second

integral vanishes. The choice of y, = 1 introduces corresponding simplifications in
the second case.
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Derive the partial differential equation which any integrating factor of the differ-
ential equation Mdx + Ndy = 0 must satisfy. If u is an integrating factor, then

uMdz + uNdy = dF and M-8
oy o0x
Hence Ma—“ - N?—“ = (ﬁ_ aM) (16)
oy or ox oy

is the desired equation. To determine the integrating factor by solving this equa-
tion would in general be as difficult as solving the original equation; in some
special cases, however, this equation is useful in determining u.

93. It is now convenient to tabulate a list of different types of dif-
ferential equations for which an integrating factor of a standard form
can be given. With the knowledge of the factor, the equations may
then be integrated by (14) or by inspection.

EquaTioN Mdx + Ndy =0: FacTtor p:
I. Homogeneous Mdx + Ndy = 0, m
IL Bernoulli dy + X ydx = Xy dx, y et [ Xudz,
1
IIL. M =yf(zy), N =29 (zy), Mo — Ny
o on
IV. If ay_Nax =f(@), o7,
o _ o
V.1 Z_W_ s, oJra,
pkm—1—aydn—1-8
VL. Type z<y®(mydz + nxdy) = 0, . arb.}tgy. ’
i ghm—1=aydn—1-8,
VIIL. x=yB(mydx + nxdy) + xvy®(pydx + qxdy) =0, % defermined.

The use of the integrating factor often is simpler than the substitu-
tion y = vz in the homogeneous equation. It is practically identical
with the substitution in the Bernoulli type. In the third type it is
often shorter than the substitution. The remaining types have had no
substitution indicated for them. The proofs that the assigned forms
of the factor are right are given in the examples below or are left as
exercises. ’

‘To show that u = (Mz 4+ Ny)-1 is an integrating factor for the homogeneous
case, it is possible simply to substitute in the equation (15), which x must satisfy,
and show that the equation actually holds by virtue of the fact that M and N are
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homogeneous of the same degree, — this fact being used to simplify the result by
Euler’s Formula (30) of § 563. But it is easier to proceed directly to show

0 M 8( N ) 'a(l l) 6(1 ¢) Ny
— = — or —(-——)=—(-——), where ¢ =_—=.
oy Mz + Ny ox \Mz + Ny, cy\el+ ¢ cx\yl+ o Mz

- Owing to the homogeneity, ¢ is a function of y/x alone. Differentiate.
i(l 1 )__1 ¢ 1_1 ¢ .—_?/_2(1 ¢ )
cy\zl+ ¢ c(1+o)2z y(Q+¢)2 22 ox\yl+og
As this is an evident identity, the theorem is proved.

To find the condition that the integrating factor may be a function of z only
and to find the factor when the condition is satisfied, the equation (15) which u
satisfies may be put in the more compact form by dividing by u.

10 leu_oN oM dlogu _ -ologu N oM

M-——-N-—=——— or M =———. (19)
®oy ®noxr oz oy oy ox ox ey

Now if 4 (and hence log x) is a function of z alone, the first term vanishes and

dlogp _ M, — N _ _
-sz——T_f(z) or IOgM—ff(I)dz-

This establishes the rule of type IV above and further shows that in no other case
can u be a function of z alone. The treatment of type V is clearly analogous.

Integrate the equation zty (8ydx + 2zdy) + «%(4ydx + 32dy) = 0. This is of
type VII; an integrating factor of the form u = zPys will be assumed and the ex-
ponents p, ¢ will be determined so as to satisfy the condition that the equation be
an exact differential. Here

P=uM=8ap+4yo+2 4 42P+2yo+1l Q= uN = 2zP+5y0+1 4 3zp+8yo,

Then P, =8(c+2)ap+iyo+1 4 4(c + 1) 2P+ 2y

=2(p+ 5)aP+4yT+1 4 3(p + 3)zP+2y7 = Q..
Hence if Bc+2)=2(pp+5) and 4(c+1)=3(p +3),
the relation P, = @ will hold. This gives ¢ =2, p = 1. Hence u = zy?,
and £I(3x5y"+4x3y3)d.t+f0dy=§x“y‘+x4y3=0

is the solution. The work might be shortened a trifle by dividing through in the
first place by z2. Moreover the integration can be performed at sight without the
use of (14).

94. Several of the most important facts relative to integrating factors
and solutions of Mdx + Ndy = 0 will now be stated as theorems and
the proofs will be indicated below.

1. If an integrating factor is known, the corresponding solution may
be found ; and conversely if the solution is known, the corresponding
integrating factor may be found. Hence the existence of either implies
the existence of the other.

2. If F= C and G = C are two solutions of the equation, either must
be a function of the other, as G = ®(F); and any function of either is
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a solution. If u and v are two integrating factors of the equation, the
ratio u/v is either constant or a solution of the equation; and the prod-
uct of u by any function of a solution, as u®(F), is an integrating fac-
tor of the equation.

3. The normal derivative dF/dn of a solution obtained from the
factor  is the product p VM? 4+ N? (see § 48).

It has already been seen that if an integrating factor x is known, the corre-
sponding solution F = C may be found by (14). Now if the solution is known, the
equation

dF = F/dz + F,dy = u(Mdz + Ndy) gives F;=uM, F;=uN;

and hence u may be found from either of these equations as the quotient of a
derivative of F by a coefficient of the differential equation. The statement 1 is
therefore proved. It may be remarked that the discussion of approximate solutions
to differential equations (§§ 86-88), combined with the theory of limits (beyond the
scope of this text), affords a demonstration that any equation Mdz + Ndy = 0,
where M and N satisfy certain restrictive conditions, has a solution ; and hence it
may be inferred that such an equation has an integrating factor.
If 4 be eliminated from the relations F, = uM, F, = uN found above, it is seen
that
MF,— NF;=0, andsimilarly, MG, — NG,=0, (16)

are the conditions that F and G should be solutions of the differential equation.
Now these are two simultaneous homogeneous equations of the first degree in M
and N. If M and N are eliminated from them, there results the equation

FyG - F,Gy=0 or (% JI=J(F,6)=0, (16)
x Ty

which shows (§ 62) that F and G are functionally related as required. To show
that any function & (F) is a solution, consider the equation

Mo, — No, = (MF, - NF))¥'.

As F is a solution, the expression MF, — NF, vanishes by (16), and hence M®, — N&,
also vanishes, and @ is a solution of the equation as is desired. The first half of 2
is proved.

Next, if u'and » are two integrating factors, equation (15’) gives

Malogn_Nalogu= Malogv_Nalogr or Malogu/v_Nalogu/v=0’
oz oy oz oy oz

On comparing with (16) it then appears that log (»/») must be a solution of the
equation and hence u/v itself must be a solution. The inference, however, would
not hold if u/» reduced to a constant. Finally if x is-an integrating factor leading
to the solution F = C, then

- dF = u(Mdz + Ndy), and hence u®(F)(Mdz + Ndy)=d f ®(F)dF.

It therefore appears that the factor u® (F) makes the equation an exact differen-
tial and must be an integrating factor. Statement 2 is therefore wholly proved.
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The third proposition is proved simply by differentiation and substitution. For

dF _3Fdz oF dy

— % dy
dn oz dn aydn"‘Mdn+"Ndn

And if T denotes the inclination of the curve F = C, it follows that

tanr=@=—£, sinr=@=_N__, —cosr=@=__M_.
dz N dn /M2 + N2 dn /M2 1 N2
Hence dF/dn = pV M2 + N2 and the proposition is proved.
EXERCISES
1. Find the integrating factor by inspection and integrate :
(a) zdy — ydz = (2? + 3*) de, (B) (y* — zy)dz + 2%y =0,
(v) ydz — xzdy + logxdz = 0, @) yQ2zxy + e)dx — erdy = 0,
(e) (1 4+ zy)ydz + (1 — zy)ady =0, ) (@—y?)de + 2xydy =0,
(n) (@y* + y)dz — ady =0, (6) a(zdy + 21/dw) = aydy,
(¢) (@ + 9% (wdz + ydy) + V1 + (& + ?) (yde — 2dy) =
(x) a?ydz — (2® + y®)dy =0, () zdy — vdw —eVEs y2dy.
2. Integrate these linear equations with an integrating factor :
(@) ¥ + ay =sinbz, B) v + ycotz =sec,
(M @+ )y —2y=(@+D () QA +ah)y +y = et

and (8), (3), (¢) of Ex. 4, p. 206.

3. Show that the expression given under II, p. 210, is an integrating factor for
the Bernoulli equation, and integrate the following equations by that method :
(a) ¥ —ytanz = ytsecz, ® 3y +yrr=2—1,
(v) ¥ + ycosz = ynsin2z, (8) dz + 2zydy = 2 ax®ydy,
and (a), (7), (¢), (n) of Ex. 4, p. 206.
4. Show the following are exact differential equations and integrate :
(a) (B22+62y?)de+ (62%y+49y?)dy=0, (B) sinz cosydr + cosz sinydy = 0,
(y) Bz—2y+ 1)+(2y-2a:—3)dy=0, (9) (x® + Bzy?)dx + (y° + 3aZy)dy =0,
x
()2“”’+1 © (1+e5)dz+er7<1-§)dy=o,
Y

() e?v(ac?+y2 +2x)dz+ 2yerdy = 0, (0) (ysinz — 1)dz + (y — cosz)dy = 0.

5. Show that (Mz — Ny)-1is an integrating factor for type III. Determine
the integrating factors of the following equations, thus render them exact, and
integrate :

(a) (v + z)de + zdy = 0, B) (¥?— zy)dz + z2dy = 0,

(7v) (@ + y?)dz — 2zydy = 0, (8) (x%y%+ xy)yde + (x%y2 — 1)ady = 0,
(e) (Vay—1)zdy— (Vz +1)yd:c 0, () 2%dz + (3z2y + 29%)dy =0,

and Exs. 3 and 9, p. 206.

6. Show that the factor given for type VI is right, and that the form given for
type VII is right if k satisfies k (gm — pn) = g(a — v) — p (B — 9).
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7. Integrate the following equations of types IV-VII :
(@) @*+2y)de+ (@® + 2y — 42)dy =0, () (#*+y*+ 1)dz — 2zydy =0,
(v) Bz + 6zy8ydz+ 222+ 3zy)dy =0, (3) (2z%%+y)— (LPy—32z)y'=0,
(€) (2z%y —3yt)de + (82® + 2zy3)dy =0,
(£) @—v)sin Bz —2y) + ¢ sin (¢ — 29) =
8. By virtue of proposition 2 above, it follows that if an equation is exact and
homogeneous, or exact and has the variables separable, or homogeneous and under
types IV-VII, so that two different integrating factors may be obtained, the solu-
tion of the equation may be obtained without integration. Apply this to finding
the solutions of Ex. 4 (8), (3), (v); Ex. 5 (a), (7).

9. Discuss the apparent exceptions to the rules for types I, III, VII, that is,
when Mz + Ny=0or Mz — Ny=0orgm—pn=0.

10. Consider this rule for integrating Mdz + Ndy=0 when the equation is known
to be exact : Integrate Mdx regarding ¥ as constant, differentiate the result regard-
ing y as variable, and subtract from N ; then integrate the difference with respect
to ¥. In symbols,

C=f(Mda:+Ndy)=fMdz+f<N—%fMdz)dy.

Apply this instead of (14) to Ex. 4. Observe that in no case should either this
formula or (14) be applied when the integral is obtainable by inspection.

95. Linear equations with constant coefficients. The type

dy drly dy
@ dax™ + Lot dan -1 n—1 d
of differential equation of the nth order which is of the first degree in
y and its derivatives is called a linear equation. For the present only
the case where the coefficients «, a,, ---, @, _,, a, are constant will be
treated, and for convenience it will be assumed that the equation has
been divided through by ¢, so that the coefficient of the highest deriva-
tive is 1. Then if differentiation be denoted by D, the equation may be
written symbolically as

(D" +aD"'4+... 4+, D+ a,)y=X%, am
where the symbol D combined with constants follows many of the laws
of ordinary algebraic quantities (see § 70).

The simplest equation would be of the first order. Here

+---+a Yy ay = X(x) an

dy

;l; —ay=X and y=ev f e~ **Xdx, (18)

as may be seen by reference to (11) or (6). Now if D — a, be treated
as an algebraic symbol, the solution may be indicated as

DP—a)y=X and y=- 1 X, (18"

D —a,
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where the operator (D — a,)~! is the inverse of D — a,. The solution
which has just been obtained shows that the interpretation which must
be assigned to the inverse operator is

D _]_'_ a (%) =en= f e~ (%) dz, ' 19)
where (*) denotes the function of x upon which it operates. That the
integrating operator is the inverse of D — a, may be proved by direct
differentiation (see Ex. 7, p. 152).

This operational method may at once be extended to obtain the solu-
tion of equations of higher order. For consider

da?

Let a, and @, be the roots of the equation D* 4 ¢ D + @, = 0 so that
the differential equation may be written in the form

[D— (g +a)D+agly=X o (D—a)(D—a)y=X. (20)

The solution may now be evaluated by a succession of steps as

d
+a1;l%+a2y=X or (D’+aeD+a)y=2X. (20)

1 < \Z —ayx
(D—az)y—b_al.’t_e‘ fe = X dx,

1 1 a — a a7z — Nx
y_D—az[D—aIX]= *’fe ”[e fe 'de]
or y = e f e("l“")’[ f e‘“l’de]dx. (20"

The solution of the equation is thus reduced to quadratures.
The extension of the method to an equation of any order is immediate.
The first step in the solution is to solve the equation

D+aD'+.--+a, 1 D+a,=0

so that the differential equation may be written in the form

D—a)(D—ay)---(D—a,,)(D—a)y=X; @am
whereupon the solution is comprised in the formula

Y= g“n’fg("n-x-“n)zf...fe(“:—“a)ffe—lxl‘x(dx)”’ (17”')

where the successive integrations are to be performed by beginning
upon the extreme right and working toward the left. Moreover, it
appears that if the operators D — «,, D — «,_,,---, D — a,, D — @, were
successively applied to this value of y, they would undo the work here
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done and lead back to the original equation. As 7 integrations are
required, there will occur n arbitrary constants of integration in the
answer for y.

As an example consider the equation (D® — 4 D)y = 2. Here the roots of the
algebraic equation D® — 4 D = 0 are 0, 2, — 2, and the solution for y is

1 1 1
—_— 2= fezz e—2ze—ﬁzf 2222 (dx)3

Y=DD—2D+2 S eremi(dz)’.
The successive integrations are very simple by means of a table. Then

feﬁ%ﬁdz = 432923:_ }uﬁz + *ezz + Cl’

fe—“fe“x“’(dz)’ = f(izge'“— jre—27 4 Je-22 4 Cre—47)da
= —}2% 22— }e-224 Cie-42 4+ C,,

= fe“fe-‘zfe’%’(dz)a = f(- }2% — } + Cie-22 4 Cye2)dz
=—p2®— 3z + Cie-224 C,e2x 4+ Cy.
This is the solution. It may be noted that in integrating a term like C,e—4= the
result may be written as C,e— %<, for the reason that C, is arbitrary anyhow ; and,
moreover, if the integration had introduced any terms such as 2 e~22, } €2, 5, these
could be combined with the terms C,e-2%, C,e2%, C,; to simplify the form of
the results.
In case the roots are imaginary the procedure is the same. Consider
dﬁ +y=sinz or (D®+1)y=sinz or (D+1%)(D—i)y=sinz.

Then y:Dl_%D:_zsm:t;—e“’fe—2'-=fe“fsm:o:(d:¢:)2 i=V—1.

The formula for f es= sin brdr, as given in the tables, is not applicable when

a? 4+ b2 = 0, as is the case here, because the denominator vanishes. It therefore be-
comes expedient to write sin  in terms of exponentials. Then

eir — o—ix

; i (i€ F— € .
y=eﬂfe-2'¢fewT-(dz)2; for sinz = 57

1 . . . 1 . 1.
Now -2—ie'¢fe—2'¢f(e2w—l)(dx)2=—‘e'=fe-2'1[§e?'-t—z+ Cl]d:c

=lze"1=[1 z+ —-e—ﬁﬂx-—%e-ﬁu+ Ce—2iz 4 Cz]

2i |29 2i
T e 4 =iz :
==—z——3 + C,e~= + C,eix,
Now Cie=% + Cpe= = (Cy + Cl)w'l' (G, — Cl)l%.

Hence this expression may be written as C, cosz + C,sinz, and then
y=—4%xcosz + C,cosz + C,sinz.

The solution of such equations as these gives excellent opportunity to cultivate the
art of manipulating trigonometric functions through exponentials (§ 74).
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96. The general method of solution given above may be considerably
simplified in case the function X (x) has certain special forms. In the
first place suppose X = 0, and let the equation be P(D)y = 0, where
P (D) denotes the symbolic polynomial of the nth degree in D. Suppose
the roots of P(D) = 0 are a,, a,, - - -, @, and their respective multiplicities
are m,, m,,---, m;, so that

D —a)m™---(D—a)™(D—a)y=0

is the form of the differential equation. Now, as above, if

i 1 aHx M
(D —a)ymy =0, fhen y='('l—)Tl)ml0=e‘ ff()(dx) 1,

Hence y=e"(C,+Cpx + C@* +--- + C, x™1)

is annihilated by the application of the operator (D — a,)™, and there-
fore by the application of the whole operator P (D), and must be a solu-
tion of the equation. As the factors in P (D) may be written so that
any one of them, as (D — «;)™, comes last, it follows that to each factor
(D — a)™ will correspond a solution

Yi= € (Cop + Cut + -+ + Cima™ ™), P(D)y;=0,
of the equation. Moreover the sum of all these solutions,

i=k

y= 2, ¢ (Coy+ Cigt + -+ Cima™ 1), (21)
i=1

will be a solution of the equation; for in applying P (D) to y,
P(D)y = P(D)y, + P(D)y,+ -+ P(D)y, = 0.

Hence the general rule may be stated that: The solution of the dif-
JSerential equation P(D)y = 0 of the nth order may be found by multiply-
ing each e*® by a polynomial of the mth degree in x (where a is a root of
the equation P (D)= 0 of multiplicity m and where the coefficients of the
polynomial are arbitrary) and adding the results. Two observations
may be made. First, the solution thus found contains n arbitrary con-
stants and may therefore be considered as the general solution; and
second, if there are imaginary roots for P (D) = 0, the exponentials aris-
ing from the pure imaginary parts of the roots may be converted into
trigonometric functions.

As an example take (D* + 2D8% 4 D?)y = 0. The rootsare 1,1,0,0. Hence the
solution is ?I=e"f(01 + C2) + (C; + C,2).
Again if (D* + 4)y =0, the roots of D* 4+ 4 =0 are + 1 + i and the solution is
Y = Ce+Dz 4 Chel-0z 4 Che(=1+ Dz 4 Ce(=1-9x
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or “y =ex(Cei* + Che— ) + e~ (Cgeir + C,e—i)
=e*(Cycosx + C,8inz) + e~*(Cycosz + C,sinz),
where the new C’s are not identical with the old C’s. Another form is
y=e*Acos(x+v)+ e*Bcos (z + 9),

where v and 8, A and B, are arbitrary constants. For

C,co8z + Cpsinz = VCE + C}[

Cl 02 .
—————c082 + ————sinz|,
voi+c} v+ ]
and if y =tan-1 (— %‘:), then C;cosz + Cysine= VO 4 C2cos(z+ 7).

Next if  is not zero but if any one solution I can be found so that

P(D)I= X, then a solution containing n arbitrary constants may be
Jound by adding to I the solution of P(D)y = 0. For if

P(D)I=X and P(D)yy=0, then P(D)(I+y)=X.

It therefore remains to devise means for finding one solution 7. This
solution I may be found by the long method of (17"'), where the inte-
gration may be shortened by omitting the constants of integration since
only one, and not the general, value of the solution is needed. In the
most important cases which arise in practice there are, however, some
very short cuts to the solution I. The solution I of P(D)y =X is
called the particular integral of the equation and the general solu-
tion of P(D)y = 0 is called the complementary function for the equa-
tion P(D)y = X.

Suppose that X is a polynomial in x. Solve symbolically, arrange
P (D) in ascending powers of D, and divide out to powers of D equal to
the order of the polynomial X. Then

P(D)I = X, I=P—TI—D)X=[Q(D)+ %] X, (22)

where the remainder R (D) is of Aigher order in D than X in 2. Then
P(D)I=P(D)Q(D)X+R(D)X, R(D)X=0.

Hence Q(D)Y{may be taken as 1, since P(D)Q(D)X = P(D)I = X. By
this method the solution I may be found, when X is a polynomial, as
rapidly as P (D) can be divided into 1; the solution of P(D)y = 0 may
be written down by (21); and the sum of I and this will be the required
solution of P (D)y = X containing » constants.

As an example consider (D? + 4 D? + 3 D)y = 2. The work is as follows:

1 1 1 1I[1 4. .13 . R(D)
I=—— 2= —— — 2= _|_-—_-D4+—-D2 2,
3D+ 4D°+ D°° D3+4D+ DB" D[s o Tam +P(D)]°’
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1/1 4 18 1 4 26
I=QD)a2==(=—=D+—=—D2)2f=—28 ——22 4+ —u=.
Hence QD)= D(3 o tar )x 5" "9 Taor®
For D3 + 42 4+ 8 D = 0 the rootsare 0, — 1, — 8 and the complementary function
or solution of P(D)y = 0 would be C, + C,e-% + Cge— %=, Hence the solution of
the equation P(D)y = z2 is
Y=C,+ Cpe=®+ Cye—83= 4 J28 — 422 & 3§ .
It should be noted that in this example D is a factor of P (D) and has been taken out
before dividing; this shortens thé work. Furthermore note that, in interpreting
1/D as integration, the constant may be omitted because any one value of I will do.

97. Next suppose that X = Ce*. Now De™ = ae®®, D¥e™ = a*e™,

and  P(D)e==P(a)e=; hence P (D) [ Pfa) e""] = Ce™.
ax p— C ax
But P(D)I = Ce*, and hence I= @ e (23)

is clearly a solution of the equation, provided « is not a root of P(D) =0.
If P(a) =0, the division by P (a) is impossible and the quest for I has
to be directed more carefully. Let a be a root of multiplicity m so that
P (D)= (D —a)"P,(D). Then

C

P(D)(D—ay"l=Ce=, (D—a)l=7 @ e,
. c ax o m ﬂ.aiz_m_ .
and 1=ggge [ [ = @3)

For in the integration the constants may be omitted. It follows that
when X = Ce*, the solution I may be found by direct substitution.
Now if X broke up into the sum of terms X = X, + X, +--- and if
solutions I, I, - - - were determined for each of the equations P(D)I,= X,,
P(D)I,=X,,---, the solution I corresponding to X would be the sum
I+ I,+---. Thus it is seen that the above short methods apply to
equations in which X is a sum of terms of the form Ca™ or Ce*=.

As an example consider (D* — 2D2 4+ 1)y = e2. The roots are 1,1, —1, — 1,
and a = 1. Hence the solution for I is written as

D +12(D—1)2I=¢x, (D—12I=}er, I=}e=d.

Then y=e2(C; + Cyx) + e==(Cy + Cx) + } e%x?.
Again consider (D2 — 5D 4 6)y = + em*. To find the I, corresponding to z,
divide
: 1 1 b 1 5
L =—-oo"r zg=(-4+—D+...)2== —.
155D+ DB (6+36 + )x TR

To find the I, corresponding to em=, substitute. There are three cases,

1

I =
2T mi—bm+ 6

me, ], = zed=, I, = — ze?7,



220 DIFFERENTIAL EQUATIONS

according as m is neither 2 nor 38, or is 8, or is 2. Hence for the complete solution,
’ 5 1
C,e8 4 C,e2= a; ————emz
v= R T R sy S
when m is neither 2 nor 8 ; but in these special cases the results are

y = 0,637 + C,e2* + 1 & + 5 — z€27, y_Ce"+ Cye?= 4 3z + 5 + xed=,

The next case to consider is where X is of the form cos Bz or sin Bz.
If these trigonometric functions be expressed in terms of exponentials,
the solution may be conducted by the method above; and this is per-
haps the best method when + Bi are roots of the equation P (D)=0.
It may be noted that this method would apply also to the case where
X might be of the form e**cos B or ¢**sin Bz. Instead of splitting the
trigonometric functions into two exponentials, it is possible to combine
two trigonometric functions into an exponential. Thus, consider the
equations '

P (D)y = e**cos Pz, P(D)y = e*=sin Bz,
and P(D)y = e (cos Bx + i sin fx) = e+, (24)
The solution I of this last equation may be found and split into its
real and imaginary parts, of which the real part is the solution of the
equation involving the cosine, and the imaginary part the sine.

When X has the form cos Bz or sin Bz and + i are not roots of the
equation P (D) = 0, there is a very short method of finding I. -For

D?cos Br= — Bfcos Bxr and D?sin Bz = — B%sin Bu.

Hence if P(D) be written as P,(D?) + D P,(D? by collecting the even
terms and the odd terms so that P, and P, are both even in D, the
solution may be carried out symbolically as

1 1

BEZ P B + DP(— B

cos . ‘ (25)

1
1= p@) "~ P+ DP(DH

P)(= B)— DP(— f)
[P(=B)T + B[P,(— BT
By this device of substitution and of rationalization as if D were a surd,
the differentiation is transferred to the numerator and can be performed.
This method of procedure may be justified directly, or it may be made
to depend upon that of the paragraph above.

cos z,

or I=

Consider the example (D? + 1)y = cosz. Here gi =i is a root of D2+ 1=0.
As an operator D? is equivalent to — 1, and the rationalization method will not
work. If the first solution be followed, the method of solution is

1 = 1 eix 1 ¢x 1 e 1
= = — — ——— — = —_[zei*— e~ i*] = —xsinz.
D2+12+DQ+1 2 D—i4i D+i 4i [ ] 2

If the second suggestion be followed, the solution may be found as follows :
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. 1 o
(D? 4+ 1)I =cosx + isinz = e, I=We'x=§-
Now I=ﬁ.(cosx+isinx)=,}zsinx—lizcos:c.
21 2 2
Hence I=}zsine for (D%2+1)I=cosz,
and I=—}xzcosz for (D?+1)I=sinz.

The complete solutionis  y = C, cosz + C,sinz + } zsinz,
and for (D2 + 1)y =sinz, y = C,cosz + C,sinz — } z cosz.

As another example take (D2 — 3 D + 2)y = cosz. The roots are 1, 2, neither
is equal to + Bi = + ¢, and the method of rationalization is practicable. Then

I= 1 cosZT = ! cosz—1+3D

T D2—-8D+2 T 1-38D T

The complete solution is y = C,e~% + Cye— 2% + (4 (cosz — 3sinz). The extreme
simplicity of this substitution-rationalization method is noteworthy.

cosT = 1 (cosz — 3sinz).
10

EXERCISES
1 By the general method solve the equations :
d?'y

-2 2: —_——

(@) & +4 Y43y=2¢ (B)dx,, da:=+3dz V=6,

) <D° 41>+2)y=z, @) D*+D2—4D+ 4y =aq,

(¢) (DP+56D2 4+ 6D)y =z, () (D24 D+ 1)y =ze=,

(n) D2+ D+ 1)y =sin2z, @) (D2—4)y =z + e,

(¢) (M2 +8D+2)y =2+ cosz, (x) (D*—4D%)y =1—sinz,

(A\) (I®+1)y =cosz, (v) (D2 + 1)y =secz, (») (D?+ 1)y =tanz.
2. By the rule write the solutions of these equations :

() (D2+8D+2)y=0, B) (D*+3D2+ D—5)y =0,

() @—-1Py =0, (3) (D*+2D2+ 1)y =0,

() (DBB=-38D2+4)y=0, ) (DA—-—D3-9D2—11D—4)y =0,

(7)) D®P—6D24+9D)y=0, @) (Dt—4D*+8D*2—8D+4)y=0,

(¢) (D°P=—2Dt 4+ D%y =0, (x) (DP= D2+ D)y =0,

() (Dt=1)2y =0, (v) (D5 —18D% 42612 + 82D + 104)y = 0.
3. By the short method solve (v), (3), (¢) of Ex. 1, and also:

(a) (Dt=1)y ==zt B) (DP—6D24+11D—6)y ==z,

(v) (D®+3D2+ 2D)y =122, @) DP—3D2—6D+8)y =12,

() (DP+8y=2at+22+1, () (DP—8D2— D+ 3)y=a2,

(7)) (Dt—2D3+ D?)y =z, @) (DA+2D34+3D24+2D+1)y=1+x+23,

() (DP=y =2 : () (D4 —2 D8 + D3y =%,

4. By the short method solve (a), (8), () of Ex. 1, and also :

(@) (I2—8D +2)y = ez, B) (D*—D3—3D2+ 5D~ 2)y = ez,

(v) (D*—2D + 1)y = ez, (3) (D® — 812 4 4)y = e32,

(6) (+1)y=2er+ -2, @) (DPP+1)y=8+e=4 5e2x,

(1) (D +2D2 4 )y =e=+4, (6) (D*+3D2 43D +1)y=2e73

(1) 2—2D)y=e2= 41, ) (DP+2D2+ Dyy=e2= 4+ 22 4z,

(\) (D2 — a?)y = e + ebz, (v) (D?—2aD + a?)y =e*+ 1.
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5. Solve by the short method (), (¢), (x) of Ex. 1, and also:

() (Dﬂ—D—2)y=sin'x, B) (D*+2D + 1) =8e?= — cosz,
(v) (D*+ 4)y =22+ cosz, () (DB®+ D2—D— 1)y =cos2zx,
(€) (D?+ 1)2y = cosxz, (¢) (BP— D2+ D— 1)y = cosz,
(1) (DP2— 5D+ 6)y =cosz — €2z, (f) (D®—2D2—3D)y =382+ singz,
(¢) (IB—1)2y =sing, (x) (¥4 8D+ 2)y = e?zsing,
(A\) (D*— 1)y =e=cosz, () (DP—38D24+4D—2)y =e*+ cosz,
(v) (D?*—2D + 4)y = e*sinz, (o) (DB + 4)y =sin8x + €= + 23,
. x o
() (D®+1)y =singzsin}z, (p) (Ds+1)y=e2=siuz+e§sinz$,
(o) (D2 + 4)y = sin?z, (*) (D*+32 D + 48)y = ze-2= + e2zcos 2} 2.
1 1
6. If X has the form e=xX,, show that I _—meﬂ X, = mxl.

This enables the solution of equations where X is a polynomial to be obtained by
a short method ; it also gives a way of treating equations where X is e2* cos Bz or
e2= gin Br, but is not an improvement on (24) ; finally, combined with the second
suggestion of (24), it covers the case where X is the product of a sine or cosine by
a polynomial. Solve by this method, or partly by this method, ({) of Ex. 1; (x), (A),
(), (p), (1) of Ex. 5; and also

(@) (D2—2D + 1)y = x?e3=, B) (DP+3D2+38D+1)y=(2—1z2e 7,
(v) (D? + n?)y = zte, (8) (Dt*—2D*—3D%+ 4D+ 4)y = 227,
() (DP—TD—6)y =e2=x(1+ 2), (§) (D—1)%y = e= + cosz + x%e,

(m) (D—1)%y =2z — 2%e7, (6) (D2 + 2)y = x%3~ + e* cos 2z,

(¢) (D® —1)y = ze* + cos?z, (x) (D —1)y =zsinz + (1 + ?) ez,

(\) (D®2 + 4)y =zsinz, (#) (DA +2D%+1)y =z%cosax,

(») (D*+ 49y = (zsinz)?, (o) (D% — 2D + 4)% = ze= cos V3z.

7. Show that the substitution z = ef, Ex. 9, p. 152, changes equations of the type
Dy + @zt —1DR =1y + - .o + @ 12Dy + @y = X (z) (26)

into equations with constant coefficients ; also that az + b = et would make a simi-
lar simplification for equations whose coefficients were powers of ax + b. Hence
integrate :

(a) (x2D2 —xD + 2)y =zlogz, (B) (3D — 2212+ 22D — 2)y = 2% + 8z,

(v) [(2z—1)3D%+4 (22—1)D—2]y=0, (3) (@2D% + 32D + 1)y = (1 —x)-2, .
(¢) (BD2 +zD—-1)y =zlogz, ) [(z+1)2D2—4(x+1)D+ 6]y ==,
(7) (2D + 42D + 2)y = ez, () (x®D2—3x2D+x)y=logzsinlogz +1,

(¢) (@Dt + 623D% 4 422D2 — 22D — 4)y = 2% + 2 cos log z.

8. If L be self-induction, R resistance, C capacity, i current, ¢ charge upon the
plates of a condenser, and f(t) the electromotive force, then the differential equa~
tions for the circuit are

d?q Rdq q d% Rdi i
f3 =
@ @tzaticT Lf()’ B ETIatic" L
Solve () when f(t) = e~ 2*sin bz and (8) when f(f) = sin bz. Reduce the trigonometric
part of the particular solution to the form K sin (bz + v). Show that if R is small
and b is nearly equal to 1/V LC, the amplitude K is large.

170
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98. Simultaneous linear equations with constant coefficients. If
there be given two (or in general =) linear equations with constant
coefficients in two (or in general n) dependent variables and one inde-
pendent variable ¢, the symbolic method of solution may still be used
to advantage. Let the equations be

(@D +a, D" '+ tayo+ (B D"+ b D1+ 40 )y =R (t), @7
(eD? + e D14 ey +(d D+ d DA - L d)y = S(2),
when there are two variables and where D denotes differentiation by ¢.
The equations may also be written more briefly as
P(Dyz+Q(D)yy=R and P,(D)x+ Q(D)y=S>~.
The ordinary algebraic process of solution for = and  may be employed
because it depends only on such laws as are satisfied equally by the
symbols D, P (D), Q,(D), and so on.

Hence the solution for z and y is found by multiplying by the ap-
propriate coefficients and adding the equations.

T Q(D)|— Py(D) P (Dyx + Q(D)y =R,

— Q)| Py(D) Py(D)x + Q(D)y = S.
Then [Pl(‘D) Qz(D) — Py(D) Q(D)]x = QD) R — @(D) 8, (27

[P(D) QD) — P(D) Q(D)]y = P,(D) S — Py(D) R.

It will be noticed that the coefficients by which the equations are multi-
plied (written on the left) are so chosen as to make the coefficients of
x and y in the solved form the same in sign as in other respects. It may
also be noted that the order of P and Q in the symbolic products is im-
material. By expanding the operator P (D) Q,(D) — P,(D) Q,(D) a certain
polynomial in D is obtained and by applying the operators to R and §
as indicated certain functions of ¢ are obtained. Each equation, whether
in « or in y, is quite of the form that has been treated in §§ 95-97.

As an example consider the solution for  and y in the case of

%—%—42=2t, 2%-]-4%—31/:0;
or 2D2— 4z — Dy = 2t, 2Dz + (4D—-3)y=0.
Solve 4D—3’ —-2D QD2 —4)z— Dy=21

D 2D2—4 2Dz + (4D—3)y =0.
Then [4D—-8)(2D%— 4)+ 2D%)xz = (4D — 8)2¢,

[2D?+ (212 — 4)(4 D — 3)]y = — (2 D)2,
or 4@2D*—D?—4D+3)c=8-6t, 4Q2D"—D*—4D+3)y=—4.

The roots of the polynomial in D are 1, 1, — 1} ; and the particular solution I for
z is — }¢, and I, for y is — }. Hence the solutions have the form

z2=(C 4+ C)et+ Cue ¥ — 41, y=(K, + K fyet + Ko ¥ — }.
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The arbitrary constants which are introduced into the solutions for
and y are not independent nor are they identical. The solutions must
be substituted into one of the equations to establish the necessary relations
between the constants. 1t will be noticed that in general the order of the
equation in D for x and for y is the sum of the orders of the highest
derivatives which occur in the two equations, — in this case, 3 =2 + 1.
The order may be diminished by cancellations which occur in the formal
algebraic solutions for x and y. In fact it is conceivable that the coeffi-
cient P,Q, —P,Q, of z and y in the solved equations should vanish and
the solution become illusory. This case is of so little consequence in
practice that it may be dismissed with the statement that the solution
is then either impossible or indeterminate ; that is, either there are no
functions « and y of ¢ which satisfy the two given differential equations,
or there are an infinite number in each of which other things than the
constants of integration are arbitrary.

To finish the example above and determine one set of arbitrary constants in
terms of the other, substitute in the second differential equation.. Then

2(Cyet + Cpet + Cytet — § Coe™ ¥ — §) + 4 (K et + Kyt + Kytet — § Kyem 1Y)
—3(Eet+ Eptet + Kpe b — ) =0,
or  e2C,+2C, + K, + K,) + 2 C,+ K,)— 8¢ 40, + 8K,) = 0.

As the terms e, tet, e ¥tare independent, the linear relation between them can
hold only if each of the coefficients vanishes. Hence

Cy+3K,=0, 2C,+K,=0, 2C, +2C,+K,+K,=0,
and Cy=-8K,, 2C,=-K, 2C=-K,.
Hence z = (C, + Cyt)et— 8 Kge~ ¥t — 4, =—2(Cy+ Cp)et+ Ko~ ¥0— 1

are the finished solutions, where C,, C,, K; are three arbitrary constants of inte-
gration and might equally well be denoted by C,, C,, Cs, or K, K,, K,.

99. One of the most important applications of the theory of simultaneous equa-
tions with constant coefficients is to the theory of small vibrations about a state of
equilibrium in a conservative* dynamical system. If q,, q,, - -, gn are n codrdinates
(see Exs. 19-20, p. 112) which specify the position of the system measured relatively

* The potential energy V is defined as — dV =dW = Q,dq, + Qydqs + - - - + Qudgn,

where 0xy |, . Oy 02, o, 0Yn 02,

Q= Xiggt Ngg torgg trF Xngy T gy + I
This is the immediate extension of Q, as given in Ex. 19, p. 112. Here d W denotes the
differential of work and dW = ZF;«dr; = 2 (Xidx; + Yidy; + Z;dz). To find Q; it is
generally quickest to compute d W from this relation with dx;, dy;, dz expressed in terms
of the differentials dq,, ---, dg,. The generalized forces Q; are then the coefficients of
dg;. If there is to be a potential V, the differential d W must be exact. It is frequently
easy to find V directly in terms of q,, ---, ¢, rather than through the mediation of
Qi, -+, Qu; when this is not so, it is usually better to leave the equations in the form

doT
dor _er = @; rather than to introduce V and L.
fi
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to a position of stable equilibrium in which all the ¢’s vanish, the development of
the potential energy by Maclaurin’s Formula gives

Vs s @) =Vo+ Vi@ Qs s @)+ Val@1s @gs ooy @) + 4+,

where the first term is constant, the second is linear, and the third is quadratic, and
where the supposition that the ¢’s take on only small values, owing to the restriction
to small vibrations, shows that each term is infinitesimal with respect to the preced-
ing. Now the constant term may be neglected in any expression of potential energy.
As the position when all the ¢’s are 0 is assumed to be one of equilibrium, the forces
oV eV oV
Ql——a(h’ 2_—8_112’ AR} Qu— -
must all vanish when the ¢’s are 0. This shows that the coefficients, (¢V/2g;)o = 0,
of the linear expression are all zero. Hence the first term in the expansion is the
quadratic term, and relative to it the higher terms may be disregarded. As the
position of equilibrium is stable, the system will tend to return to the position
where all the ¢’s are 0 when it is slightly displaced from that position. It follows
that the quadratic expression must be definitely positive.

The kinetic energy is always a quadratic function of the velocities ¢1, ¢y, -+, ¢n
with coefficients which may be functions of the ¢’s. If each coefficient be expanded
by the Maclaurin Formula and only the first or constant term be retained, the
kinetic energy becomes a quadratic function with constant coefficients. Hence the
Lagrangian function (cf. § 160)

L=T—V=T(,%: @)= V(%2 )
when substituted in the formulas for the motion of the system, gives

deL aL_O deL aL_O ... GoL oL _

dteq, oq, °  dteq, oq ' dtoge Ogn
a set of equations of the second order with constant coefficients. The equations
moreover involve the operator D only through its square, and the roots of the equa~
tion in D must be either real or pure imaginary. The pure imaginary roots intro-
duce trigonometric functions in the solution and represent vibrations. If there were
real roots, which would have to occur in pairs, the positive root would represent
a term of exponential form which would increase indefinitely with the time, —a
result which is at variance both with the assumption of stable equilibrium and
with the fact that the energy of the system is constant.

When there is friction in the system, the forces of friction are supposed to vary
with the velocities for small vibrations. In this case there exists a dissipative func-
tion F (G, 2, -+ ¢») Which is quadratic in the velocities and may be assumed to
have constant coefficients. The equations of motion of the system then become

doL oL oF 4L 2L  oF _

doq, g ey dogn g Cn

.

0,

which are still linear with constant coefficients but involve first powers of the
operator D. It is physically obvious that the roots of the equation in D must be
negative if real, and ust have their real parts negative if the roots are complex ;
for otherwise the energy of the motion would increase indefinitely with the time,
whereas it is known to be steadily dissipating its initial energy. It may be added
that if, in addition to the internal forces arising from the potential ¥V and the
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frictional forces arising from the dissipative function F, there are other forces
impressed on the system, these forces would remain to be inserted upon the right-
hand side of the equations of motion just given. .

The fact that the equations for small vibrations lead to equations with constant
coefficients by neglecting the higher powers of the variables gives the important
physical theorem of the superposition of small vibrations. The theorem is: If with
a certain set of initial conditions, a system executes a certain motion ; and if with
a different set of initial conditions taken at the same initial time, the system
executes a second motion ; then the system may execute the motion which consists
of merely adding or superposing these motions at each instant of time; and in
particular this combined motion will be that which the system would execute under
initial conditions which are found by simply adding the corresponding values in
the two sets of initial conditions. This theorem is of course a mere corollary of the
linearity of the equations.

EXERCISES

1. Integrate the following systems of equations :
(a) Dz — Dy + ¢ = cost, D% — Dy + 8x — y = €2,
(B) 3Dz +3x+ 2y =e¢, 4r - 3Dy + 3y =8¢,
) D%—Sa:-—4y=p, Dy+z+y=0,
(%) L=__dy_=dt, () —dt=_ " _ W

y—Tz 2xz+50y 3z +4y 2z+ b6y
() Dz +2@—y) =1, tDy +x + by =t,
() Dz =ny — mz, Dy = iz — nx, Dz = mx — ly,
0) D2x—3z—4y+3=0, Dy+x—8y+5=0,

() Dir— 4Dy +4D%—2=0, Diy—4Dz+4D%—y=0.

2. A particle vibrates without friction upon the inner surface of an ellipsoid.
Discuss the motion. Take the ellipsoid as
2 2 (z—c)2 iV
“_+?L+u_ (Tc9t+K1>.

. (Veg .
=Th 3 =1; then a:‘=Cs1n<Tt+Cl>, y=Ksin

3. Same as Ex. 2 when friction varies with the velocity.

4. Two heavy particles of equal mass are attached to a light string, one at the
middle, one at one end, and are suspended by attaching the other end of the string
to a fixed point. If the particles are slightly displaced and the oscillations take
place without friction in a vertical plane containing the fixed point, discuss the
motion.

5. If there be given two electric circuits without capacity, the equations are

di, diy
Tt *dt
where i,, i, are the currents in the circuits, L,, L, are the coefficients of self-
induction, R,, R, are the resistances, and M is the coefficient of mutual induction.
(a) Integrate the equations when the impressed electromotive forces E,, E, are
zero in both circuits. (8) Also when E, = 0 but E, = sin pt is a periodic force.
(v) Discuss the cases of loose coupling, that is, where M2/L, L, is small; and the
case of close coupling, that is, where M2/L, L, is nearly unity. What values for p
are especially noteworthy when the damping is small ?

di , di )
L +Mdit2+Rlzl=El, L +M£+R21,2=E2,
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6. If the two circuits of Ex. 5 have capacities C,, C, and if ¢,, g, are the
charges on the condensers so that i, = dg,/dt, i, = dg,/dt are the currents, the
equations are

a%q % dg, , ¢ a4 d%q dgy , g
L—34+M_24R 14 IL_F L,—24+M—_14+R, 24+ 22=E,.

vam t dt?+1dt+Cl v 2 T dt2+2dt+02 2

Integrate when the resistances are negligible and E;= E,=0. If T, =27V C,L,
and T, =2« VC,L, are the periods of the individual separate circuits and
6=27MVC,C,, and if T, = T,, show that VT2 + 62 and V12 — 62 are the
independent periods in the coupled circuits.

7. A uniform beam of weight 6 1b. and length 2 ft. is placed orthogonally
across a rough horizontal cylinder 1 ft. in diameter. To each end of the beam is
suspended a weight of 1 1b. upon a string 1 ft. long. Solve the motion produced
by giving one of the weights a slight horizontal velocity. Note that in finding the
kinetic energy of the beam, the beam may be considered as rotating about its
middle point (§ 89). '



CHAPTER IX
ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree. The degree of
a differential equation is defined as the degree of the derivative of
highest order which enters in the equation. In the case of the equation
¥(x, y, y')= 0 of the first order, the degree will be the degree of the
equation in y'. From the idea of the lineal element (§ 85) it appears
that if the degree of ¥ in y' is n, there will be = lineal elements through
each point (x, y). Hence it is seen that there are n curves, which are
compounded of these elements, passing through each point. It may be
pointed out that equations such as y' = xV1 + 32 which are apparently
of the first degree in y', are really of higher degree if the multiple value
of the functions, such as V1 + 32 which enter in the equation, is taken
into consideration ; the equation above is replaceable by y” = x* + z%7
which is of the second degree and without any multiple valued function.*

First suppose that the differential equation

¥ (z, ¥, 1,/') =[y' - ¢l(x, NIx [y — %(ac, y]---=0 . @)
may be solved for y'. It then becomes equivalent to the set
Z/'—'llll((t, :1/)=0, :’/'—‘/’2(1) 3/)=0)"' (19

of equations each of the first order, and each of these may be treated
by the methods of Chap. VIII. Thus a set of integrals t

Fy(x,y C)=0, Fy(z, 9, C)=0, ... @)
may be obtained, and the product of these separate integrals
F(x,y, C)=F(x,y, C)- Fy(x, %, C)--- =0 (2

is the complete solution of the original equation. Geometrically speak-
ing, each integral F,(x, y, C) = O represents a family of curves and the
product represents all the families simultaneously.

* It is therefore apparent that the idea of degree as applied in practice is somewhat
indefinite.

t The same constant C or any desired function of C' may be used in the different
solutions because C is an arbitrary constant and no specialization is introduced by its
repeated use in this way.

228
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As an example consider 2 4 2y’y cotz = y2. Solve.
v24 2yycotz 4+ y2cot?z = y%(1 + cot?x) = y2csc?z,
and (¥ + yecotex — yescx)(y + ycotz + yesczx) = 0.
These equations both come under the type of variables separable. Integrate.

By _1—cosz,p 40052 (14 cosz)=C,
v sinz 14 cosz

and @_:_l-l-'coszdx___ dcosz »  Y(1—-cosz)=C.
Y sinz 1—cosz

Hence [¥y(1 4+ cosz) + C][y(1 —cosz)+ C]=0

is the solution. It may be put in a different form by multiplying out. Then_
y2sin2z 4+ 2Cy 4+ C?2=0.

If the equation cannot be solved for y' or if the equations resulting
from the solution cannot be integrated, this first method fails. In that
case it may be possible to solve for y or for x and treat the equation by
differentiation. Let y'=p. Then if

_ dy_ Y o dp
y=f(z, p), d =P= o + 8p dx 3)
The equation thus found by differentiation is a differential equation of
the first order in dp/dx and it may be solved by the methods of Chap.
VIII to find F(p, , C) =0. The two equations
y=f(x,p) and F(p,x, C)=0 39
may be regarded as defining 2 and y parametrically in terms of p, or p
may be eliminated between them to determine the solution in the form
Q (x, y, )= 0 if this is more convenient. If the given differential equa-
tion had been solved for x, then
de_1_o o dp.

x=f(y,p) and —=—=

dy p Oy opdy @

The resulting equation on the right is an equation of the first order in
dp/dy and may be treated in the same way.

As an example take zp? — 2yp + ax = 0 and solve for y. Then

azx dy dp axdp  a
2y =2, — 22 =2p= r— - — — -
v=apt o = P=P Lty
T a’ldp a :
or = p__]_+(__ ):0 or xd —pd$=0-
p[ pldz " \p ’ ?

The solution of this equation is £ = Cp. The solution of the given equation is
2y =2xp + z, z=Cp
p
when expressed parametrically in terms of p. If p be eliminated, then

2
2y = % +aC parabolas.
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As another example take p2y + 2 pz = y and solve for z. Then

1 & _2_1 1\
S i
oo P » a’

1 1
or —+p+z/(;,+l)—= , or ydp+pdy =0.
r dy
The solution of this is py = C and the solution of the given equation is
2z=y(%— ), py=0C, or y2=2Cz+ C3.

Two special types of equation may be mentloned in addition, although
their method of solution is a mere corollary of the methods already
given in general. They are the equation homogeneous in (z, y) and
Clairaut’s equation. The general form of the homogeneous equation is
¥(p, y/x)=0. This equation may be solved as

r=4(Y) oras L=fp), y=x0); )

and in the first case is treated by the methods of Chap. VIII, and in
the second by the methods of this article. Which method is chosen
rests with the solver. The Clairaut type of equation is

=pz+f(p) . ®)
and comes directly under the methods of this article. It is especially
noteworthy, however, that on differentiating with respect to  the result-
ing equation is dp
e+r(MIL=0 o L=o. ®)

Hence the solution for p is p = C, and thus y = Cz + f(C) is the solu-
tion for the Clairaut equation and represents a family of straight lines.
The rule is merely to substitute C in place of p. This type occurs very
frequently in geometric applications either directly or in a disguised
form requiring a preliminary change of variable.

101. To this point the only solution of the differential equation
¥(x, y, p)=0 which has been considered is the general solution
F(x,y, C)=0 containing an arbitrary constant. If a special value,
say 2, is given to C, the solution F(z, y, 2)= 0 is called a particular
solution. It may happen that the arbitrary constant C enters into the
expression F(z, y, C)= 0 in such a way that when C becomes positively
infinite (or negatively infinite) the curve F(x, y, C)= 0 approaches a
definite limiting position which is a solution of the differential equation ;
such solutions are called infinite solutions. In addition to these types
of solution which naturally group themselves in connection with the
general solution, there is often a solution of a different kind which is
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known as the singular solution. There are several different definitions
for the singular solution. That which will be adopted here is: A4 singu-
lar solution is the envelope of the family of curves defined by the
general solution.

The consideration of the lineal elements (§ 85) will show how it is
that the envelope (§ 65) of the family of particular solutions which
constitute the general solution is itself a solution of the equation. For
consider the figure, which represents the particular solutions broken up
into their lineal elements. Note that the envelope is made up of those
lineal elements, one taken from each particular so-
lution, which are at the points of contact of the envelope
envelope with the curves of the family. It is seen
that the envelope is a curve all of whose lineal
elements satisfy the equation ¥ (x, y, p) = 0 for the
reason that they lie up:)n solutions of the equation. Now any curve
whose lineal elements satisfy the equation is by definition a solution
of the equation; and so the envelope must be a solution. It might
conceivably happen that the family F(x, y, C)= 0 was so constituted
as to envelope one of its own curves. In that case that curve would
be both a particular and a singular solution.

If the general solution F(x, y, C)= 0 of a given differential equation
is known, the singular solution may be found according to the rule for
finding envelopes (§ 65) by eliminating C from

P
Samily

F(x,y, C)=0 and 32 F(x,y, C)= ™

It should be borne in mind that in the eliminant of these two equations
there may occur some factors which do not represent envelopes and
which must be discarded from the singular solution. If only the singu-
lar solution is desired and the general solution is not known, this
method is inconvenient. In the case of Clairaut’s equation, however,
where the solution is known, it gives the result immediately as that
obtained by eliminating C from the two equations
’ y=Cx + f(C) and O0=z+f'(C). ®
It may be noted that as p = C, the second of the equations is merely
the factor  + f'(p) = 0 discarded from (6'). The singular solution may
therefore be found by eliminating p between the given Clairaut equa-
tion and the discarded factor « + f'(p)= 0.
A reéxamination of the figure will suggest a means of finding the
singular solution without integrating the given equation. For it is seen
that when two neighboring curves of the family intersect in a point P
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near the envelope, then through this point there are two lineal elements
which satisfy the differential equation. These two lineal elements have
nearly the same direction, and indeed the nearer the two neighboring
curves are to each other the nearer will their intersection lie to the
envelope and the nearer will the two lineal elements approach coinci-
dence with each other and with the element upon the envelope at the
point of contact. Hence for all points (x, y) on the envelope the equa-
tion ¥ (x, y, p) = 0 of the lineal elements must have double roots for p.
Now if an equation has double roots, the derivative of the equation
must have a root. Hence the requirement that the two equations

0
v(x, ¥ p)=0 and 51—) v(x, y,p)=0 9)

have a common solution for p will insure that the first has a double
root for p; and the points (x, ¥) which satisfy these equations simul-
taneously must surely include all the points of the envelope. The rule
for finding the singular solution is therefore: Eliminate p from the
given differential equation and its derivative with respect to p, that is,
from (9). The result should be tested.

If the equation zp? — 2 yp + ax = O treated above be tried for a singular solution,
the elimination of p is required between the two equations

zp2—2yp+ax=0 and zp-—y=0.

The result, is y2 = ax?, which gives a pair of lines through the origin. The substi-
tution of y = + Vaz and p=4+ Va in the given equation shows at once that
y? = ax? satisfies the equation. Thus y2 = ax? is a singular solution. The same
result is found by finding the envelope of the general solution given above. It is
clear that in this case the singular solution is not a particular solution, as the par-
ticular solutions are parabolas.

If the elimination had been carried on by Sylvester’s method, then

0 T —y
z —2y al=—z@—ar?)=0
T - vy 0

and the eliminant is the product of two factors ¢ = 0 and y2 — ax? = 0, of which
the second is that just found and the first is the y-axis. As the slope of the y-axis
is infinite, the substitution in the equation is hardly legitimate, and the equation
can hardly be said to be satisfied. The occurrence of these extraneous factors in
the eliminant is the real reason for the necessity of testing the result to see if it
actually represents a singular solution. These extraneous factors may represent
a great variety of conditions. Thus in the case of the equation p? 4+ 2 yp cot z = y32
previously treated, the elimination gives y2 csc?z = 0, and as csc  cannot vanish,
the result reduces to y2 = 0, or the z-axis. As the slope along the z-axisis 0 and y
is 0, the equation is clearly satisfied. Yet the line y = 0 is not the envelope of the
general solution ; for the curvesof the family touch the line only at the points nar.
It is a particular solution and corresponds to C = 0. There is no singular solution.
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Many authors use a great deal of time and space. discussing just what may and
what may not occur among the extraneous loci and how many times it may occur.
The result is a considerable number of statements which in their details are either
grossly incomplete or glaringly false or both (cf. §§ 65-67). The rules here given
for finding singular solutions should not be regarded in any other light than as
leading to some expressions which are to be examined, the best way one can, to
find out whether or not they are singular solutions. One curve which may appear in
the elimination of p and which deserves a note is the tac-locus or locus of points of
tangency of the particular solutions with each other. Thus in the system of circles
(x — C)? 4% = r2 there may be found two which are tangent to each other at any
assigned point of the z-axis. This tangency represents two coincident lineal
elements and hence may be expected to occur in the elimination of p between the
differential equation of the family and its derivative with respect to p ; but not in
the eliminant from (7).

EXERCISES

1. Integrate the following equations by solving for p =y”:
(@) p?—6p+5=0, (8) P> — (22 +91) p* + (2 — 9* + 224%) p— (* —1/’)1/’—0
(v) zp*—2yp—2=0, (3) PP@+2y)+3P°@+y)+r+22)=
() P+ p*=1, (8) p*—az? =0, (n)p=(a—=¢)V1+p'2-

2. Integrate the following equations by solving for y or z :
(a) 42p® +22p—y =0, (B) y=—ap+z*p? (N p+2zy—a?—y2=0,
(8) 2pz—y + logp =0, (€) = —yp = ap?, () y=z+ atan-1p,
(n) 2=y + alogp, @) z+py@p*+3)=0, () a®yp*—22p +y =0,
(k) p*—4zyp + 812 =0, (A) z=p +logp, (») P*(#* + 2a2) = a®.

3. Integrate these equations [substitutions suggested in (¢) and (x)] :
(a) zy* (p* + 2) =2py° + 2, (8) (nz + py)* = (1 + p°) (¥* + nz?),
() ¥* + ayp — 2%p? =0, () v=uyp* + 2pz,
(¢) ¥y =pz + sin~'p, () y=pE—10) +a/p,
(n) y=pz+p(1-1p, (6) ¥* —2pzy — 1 = p* (1 —2?),
() 4e2vp? + 22p —1=0, z=¢?, (x) y=2pz + y%p?, yt=c¢,
(N) 4e?up? 4+ 2€2=p — ex =0, () 2% (y — pz) = Yp2

4. Treat these equations by the p method (9) to find the singular solutions.
Also solve and treat by the C method (7). Sketch the family of solutions and
examine the significance of the extraneous factors as well as that of the factor
which gives the singular solution :

(@) py+p(x—9)—2=0, (B) p*y? cos? a — 2pey sin?a + % — #?sin?a = 0,

(v) 4zp® = 3z — a)?, (8) yp%x(x —a) (@ —b) =[82%2— 2z (a + b) + ab]?,
() PP+ap—y=0, (5) 8a(l+ pP =27(z+v)(1—Dp),
(n) «*p% 4 2?yp + a® =0, © yB—4y)p*=4(1—v).

5. Examine sundry of the equations of Exs. 1, 2, 8, for singular solutions.

6. Show that the solution of y = z¢ (p) + f(p) is given parametrically by the
given equation and the solution of the linear equation:

d—z+x ¢'(p) = f(p) . Solve (a)y:mxp+n(1+p”)i,

dp ¢(»)—p DP—9(D)
@B yv=z(p+aVvVi+p?), @z=w+a? @) y=Q0+p)z+p%
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7. Asany straight line is y = mz + b, any family of lines may be represented as
y = mz + f(m) or by the Clairaut equation y = pz + f(p). Show that the orthog-
onal trajectories of any family of lines leads to an equation of the type of Ex. 6.
The same is true of the trajectories at any constant angle. Express the equations
of the following systems of lines in the Clairaut form, write the equations of the
orthogonal trajectories, and integrate :

(a) tangents to z%2 4+ y2 =1, (8) tangents to y3 = 2az,
(v) tangents to y3 = z8, () normals to 2 = 2az,
(€) normals to y2 =23, . () normals to b2z2 4 a%y? = a??2.

8. The evolute of a given curve is the locus of the center of curvature of the
curve, or, what amounts to the same thing, it is the envelope of the normals of the
given curve. If the Clairaut equation of the normals is known, the evolute may be
obtained as its singular solution. Thus find the evolutes of

@ r=4a, ) 2y=a, (1) d+it=4d},

@2+l @w= @) y=He+ema).

b2

9. The involutes of a given curve are the curves which cut the tangents of the

given curve orthogonally, or, what amounts to the same thing, they are the curves

which have the given curve as the locus of their centers of curvature. Find the
involutes of

(a) 22 + 13 = a?, B) ¥ =2mz, (v) vy = acosh (z/a).
10. As any curve is the envelope of its tangents, it follows that when the curve
is described by a property of its tangents the curve may be regarded as the singu-

lar solution of the Clairaut equation of its tangent lines. Determine thus what
curves have these properties:

2a—2

(a) length of the tangent intercepted between the axes is l,

(B8) sum of the intercepts of the tangent on the axes is c,

() area between the tangent and axes is the constant k2,

(8) product of perpendiculars from two fixed points to tangent is k2,
(€) product of ordinates from two points of z-axis to tangent is k2.

11. From the relation Z—F =u VM2 4 N2 of Proposition 8, p. 212, show that as
n

the curve F = C is moving tangentially to itself along its envelope, the singular
solution of Mdz + Ndy = 0 may be expected to be found in the equation 1/u=0;
also the infinite solutions. Discuss the equation 1/x'= 0 in the following cases:

(a) V1 — y2dz = V1 — 22 dy, (B) zdx + ydy = Va2 + y2 — a2dy.

102. Equations of higher order. In the treatment of special prob-
lems (§ 82) it was seen that the substitutions
dy _ Ly _dp &Py dp
=P T s d;t’—pdy 10)
rendered the differential equations integrable by reducing them to in-
tegrable equations of the first order. These substitutions or others like
them are useful in treating certain cases of the differential equation
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(@, Y, Y, -, ¥)=0 of the nth order, namely, when one of the
variables and perhaps some of the derivatives of lowest order do not
occur in the equation.

C o :
In case W(x, %, fx‘ﬂ, %)-_-0, (11)

y and the first ¢ — 1 derivatives being absent, substitute

3'7-’/_: so that w<x, 7 Z—Z, ey jx:_‘{.>=0. (117

The original equation is therefore replaced by one of lower order. If
the integral of this be F(z, ¢) = 0, which will of course contain n — ¢
arbitrary constants, the solution for ¢ gives

1=7@) wd y= [ [ 1@y (12)

The solution has therefore been accomplished. If it were more con-
venient to solve F(z, ¢) = 0 for = ¢ (¢), the integration would be

v=[[awy= [ [as@ar; 12)

and this equation with x = ¢(¢9) would give a parametric expression
for the integral of the differential equation.

dy d® dar
In case : W(y,d—‘-z,é—é,-",%{/)?-(), (13)

z being absent, substitute p and regard p as a function of y. Then

dy _ Cy_ dp Ly _ df dp
dw =P de* = L dy dy’ d? = F d_/(p dy)’
o (139
dp d"p
and - ‘l’l<y, V2 t_i?/ 3 ey, dy"") =

In this way the order of the equation is lowered by unity. If this equa-
tion can be integrated as F(y, p) = 0, the last step in the solution may
be obtained either directly or parametrlcally as

r=ron 7=
or y=9@), o= [U= [EHDE (14)

It is no particular simplification in this case to have some of the lower
derivatives of y absent from ¥ = 0, because in general the lower deriva-
tives of p will none the less be introduced by the substitution that
is made.

(14)
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2 8,,\2
As an example consider (a: % — %) = (ZTZ) +1,
2 3
which is (z%—q):(:—i)+l if q=%€.

2
Then q=z%;}:\’(:—z)+l and ¢=Ciz + V(i +1;

for the equation is a Clairaut type. Hence, finally,
v=[[loz+Vei+1)amyp =102 +422 VCI+1+4Cz + 0,
As another example consider ¥ — y2 = 3% logy. This becomes
2
p(_lz_)_pZ =y210gu or ‘M_
dy dy
The equation is linear in p? and has the integrating factor e—2v.

%p’e-"=fy’e-“10gvdy, %p=[e“”fy2e—’vlogydy]i,

and % 3 =V2z.
[e? v f y2e—2vlog ydy]

The integration is therefore reduced to quadratures and becomes a problem in
ordinary integration.

2p? =2y?logy.

If an equation is homogeneous with respect to y and its derivatives,
that is, if the equation is multiplied by a power of & when y is replaced
by ky, the order of the equation may be lowered by the substitution
y = ¢* and by taking 2' as the new variable. If the equation is Aomo-
geneous with respect to x and dx, that is, if the equation is multiplied
by a power of k& when x is replaced by kx, the order of the equation
may be reduced by the substitution = ¢’. The work may be simplified
(Ex. 9, p. 152) by the use of

Dly=e"D(D,—1)..- (D,— n+1)y. (15)

If the equation is homogeneous with respect to x and y and the dif-
Serentials dx, dy, &, ---, the order may be lowered by the substitution
x = ¢', y = ¢'z, where it may be recalled that

D}y =e™D(D,—1)---(D,—n+ 1)y 5"

=e" V(D +1)D,.-- (D, — n + 2)z.
Finally, if the equation is komogeneous with respect to x considered of
dimensions 1, and y considered of dimensions m, that is, if the equation
is multiplied by a power of k& when kx replaces « and k™y replaces ¥,

the substitution = = ¢!, y = e™z will lower the degree of the equation.
It may be recalled that

Dy = em=mD, + m)(D,+m—1)--- (D, +m —n+1)z. (15"
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Consider zyy” — zy? = yy’ + bay’?/Va? — z2. If in this equation y be replaced
by ky so that y and y” are also replaced by ky’ and ky”, it appears that the
equation is merely multiplied by k2 and is therefore homogeneous of the first
sort mentioned. Substitute

y=e, Y=ew, y=e@”+29).
Then €22 will cancel from the whole equation, leaving merely

2z’ =2’ + baz’?/Va?2 —x% or dz ld:c—

IR
The equation in the first form is Bernoulli ; in the second form, exact. Then
z zdz
Z=bVa?—224+C and dz=——""—"——.
.4 bVaz—22 4+ C

The variables are separated for the last integration which will determine z = logy
as a function of z.

Again consider z* — Ty = (28 + 2:cy — — 492 If = be replaced by kz and y b
e y

k2y so that y is replaced by ky’ and y” remains unchanged, the equation is multi-
plied by ¥* and hence comes under the fourth type mentioned above. Substitute
z=¢, y=e'z Dy=e(D+2)2, Dly=(D+2)(Di+1)z.

Then e4t will cancel and leave 2”7 + 2 (1 — 2)2” = 0, if accents denote differentiation
with respect to ¢. This equation lacks the independent variable ¢t and is reduced
by the substitution z” = 2’dz’/dz. Then

dz dz dz

~Z 4+2(1 - = —=(1—2)24C —_— =t

, t21-2= ¢=o=10-2+C, =@ +c

There remains only to perform the quadrature and replace z and ¢ by z and y.

103. If the equation may be obtained by differentiation, as

? daxn dzx

it is called an exact equation, and Q(x, y, ¥, - --; y*~V) = C is an inte-
gral of ¥ =0. Thus in case the equation is exact, the order may be
lowered by unity. It may be noted that unless the degree of the nth
derivative is 1 the equation cannot be exact. Consider

‘I’(x) Y 3/'7 Tty ?/(n)) = 4’1.1/(") + ¢2’

where the coefficient of ™ is collected into ¢,. Now integrate ¢,, par-
tially regarding only y™~» as variable so that

dy dr aQ 8 vl
\I’<x? ./) d/ i y>=—__+_ ’+ +aJ(n—l)J (16)

d 3 Q
f¢1dy("-l)=0v == + +3 y @2 pcer kA A
aQ, dr—*y
Then v ——1 _¢’[dx" k] + &,.

That is, the expression ¥ — Q; does not contain y™ and may contain
no derivative of order higher than n —k, and may be collected as
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indicated. Now if ¥ was an exact derivative, so must ¥ — Q] be. Hence
if m # 1, the conclusion is that ¥ was not exact. If m = 1, the process
of integration may be continued to obtain Q, by integrating partially
with respect to y»~*-1. And so on until it is shown that ¥ is not exact
or until ¥ is seen to be the derivative of an expression @, + Q,+ --- =C.

As an example consider ¥ = z%"” + 2y” + 22y — 1)y’ + ¥* = 0. Then
Q= f z2dy” = z%y”, V-0 =—zy” + 22y — 1)y + 92,

0= [—ady =—ay, Y-0/-0;=2a0 +7*= @Y.
As the expression of the first order is an exact derivative, the result is
V-0 -0 — (2% =0; and ¥, =a%” —ay +2y2—C, =0
is the new equation. The method may be tried again.
Q =fa:2dy’ =z, ¥, —Q =-8zy +zy?-C.

This is not an exact derivative and the equation ¥, = 0 is not exact. Moreover
the equation ¥, = 0 contains both z and y and is not homogeneous of any type
except when C,; = 0. It therefore appears as though the further integration of the
equation ¥ = 0 were impossible.

The method is applied with especial ease to the case of

d™y dr 1y
0 ™ ld n—1

dy
+ot XL+ Xy —R@=0, (17

where the coefficients are functions of = alone. This is known as the
linear equation, the integration of which has been treated only when
the order is 1 or when the coefficients are constants. The application
of successive integration by parts gives

O = Xy, Q= (X,— X)y""?, Q,=(X,— X{+X)y" ¥, -
and after » such integrations there is left merely
Xy — Xy o+ (=1 71X, + (1K) y — B,
which is a derivative only when it is a function of . Hence
X,—Xp a4+ +CD)"X, +(-1D)"X, =0 (18)
is the condition that the linear equation shall be exact, and
Xy®=0 4 (X, — X))y D (X, — X{ + X)y® O+ .. = f Rdz (19)
is the first solution in case it is exact.

As an example take ¥y + y” cosz — 27’ sinx — y cosx = sin2z. The test

X, — X, + X" — X;” =—cosz +2cosx — cosz = 0
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is satisfied. The integral is therefore y” + y’cosz — ysinz =— 3cos2z + C,.
This equation still satisfies the test for exactness. Hence it may be integrated
again with the result ¥’ + ycosz = — }sin2z + C;z + C,. This belongs to the
linear type. The final result is therefore

y= e-'i"fe'mz(Cla: + C,)dz 4+ Cze—¢inx 4 1 (1 — sin ).

EXERCISES

1. Integrate these equations or at least reduce them to quadratures:
(@) 22y"y” =y — a?, ® 1+2)y" +1+y2=0,
(7) ¥V + a2y” =0, (3) y* — m%y”’ = e, (€) 2%y + a%y” =0,
) ey =u, (n) zy” +y =0, @ vy =4
(¢) A—2Y)y” —ay =2, (x) ¥ =Vy”, Ny =rw),
(v) 2Qa—w)y"'=1+v% () W —v?—y =0,
D)y +y2+1=0, (m) 2y = e,

2. Carry the integration as far as possible in these cases:

P) ¥y =a.

(@) 22y = (ma%y® + ny?)},
() 2" = @ — 2v)%,
() z=%" + a4y ={v?

(B) maPy” = (y — zy)?,
(3) zty” — 2Py’ — a2 + 432 = 0,
() ayy” + b2 =yy'(c2 + 23~ L.

3. Carry the integration as far as possible in these cases:

(@) @+2)y” +6wy +yv " +2y2=0, (B) vy — vz = a3,
(v) @y + 3aPyy” + 9xlyy” + 9a%y? + 18ayy’ + 8y2 =0,

() v+3ay +2yy® + @2+ 2y%)y" =0,

() =% + 2%)y” + 422 + 2zyy’ = 0.

4. Treat these linear equations:

(a) zy” + 2y =2z, B) @—1)y”"+4zy +2y =2z,
(v) ¥/ =y cotz + ycsc2x = cosz, @) R—2)y+Bz—2)y+y=0,
(¢) =—a®y” + (1 —b2?)y” —2zy + 2y =6z,

() @+22—8z+ 1)y + (9224 62— 9)y” + (18x 4 6)y + 6y =23,

(mM @+ +@E@+2y"+v' =1, (02" +3zy +y=gq,

(¢) @ —a)y” + (822 —3)y” + ldzy’ + 4y = 0.

5. Note that Ex. 4 () comes under the third homogeneous type, and that Ex. 4
() may be brought under that type by multiplying by (z + 2). Test sundry of Exs.
1, 2, 3 for exactness. Show that any linear equation in which the coefficients are
polynomials of degree less than the order of the derivatives of which they are the
coefficients, is surely exact.

6. Sometimes, when the condition that an equation be exact is not satisfied, it
is possible to find an integrating factor for the equation so that after multiplication
by the factor the equation becomes exact. For linear equations try zm. Integrate

(@) 2"+ @et—2)y' — @2 — 1)y =0, (B) @ —z%)y” — 2% —2y =0.

7. Show that the equation y” + Py’ 4+ Qy’* = 0 may be reduced to quadratures
1° when P and Q are both functions of y, or 2° when both are functions of z, or 3°
when P is a function of z and Q is a function of y (integrating factor 1/y’). In
each case find the general expression for y in terms of quadratures. Integrate
¥y’ + 2y cotx 4+ 2y’ 2tany = 0.
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8. Find and discuss the curves for which the radius of curvature is proportional
to the radius r of the curve.

9. If the radius of curvature R is expressed as a function R = R(s) of the arc s
measured from some point, the equation R = R (8) or 8 = 8(R) is called the intrinsic
equation of the curve. To find the relation between z and y the second equation
may be differentiated as ds = 8’(R)dR, and this equation of the third order may be
solved. Show that if the origin be taken on the curve at the point s = 0 and if the
z-axis be tangent to the curve, the equations

o= [ (Lo v f[un] 2]

express the curve parametrically. Find the curves whose intrinsic equations are
(a) R=a, (8) aR = s? + a2, (v) R? 4 s2=16a2
10. Given F =y®™ 4+ X yr-D 4 Xpyn=D 4 ... + X1y’ + X,y =0. Show
that if x, a function of z alone, is an integrating factor of the equation, then
& = — (XD 4 (XD — oo o (= DU Z ) + (= 12X = 0
is the equation satisfied by u. Collect the coefficient of x to show that the condition
that the given equation be exact is the condition that this coefficient vanish. The
equation & = 0 is called the adjoint of the given equation F = 0. Any integral u
of the adjoint equation is an integrating factor of the original equation. Moreover
note that

S uFis = w0 4 @X, = W) ye=D 4 (= 1 [ydaz,

or d[uF — (= 1)yy®] =d[uy@-D + (uX, — w)y®@-D 4 ...] =dQ.

Hence if uF is an exact differential, so is y®. In other words, any solution y of the
original equation is an integrating factor for the adjoint equation.

104. Linear differential equations. The equations

XDy + X D"y + ...+ X, _ Dy + X,y = R (),

XDy +XDly4-. -+ X, Dy+Xy=0
are linear differential equations of the nth order; the first is called the
complete equation and the second the reduced equation. If y,,y,, y,, - - -
are any solutions of the reduced equation, and C,, C,, C,, --- are any
constants, then y = Cy, + Cy, + Cpy, +--- is also a solution of the
reduced equation. This follows at once from the linearity of the reduced
equation and is proved by direct substitution. Furthermore if 7 is any
solution of the complete equation, then y + I is also a solution of the
complete equation (cf. § 96).

As the equations (20) are of the nth order, they will determine y™
and, by differentiation, all higher derivatives in terms of the values of
z, Y,y -+, y* . Hence if the values of the n quantities y,, y;, - -+, "~
which correspond to the value z = x, be given, all the higher derivatives
are determined (§§ 87-88). Hence there are » and no more than » arbi-
trary conditions that may be imposed as initial conditions. A solution

(20)
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of the equations (20) which contains n distinct arbitrary constants is
called the general solution. By distinet is meant that the constants
can actually be determined to suit the » initial conditions.

If y,, 4,5 -+, Ya are n solutions of the reduced equation, and

y=Cy, +Cy, + o+ Coy
y¥=Cyi +Cys +---+Cuyp, (21)

Yy U= Cyr P+ Coyft P+ + Cyt Y,
then y is a solution and g/, - .-, y*~ are its first n — 1 derivatives. If
x, be substituted on the right and the assumed corresponding initial
values ¥,, ¥, * -, ¥& ™ be substituted on the left, the above n equations
become linear equations in the # unknowns C,, C,, ---, C,; and if they
are to be soluble for the C’s, the condition

Y Ya tt YUn
W@ Yy ym="r P2 I %0 (22)
?/gn—l) ygn -1) ... y’('n -1)

must hold for every value of x =x,. Conversely if the condition does
hold, the equations will be soluble for the C’s.

The determinant W (y,, ,, -+, ¥,) is called the Wronskian of the n.
functions y,, ,, ---, ¥,- The result may be stated as: If n functions
Y1» Yp» *+*» Y Which are solutions of the reduced equation, and of which °
the Wronskian does not vanish, can be found, the general solution of the
reduced equation can be written down. In general no solution of the
equation can be found, whether by a definite process or by inspection ;
but in the rare instances in which the » solutions can be seen by inspec-
tion the problem of the solution of the reduced equation is completed.
Frequently one solution may be found by inspection, and it is therefore.
important to see how much this contributes toward effecting the solution.

If y, is a solution of the reduced equation, make the substitution
y =y The derivatives of ¥ may be obtained by Leibniz’s Theorem
(§8). As the formula is linear in the derivatives of z, it follows that.
the result of the substitution will leave the equation linear in the new
variable z. Moreover, to collect the coefficient of z itself, it is necessary
to take only the first term y{z in the expansions for the derivative y®.

Hence (XY™ + XD+ + X, i+ X,y)2=0

is the coefficient of z and vanishes by the assumption that y, is a solu-.
tion of the reduced equation. Then the equation for z is

P4 POy ... 4P 2"+ P, 2 =0; (23).
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and if 2' be taken as the variable, the equation is of the order n» — 1.
It therefore appears that the knowledge of a solution y, reduces the order

of the equation by one.
Now if y,, ¥,, -+, %, Were other solutions, the derived ratios

(%Y (B, L o (%)
zl—'(yl), z2—<yl>; ) Fp1= v, (23')

would be solutions of the equation in 2'; for by substitution,

Y=Y*5=Ya» Y=Y7R=1Ys Tty Y=Y a1= Y
are all solutions of the equation in y. Moreover, if there were a linear
relation Cy2] + Cp2; + -+ + C, 12, = 0 connecting the solutions zj,
an integration would give a linear relation
Ca+CYy+ -+ Coita +Coyy = 0

connecting the p solutions y;. Hence if there is no linear relation (of
which the coefficients are not all zero) connecting the p solutions y; of
the original equation, there can be none connecting the p — 1 solutions
z, of the transformed equation. Hence a knowledge of p solutions of
the original reduced equation gives « mew reduced equation of which
p — 1 solutions are known. And the process of substitution may be
continued to reduce the order further until the order » — p is reached.

-As an example consider the equation of the third order
(I—2)y” + @ — 1)y’ —ay + 2y =0.
Here a simple trial shows that z and e are two solutions. Substitute
y = exz, ¥ = ex(z + 2'), Yy’ =722 + 27), Y’ =ex(82” + 27).

Then 1-2)2"+ @2 -3+ 2)2"+(x2—-38z+ 1) =0

is of the second order in 2’. A known solution is the derived ratio (z/e*)’.

Z=(xe*)Y =e*(1—12z). Letz’ =e-*(1—2)w.
From this, 2”7 and z”” may be found and the equation takes the form

dw’ 2

-2 v’ +(1+2)(z—2)w =0 or — =adr— dz.
w z—1

Thisis a iinear equation of the first order and may be solved.
logw =322 —2log(x—1)+C or w= Cle’}”(x —1)=-2

Hence w=C, fei’g(x— 1)-%dz + C,,
7= (:—z)w =c, (e%) [t¥@-1-uz + ¢, (%)
z= leC—I)'fei”(z_ 1)-2(dz)? + Cze%" C;,

y =exz =C,e* f (5:) f el J”(a: — 1)=2(dz)? 4 Cyx + Cge~.
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The value for y is thus obtained in terms of quadratures. It may be shown that in
case the equation is of the nth degree with p known solutions, the final result will
call for p (n — p)"quadratures.

105. Ifthe generalsolution y = Cy, +Cy,+ -- -+ C,¥, of the reduced
equation has been found (called the complementary function for the
complete equation), the general solution of the complete equation may
always be obtained in terms of quadratures by the important and far-
reaching method of the variation of constants due to Lagrange. The
question is: Cannot functions of = be found so that the expression

Yy=C@%+ @Y%+ -+ Cu@) ¥ (24
shall be the solution of the complete equation ? As there are n of these
functions to be determined, it should be possible to impose » — 1 condi-

tions upon them and still find the functions.
Differentiate y on the supposition that the C’s are variable.

Y =Ci+Cpt+ -+ Cyt nCi+ 1:Co+ -+ UG
As one of the conditions on the C’s suppose that
' NCL+ 1o+ + 1.0 =0.
Differentiate again and impose the new condition
. N1+ %Co+ - +5,C.=0,
so that Y'=Cl+Cs +---+Cy.
The differentiation may be continued to the (» — 1)st condition
YOTICLH IO o+ g =0,

and :,/(n -1 — C;Z/f" -1 + Czyén—l) + e + C”Z/,(," —1).
Then Yy =Cyf? + Coyf® + - + C Y7

+ Yy P+ YT+ g TG
Now if the expressions thus found for y, ¥, %", ---, y®=D, y™ be
substituted in the complete equation, and it be remembered that y,,
Yy * s Yo are solutions of the reduced equation and hence give 0 when
substituted in the left-hand side of the equation, the result is
YrC 4 ye 0 4+ Y TOCL =R,
Hence, in all, there are » linear equations
nCl + %05 + -+ v =0,
¥y +yC: ++uC =0,
. . . . . (25)
YETICL+p G+ o O, =0,
YEIC; + yPIC; + o+ yPICL =R,
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connecting the derivatives of the C’s; and these may actually be solved
for those derivatives which will then be expressed in terms of z. The
C’s may then be found by quadrature.

As an example consider the equation with constant coefficients

(D® 4+ D)y =secx with y =C, 4 Cycosz+ Cgsinz

as the solution of the reduced equation. Here the solutions y,, ¥,, ¥ may be taken
as 1, cos z, sin z respectively. The conditions on the derivatives of the C’s become
by direct substitution in (25)
C; + coszCy + sinzCy =0, —sinzC; + coszCy =0, — coszC; — sinzCy =secz.
Hence C; =secz, C;=—1, Cy=—tanz
and C,=logtan(}z + }m) +¢,, Co=—2z+c,, Cg =logcosz + c5.
Hence y=c, +logtan(}z + } )+ (c, — ) cosx + (cz + log cosx)sinz
is the general solution of the complete equation. This result could not be obtained
by any of the real short methods of §§ 96-97. It could be obtained by the general
method of § 95, but with little if any advantage over the method of variation of
constants here given. The present method is equally available for equations with
variable coefficients.

106. Linear equations of the second order are especially frequent in
practical problems. In a number of cases the solution may be found.
Thus 1° when the coefficients are constant or may be made constant by
a change of variable as in Ex.7, p.222, the general solution of the
reduced equation may be written down at once. The solution of the
complete equation may then be found by obtaining a particular integral
I by the methods of §§ 95-97 or by the application of the method of
variation of constants. And 2° when the equation is exact, the solution
may be had by integrating the linear equation (19) of § 103 of the first
order by the ordinary methods. And 3° when one solution of the re-
duced equation is known (§ 104), the reduced equation may be com-
pletely solved and the complete equation may then be solved by the
method of variation of constants, or the complete equation may be
solved directly by Ex.6 below.

Otherzvise, write the differential equation in the form

Ty oW,
atPI+e=R (26)
The substitution y = uz gives the new equation
@ g d_ﬁ (lz 1 n ' — R !
dx’+<udx+P>dx+;(u + Pu +Qu)z—-;- (26"

If « be determined so that the coefficient of 2’ vanishes, then

w=et P anq %+<Q—1Q—1P2>z=Re;de’. 27
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Now 4° if Q — } P' — } P? is constant, the new reduced equation in
(27) may be integrated ; and 5° if it is k/x% the equation may also be
integrated by the method of Ex.7, p.222. The integral of the com-
plete equation may then be found. (In other cases this method may
be useful in that the equation is reduced to a simpler form where solu-

tions of the reduced equation are more evident.)
Again, suppose that the independent variable is changed to z. Then

2, n ' R .

R A S @)
Now 6° if 2” = 4 Q will make 2" 4+ Pz' = kz", so that the coefficient
of dy/dz becomes a constant %, the equation is integrable. (Trying if
2% = + Q2* will make 2" + Pz' = kz"/z is needless because nothing in
addition to 6° is thereby obtained. It may happen that if z be deter-
mined so as to make 2" + Pz' = 0, the equation will be so far simpli-

fied that a solution of the reduced equation becomes evident.)
2
Consider the example % + g% + %‘-y =0. Here no solution is apparent.

Hence compute Q — 3} P’ — } P2. This is a?/x* and is neither constant nor propor-
tional to 1/22. Hence the methods 4° and 6° will not work. From 22 = Q = a?/x*
or 2’ = a/x?, it appears that z” + Pz’ = 0, and 6° works ; the new equation is

d%y . a

— =0 with z2=—-.

dz2 ty z
The solution is therefore seen immediately to be

y=C,cosz— Cysinz or y=C,cos(a/z)+ C,sin (a/z).

If there had been a right-hand member in the original equation, the solution could
have been found by the method of variation of constants, or by some of the short
methods for finding a particular solution if R had been of the proper form.

EXERCISES
1. If arelation Cyy; + Coyy + - - - + Cayn = 0, with constant coefficients not all 0,
exists between n functions y,, v,, - - -, ¥» of z for all values of z, the functions are

by definition said to be linearly dependent; if no such relation exists, they are said
to be linearly independent. Show that the nonvanishing of the Wronskian is a
criterion for linear independence.

2. If the general solution y = C,y; 4 C,y, + + - - + Cyya is the same for

Xoy('l) + le(n—l) +---+ X,y=0 and Poy(n) + Ply("-l) +-- 4 Py=0,
two linear equations of the nth order, show that y satisfies the equation

(X1Py— XoP)y® =D 4 ... + (XyPy— X Pa)y =0

of the (n — 1)st order; and hence infer, from the fact that y contains n arbitrary
constants corresponding to n arbitrary initial conditions, the important theorem:

If two linear equations of the nth order have the same general solution, the corre-
sponding coefficients are proportional.
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3. Ify,, ¥y, Unaren independent solutions of an equation of the nth order,
show that the equation may be taken in the form W (y,, ¥5, - -+, ¥, ¥) = 0.

4. Show that if, in any reduced equation, X, _; + X, = 0 identically, then z
is a solution. Find the condition that ™ be a solution ; also that em* be a solution.

5. Find by inspection one or more independent solutions and integrate :

(@) A+ 2%y’ —2zy'+2y=0, B zy"+(1—2)y —y =0,
(7) (ax—b2?)y” —ay’ +2by =0, )3y +zy—(+2)y=0,

1 1 1, 1.1 1\, (1 1 -
(¢) (logx+;,—;§+5)y +(logz+§+;3—§)y’ +<E—;>(1/—zy)—0,
) yWw—ay”+ay—y=0, () 4x2—z+1)y”+82%”’—4zy’—8y=0.

6. If y, is a known solution of the equation y” + Py’ + Qy = R of the second
order, show that the general solution may be written as

_ - [Paxdz 1 _[rax [ Paz 2
y_Clyl+Czylfe y,’.l-.y‘fyl’e fyle R (dz)3.
7. Integrate:
(@) 2y’ — Qe+ D)y’ + (z+)y=22—2—1,
B) vy —2% +ay==, M @ +(Q-2)y —y=e
)y’ —zy +(x—1)y =R, (e) y”sin?z + y’'sinzcosx — y =z — sinz.
8. After writing down the integral of the reduced equation by inspection, apply
the method of the variation of constants to these equations :
(@) (D*+1)y=tanz, (B) (D?+1)y=sec’z, (v) (P—1Wy=ex(1—2)"2
() Q=2)yy +ay —y=Q1-2)% () 1-22+ 2" —1)—2%"+2zy —y=1.

9. Integrate the following equations of the second order:

(a) 422" + 423" + (22 + 1)y =0, B) v’ — 2y tanz — (a2 4 1)y =0,

(v) z” + 2y — 2y =2e7, (8) y”’sinz + 2y’ cosx + 3ysinz = e,
(¢) ¥’ + y'tanz + ycos?z = 0, &) QA—2)y’ —zy' + 4y =0,

(1) ¥+ @es—1)y + By =z, (6) Y+ 82 +y =22

10. Show that if X y” + X,y"+ X,y = R may be written in factors as
(X,D* + XD + X))y = (p,D + ¢;) (0,0 + ¢;)y = R,
where the factors are not commutative inasmuch as the differentiation in one

factor is applied to the variable coefficients of the succeeding factor as well as
to D, then the solution is obtainable in terms of quadratures. Show that

0GP+ PP+ Pig =X, and g, +p,gs = X,.
In this manner integrate the following equations, choosing p, and p, as factors of
X, and determining ¢, and g, by inspection or by assuming them in some form and
applying the method of undetermined coefficients :
(@) zy” + 1— o)y —y = €7, (8) 32%" + (2—62%)y —4=0,
(v) 82%”"+ (24 6z — 622y’ —4y =0, (5) @2—1)y’"— @Bz +1)y—z@x-1)y=0,
(e) ary” + Ba + bx)y’ + 3by =0, ) xy” =2z + )y +2(Q + )y =28
11. Integrate these equations in any manner :
, T+ Vz—-8

4 l g 2 4 2
(‘1’)1‘/‘-7;3/ +Ty=0’ ®) vy —;II +<a2+;2>y=0v
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(v) ¥" +y'tanz + ycos?z =0, (8) z/’—2( _g)z/+ (n2—2%a'>y=eu,
(¢) (l—x’)y”—xy’—62y=0, (§) (@ =2y’ —8zy' — 12y =0,

(2 , 9 4z 6—3z
) v+ gpy=e(CHisz), O V- + =0,
()y' 42z —ny =0, (x) y”—4:cz/+ (422 — 3)y=e=’,

(\) ¥” 4+ 2ny’ cotnz + (m?2 — n?)y =0, (v) ¥ +2(x 1+ Bz2)y' + Az—4y=0.

12. If y, and y, are solutions of y” + Py’ + R = 0, show by eliminating Q and

integrating that
vs — vap; = Ce~J o,
What if C=0? If C # 0, note that y, and y; cannot vanish together; and if
yl(a) ¥,(b) = 0, use the relation (y,¥] )4 : (¥5¥1)s = k>0 to show that as y7, and
Y1, have opposite signs, y24 and 2, have opposite signs and hence y,(¢) = 0 where
a<{<b. Hence the theorem : Between any two roots of a solution of an equation
of the second order there is one root of every solution independent of the given
solution. What conditions of continuity for ¥ and y” are tacitly assumed here ?

107. The cylinder functions. Suppose that C,(x) is a function of =
which is different for different values of » and which satisfies the two
equations

Cos®) = Con@) = 2 2 C\(®), Cona(®) + Coa(®) = 2 Cy(a).  (29)

Such a function is called a eylinder function and the index = is called
the order of the function and may have any real value. The two equa-
tions are supposed to hold for all values of n and for all values of .
They do not completely determine the functions but from them follow
the chief rules of operation with the functions. For instance, by addi-
tion and subtraction,

Co(®) = Coa(@) = = Cu(@) =~ Cu(@) — Cua(@)- (30)
Other relations which are easily deduced are
D [x"C,(ax)] = az"C, _,(ax), Dz *C,(ax)] = — ax~"C, 1, (z), (31)
n n—1
D,[x“_’C,( ‘\/t_z_a;)] =1Var? C, (Vaz), (32)
Co(x) = — C,(x), C_.(x) = (—1)"C,(), n integral, (33)
, , A
Co(x) Kp(x) — Cr(2) K () = Cpp 11 (%) K, () — Cop(®) K () ==>  (34)
where C and K denote any two cylinder functions.

The proof of these relations is simple, but will be given to show the use of (29).
In the first case differentiate directly and substitute from (29).

Da[znColaz)] = xn[aD.,,C,.(az) +2 c,.(a:c)]

=zn [aC,. —1(az) — aa—r; Cn(az) + ; C,.(a.t)].
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The second of (31) is proved similarly. For (32), differentiate.
° 1 5= 21 |a
D.[22C,(Vaz)] = §m2 Cu(Vaz) + 22 5 z0va Co(Vaz)
1 n—l
=3 Vaz 2 [\/ Cy(Vaz) + C,

Next (33) is obtained 1° by substituting 0 for n in both equations (29).

C_1(z)— Cy(x) =2 C5(x), C-1(x)+ C,(z) =0, hence C,(x)= —C,(z);
and 2° by substituting successive values for » in the second of (29) written in the
form 2C, -1 + £Cp 41 = 2nC,. Then

2C_1 420, =0, 2C_g3+2C;=-2C_, =zCy+2C,=2C,,
2C_3+2C_1=—4C_,, zC, +2C3; =40,,
2C_4+20_2=—60;, zCy+ 2C, =6 G4,
and so on. The first gives C_;= — C,. Subtract the next two and use C_; + C; = 0.
Then C_g3—C, =0 or C_p; =(—1)2C,. Add the next two and use the relations
already found. Then C_g+ Cy =0 or C_g = (— 1)3C,;. Subtract the next two,

and so on. For the last of the relations, a very important one, note first that the
two expressions become equivalent by virtue of (29) ; for

azr

C”K:n— C;K,, = :‘: ChnK, — ChKpy1 — g CoKp+ Cr1K,.

d ; 1
Now 2 [2(Cn 11K = Ciln )] = Ca 1K = T + 2 (G = 52 0,10)
n n
+ zCn +l<;: Kn - Kn +l) - xKn+1<; Cn - n+l)
- zc,.(K, _n : ! K,.,,,) =0.

Hence 2 (Cp+1Kn — Cy K, 41) = const. = A4, and the relation is proved.

The cylinder functions of a given order » satisfy a linear differential
equation of the second order. This may be obtained by differentiating
the first of (29) and combining with (30).

’’ ’ ’ n_l n 1
2Cn =Cn—1_Cn+1=TCn—l_2Cn+%Cn+l

n 1
= ; (C,._l + C,‘.H) - 5 (C,‘_l -_ Cn+l) — 2 C”_

Hence Z*y + 016 gz +<1 - -:—22>y =0, y = C, (). (35)
This equation is known as Bessel’s equation; the functions C,(x), which
have been called cylinder functions, are often called Bessel’s functions.
From the equation it follows that any three functions of the same order
n are connected by a linear relation and there are only two independent
functions of any given order.
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By a change of the independent variable, the Bessel equation may
take on several other forms. The easiest way to find them is to operate
directly with the relations (31), (32). Thus

D, [a"Co@)]=—a "Copy=—a-2 " Cpyy,

Dg[x_" n(x)] = x-n_lcn+l +x ‘x—n—lcn+2
=—z " C, u+2(m+Dx"C,,, — 2 "C,.

dy (14 2n)dy .
Hence  —-5+ —z——z 7. Ty=0  y=a"C®). (36)
. d 1—2n)d ~
Again é + <—xz d—‘Z +y=0, y=a"C, (). 37
Also o'+ A+n)y +y=0, y=2 C,(2Vz) (38)
And zy"+(1—n)y'+y=0, y=2a2C,(2 '\/;:) (39)
In all these differential equations it is well to restrict  to positive values

inasmuch as, if  is not specialized, the powers of x, as 2", =" 2%, = Z are
not always real.

108. The fact that » occurs only squared in (35) shows that both
C.(x) and C_,(x) are solutions, so that if these functions are inde-
pendent, the complete solution is y = aC, + 4C_,. In like manner the
equations (36), (37) form a pair which differ only in the sign of =.
Hence if H, and H_, denote particular integrals of the first and second
respectively, the complete integrals are respectively

y=aH,+0H_,x* and y=caH_, + bH 2"
and similarly the respective integrals of (38), (39) are
y=al,+0I_,x and y=al_,+ 0l 2",
where I, and I_, denote particular integrals of these two equations. It
should be noted that these forms are the complete solutions only when
the two integrals are independent. Note that '
L@=a"t"c(2Va), @) =@Ga LG (40)

As it has been seen that C, = (—1)"C_, when = is integral, it follows
that in this case the above forms do not give the complete solution.

A particular solution of (38) may readily be obtained in series by the
method of undetermined coefficients (§ 88). It is

= S axt a; = (—1)' ’
In(w)-g o i+ 1) (n42) - (v +9) “h

as is derived below. It should be noted that I_, formed by changing
the sign of n is meaningless when # is an integer, for the reason that
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from a certain point on, the coeflicients a; have zeros in the denominator.
The determination of a series for the second independent solution when
n is integral will be omitted. The solutions of (35), (36) corresponding
to I(x) are, by (40) and (41),
g nt Y
WD) =5 2 BT g 1= Tl A (42)

=" (x) = 2—"% L(} o), (429

where the factor n! has been introduced in the denominator merely to
conform to usage.* The chief cylinder function C,(x) is J,(x) and it
always carries the name of Bessel.

To derive the series for I,(x) write

1 |[Li=a+ a2+ @22+ -+ apa@®-14...,

A+n)|=a,+2ax+ 8a@x?+---+k—1araxk-24...,

I = 2a, +3-2a;x +---+(k—=1)(k—2)ar_12¥-84 ...,

0 =2+ ay(n + D] + 2[a; + 0,2 (n + 2)] + 2 [a, + a3 (n + 3)]
4+t aga+ak(n+ )]+

Hence ay+a,(n+1)=0, a,+a2(n+2)=0,---, a4+ ak(n+k)=0,

z

a, , —a,
n+1

a,

T T Ty Ty O

_ (= 1)*a, .
E'm+1)---(n+ k)

If now the choice a, =1 is made, the series for I,(z) is as given in (41).
The famous differential equation of the first order

zy — ay + by? = czn, (43)

known as Riccati’s equation, may be integrated in terms of cylinder functions.
Note that if n = 0 or ¢ = 0, the variables are separable ; and if b = 0, the equation
islinear. As these cases are immediately integrable, assume bcn # 0. By a suitable
change of variable, the equation takes the form

or a = — K}

ax

] a\ dy — —ln —B@g :
‘E*(“;)a‘s bor=0, =, y=33% 43)

A comparison of this with (39) shows that the solution is
a
7= AI o(—bet) + BLa(— bef) - (— beb)»,
n n
which in terms of Bessel functions J becomes, by (40),

n= ¢ [47.(2V =) + BJ a(2V—=1bcE)].

* If n is not integral, both n! and (n + ¢)! must be replaced (§147) by I'(n + 1) and
T(r+i+1).
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The value of ¥ may be found by substitution and use of (29).

» Ja (2.'::\/ be/m) — AJ, a(2x2\/ be/n)

y=\/___z” - )

Jg(2z’ vV=bc/n) + AJ_‘_.(Zz;\/— be/n)

<

where A denotes the one arbitrary constant of integration.
It is noteworthy that the cylinder functions are sometimes expressible in terms
of trigonometric functions. For when n = } the equation (35) has the integrals
y=Asinz + Boosz and y=zi[d 3@ + BC_;(:c)]
Hence it is permissible to write the relations
z*Ci(:c) =sinz, z’lC_ i(z) = cosZ, (45)
where C is a suitably chosen cylinder function of order §. From these equations
by application of (29) the cylinder functions of order p + }, where p is any integer,
may be found.

Now if Riccati’s equation is such that b and ¢ have opposite signs and a/n is
of the form p + 3}, the integral (44) can be expressed in terms of trigonometric
functions by using the values of the functions Cps just found in place of the J’s.
Moreover if b and ¢ have the same sign, the trigonometric solution will still hold
formally and may be converted into exponential or hyperbolic form. Thus Riccati’s
equation is integrable in terms of the elementary functions when a/n =p + } no
matter what the sign of bc is.

EXERCISES

1. Prove the following relations:

(@) 40, =Cn2—2Cn+ Cnyz, (B) 2Cn =2(n + 1) Cp 41— 2Cpny32,
(7) 28C, = Cn—3—8Cn_1+ 8Cn41— Crys, generalize,
(3) 2Ca=2(n +1) Cog1 — 2(n + 3) Cn s 5+ 2(n + 5) Co 45— 2Cp 4.

2. Study the functions defined by the pair of relations
d 2
Fra@+ Fan(e) = 2 Fu@), Faaa@—Fuan(@)= 2 =@

especially to find results analogous to (30)-(85).
3. Use Ex. 12, p. 247, to obtain (34) and the corresponding relation in Ex. 2.

4. Show that the solution of (38) is y = I, [ % + BI,.
5. Write out five terms in the expansions of I, I, ; ~3 Joy Iy
6. Show from the expansion (42) that } ! \/; Ty@) = Z Lging.
7. From (45), (29) obtain the following :

ziC*(:c) = s_i;: — cosw, z%C%(z) (— - 1) sinzx — gcos z,

ztc_ g(.t) = —sinz — c(;sz’ m*C_ i(z) = gsinz + (a:% - l) cos Z.
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8. Prove bymtegratlonbyparts‘.f - dz = o + 6# +6 Sf rat
9. Suppose Cx(x) and K,(z) so chosen that 4 =1 in (34). Show that
= Cnl@) 4y @) ]
¥ = ACy(@) + BRo(z) + L[K,.(x) f 2P dz — Cula) f 22 s
is the integral of the differential equation z2y” + zy’ + (22 — n?)y = Lz—2.

10. Note that the solution of Riccati’s equation has the form

_J@) +4g9()
T F@r)+AG@)

will be the form of the equation which has such an expression for its integral.

» and show that % +Px)y+ Q@)y2 =R (=)

11. Integrate these equations in terms of cylinder functions and reduce the
results whenever possible by means of Ex. 7:

(@) oy ~ 5y + 2 +22=0, B =y’ — 8y + y2 =22,
() ¥ +yet= =0, ®) 22" + nay’ + (b + cx2m)y = 0.

12. Identify the functions of Ex. 2 with the cylinder functions of iz.
13. Let (#2 — 1) P, = (n 4 1) (Pn41 — 2Py), P, ,=zP,+(n+1)P; (46)
be taken as defining the Legendre functions P,(x) of order n. Prove

(@) @—1)P,=n@P,—Pa._1), (B) 2n+1)zP,=(n+1)Pus1+nPyro,
(1) @+ )P =P, —Piy, () A=) P, —22P,+nin+1)Py=0.

14. Show that P, @}, — P,Q, = and P,Qui1— Puy1Qn =

A 4.
z2—1 n+1 ’
where P and Q are any two Legendre functions. Express the general solution of
the differential equation of Ex. 13 () analogously to Ex. 4.
15. Let u = 22 — 1-and let D denote differentiation by z. Show
Dn+lyn+l = Dr+l(yur) = uDn+lun 4+ 2(n + 1) 2D + n(n + 1) Dr—yn,
Dn+iyn+l = DnDunr+l = 2 (n + 1) Da(zur) = 2 (n + 1)xzDmur 4+ 2n(n + 1) Do—lun,
Hence show that the derivative of the second equation and the eliminant of Dn—1y»
between the two equations give two equations which reduce to (46) if
1 d» When = is integral these are
= % 2
Py(z) = 2.t den @ =1y Legendre’s polynomials.
16. Determine the solutions of Ex. 18 (3) in series for the initial conditions
(a) P,(0)=1, P,(0)=0, B) P.(0)=0, P,0)=1.
17. Take P, =1and P, = . Show that these are solutions of (46) and compute
P,, P, P, from Ex. 13 (8). If z = cos §, show

P,=3cos26+%,  Py=4cos30+ §cosf, P,=3jcos46+ 3cos28 + .
18. Write Ex. 13 (3) as di:c ((1—2?) P,]+ n(n + 1) P, = 0 and show

d1—2z%)P, d(l—a:’)P;,]
o - P, o dz.

(mm+1)—n(n+1)] f_ :IP,.P,,,d:c = f_ :I[P,,.
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Integrate by parts, assume the functions and. their derivatives are finite, and show
S P Padz=0, if nxm.
-1

19. By successive integration by parts and by reduction formulas show

f_+1P‘2da: 1 f +1dn(z2 — 1y dn(x? — 1);- (_. 1)» f @ —

1" 22n(n 1)2J_y dan dan
d +1Pad:c 2 integral
. = — 1 Tal.
an f_l i | ™ intee

+1 +1 2 _
20. show [ a:"'P,.d:c=f1 :md'(anl)Eo, it m<n.
-1 -

Determine the value of the integral when m = n. Cannot the results of Exs. 18, 19

for m and n integral be obtained simply from these result,s ?
. . . z8 z*
21. Consider (38) and its solution [j=1—=z + ﬁ iE + e when
n=0. Assume a solution of the form y = I ;v + w so that

2w  dw dI, dv a2  dv
mtetvt Py = 1 tmte=0
is the equation for w if v satisfies the equation zv” 4+ »" = 0. Show

_|_2B.'z:2 2Bz‘+
2' 213! 314!

By assuming w = @,z + a,2? + - - -, determine the a’s and hence obtain

z2 1 z8 1 1 4 1 1 1
—oBle P 1N+ 2 1 2 1 0
w=2 [“E 2:2(l+2)+312(1+2+3) 4!2(l+2+3+4)+ ]’

and (4 + Blogz)I, + w is then the complete solution containing two constants.
As AI, is one solution, Blogz - I, + w is another. From this second solution for
n = 0, the second solution for any integral value of n may be obtained by differ-
entlation ; the work, however, is long and the result is somewhat complicated.

v=A + Blogz, ow’ +w+w=2B—



CHAPTER X
DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARIABLES

109. Total differential equations. An equation of the form
Pz, y, 2)de + Q(x, y, 2)dy + R(x, y, 2)dz = 0, @

involving the differentials of three variables is called a total differen-
tial equation. A similar equation in any number of variables would
also be called total; but the discussion here will be restricted to the
case of three. If definite values be assigned to z, y, 2, say a, b, ¢, the
equation becomes

Ade + Bdy+ Cdz=A(@—a)+ Bly—0)+C(z—c)=0, (2)

where z, y, # are supposed to be restricted to values near a, d, ¢, and
represents a small portion of a plane passing through (a, 4, ¢). From
the analogy to the lineal element (§ 85), such a portion of a plane may
be called a planar element. The differential equation therefore repre-
sents an infinite number of planar elements, one passing through each
point of space.

Now any family of surfaces F(z, y, 2) = C also represents an infinity
of planar elements, namely, the portions of the tangent planes at every
point of all the surfaces in the neighborhood of their respective points
of tangency. In fact

dF = F dx + F,dy + F,dz =0 3)
is an equation similar to (1). If the planar elements represented by

(1) and (3) are to be the same, the equations cannot differ by more
than a factor u(z, y, ). Hence

F,=pP, F;=/‘Q7 F; = pR.
If a function F(z, y, 2) = C can be found which satisfies these condi-
tions, it is said to be the integral of (1), and the factor u (, y, 2) by
which the equations (1) and (3) dlﬁer is called an integrating factor
of (1). Compare § 91.

It may happen that 4 =1 and that (1) is thus an exact differential.

In this case the conditions

P,=Q, Q=R;, R.=P, @

254
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which arise from FJ, = F,,, F,,= F,,, F;,= F;,, must be satisfied.
Moreover if these conditions are satisfied, the equation (1) will be
an exact equation and the integral is given by

x v
F(z,y,2) =f P(z,y,z)dx +f Q(xy y, 2)dy +fR (g Yoy 2)dB=C,
Zo Y

where x,, y,, z, may be chosen so as to render the integration as simple
as possible. The proof of this is so similar to that given in the case of
two variables (§92) as to be omitted. In many cases which arise in
practice the equation, though not exact, may be made so by an obvious
integrating factor.

As an example take zxdy — yzde + x2dz = 0. Here the conditions (4) are not

fulfilled but the integrating factor 1/z2z is suggested. Then
z z @

is at once perceived to be an exact differential and the integral is y/z + logz = C.
It appears therefore that in this simple case neither the renewed application of the
conditions (4) nor the general formula for the integral was necessary. It often
happens that both the integrating factor and the integral can be recognized at once
as above.

If the equation does not suggest an integrating factor, the question
arises, Is there any integrating factor ? In the case of two variables
(§94) there always was an integrating factor. In the case of three
variables there may be none. For

y_ O, OP ., Op  0Q
Fa=Po thoy=Tr=Q trg B
Q% 0 e pin, R
F,,—Qaz+n$—F,,_Ray+pay, P,
PR SR .
F"_Rax’-i-#az_F"—Paz-'-”az’ e

If these equations be multiplied by R, P, Q and added and if the result
be simplified, the condition

0Q OR (OR OP oP 0Q '

()t -w) G- ©

is found to be imposed on P, @, R if there is to be an integrating fac-

tor. This is called the condition of integrability. For it may be shown

conversely that if the condition (5) is satisfied, the equation may be
integrated.

Suppose an attempt to integrate (1) be made as follows : First assume

that one of the variables is constant (naturally, that one which will
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make the resulting equation simplest to integrate), say z. Then
Pdrx 4+ Qdy = 0. Now integrate this simplified equation with an inte-
grating factor or otherwise, and let F(x, y, #) = ¢ (2) be the integral,
where the constant C is taken as a function ¢ of 2. Next try to deter-
mine ¢ so that the integral F(x, y, 2) = ¢ (2) will satisfy (1). To do
this, differentiate ;
Fldx + F,dy + Fdz = d¢.
Compare this equation with (1). Then the equations*
F,=AP, F,=)Q, (F,—AR)dz=d¢

must hold. The third equation (F; — AR)dz = d¢ may be integrated
provided the coefficient § = F; — AR of dz is a function of z and ¢,
that is, of z and F, alone. This is so in case the condition (5) holds. It
therefore appears that the integration of the equation (1) for which (5)
holds reduces to the succession of two integrations of the type discussed
in Chap. VIIL

As an example take (222 + 2zy + 2222 4+ 1)dx + dy + 22dz = 0. The condition
222 +2xy + 2222 +1)0+ 1(—422) +22(22) =0
of integrability is satisfied. The greatest simplification will be had by making z
constant. Then dy + 22dz =0 and y + 22 = ¢ (z). Compare
dy +2zdz=d¢p and (222 + 22y + 2222+ 1)dz+dy + 22dz2=0.

Then A=1, — 222+ 22y + 2222 + 1)dz =dop;
or —(222+ 14 2z¢)de =dp or do + 2z¢pdr =— (222 + 1)dz.
This is the linear type with the integrating factor e=*. Then

e(dp + 2z¢dz) =— e=*(228 + 1)dz or e’ =_fer’(2z2 +1)dz + C.

Hence y + 22 + e-r’fel’(2z’ +1)dz = Ce—=* or ex'(y + 2%) +fe=‘(2z2 +1)dz=C
is the solution. It may be noted that e=* is the integfating factor for the original
equation :
e?[(222 + 2zy + 2222 4 1)dz + dy + 22dz] = d[ez’(y + 22) + fez’(23:2 + l)dz].

To complete the proof that the equation (1) is integrable if (5) is satisfied, it is
necessary to show that when the condition is satisfied the coefficient S = F, — AR
is a function of z and F alone. Let it be regarded as a function of z, F, z instead

of z, y, z. It is necessary to prove that the derivative of S by z when F and z are
constant is zero. By the formulas for change of variable

(ES) _ (ES) + (28 ) ¢F (?S) _ (ES ) ¢F
)y =(=£ =)=, = = (= .
Cx/y, 2 cx/F, 2 ¢F) ¢x Y/ 2,2 ¢F zz CY
* Here the factor \ is not an integrating factor of (1), but only of the reduced equation
Pdx + Qdy =0.
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28 oS ¢S
But F.=APand F, =\@, and hence (—) —P(—) = (_> .
F v @ Q ox/y, » Y/, 2 @ 0r/F, 2
o -
Now (-a—§) =—a-(-a—f-—)\R)=—aF——a)\—R_—_&P_M.
or/y . 0x\oz 0zor  ox 0z oz
Hence <§§) =)\(.a£_£e)+p%_R@,
or/y, 2 oz 0w oz oz
and (&), =2 (2-2)+ o252
Y/ 2,2 0z oy 0z oy
o o), 22, (o5~ 4 (529 -#{e8-r2]
o)y, » Yz, oz oz oy oz oz oy
oS oP ¢R > (oR aQ) (aQ aP)]
d — =X\ —_——— Pl——— R{—=——
an Q(aw,. [eG-2)+7G-5)+ &%
nQ axP]
—R|Zx_T7 ),
ox oy

where a term has been added in the first bracket and subtracted in the second.
Now as A is an integrating factor for Pdz + Qdy, it follows that (\Q); = (A\P), ; and
only the first bracket remains. By the condition of integrability this, too, vanishes
and hence 8 as a function of z, F, z does not contain z but is a function of F and
z alone, as was to be proved.

110. It has been seen that if the equation (1) is integrable, there is
an integrating factor and the condition (5) is satisfied; also that con-
versely if the condition is satisfied the equation may be integrated.
Geometrically this means that the infinity of planar elements defined
by the equation can be grouped upon a family of surfaces F(x, y,2) = C
to which they are tangent. If the condition of integrability is not satis-
fied, the planar elements cannot be thus grouped into surfaces. Never-
theless if a surface G (z, y, 2) = 0 be given, the planar element of (1)
which passes through any point (x,, y,, 2,) of the surface will cut the
surface G = 0 in a certain lineal element of the surface. Thus upon the
surface G (x, y, #) = 0 there will be an infinity of lineal elements, one
through each point, which satisfy the given equation (1). And these
elements may be grouped into curves lying upon the surface. If the
equation (1) is integrable, these curves will of course be the intersections
of the given surface G = 0 with the surfaces ¥ = C defined by the
integral of (1).

The method of obtaining the curves upon G(x, y, z) = 0 which are
the integrals of (1), in case (5) does not possess an integral of the form
F(x, 9, 2) =C, is as follows. Consider the two equations

Pdx 4+ Qdy + Rdz = 0, G dx + G dy + Gdz =0,

of which the first is the given differential equation and the second is
the differential equation of the given surface. From these equations
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one of the differentials, say dz, may be eliminated, and the correspond-
ing variable 2 may also be eliminated by substituting its value obtained
by solving G (x, y, 2) = 0. Thus there is obtained a differential equa-
tion Mdxc + Ndy = 0 connecting the other two variables  and y. The
integral of this, F(z, y) = C, consists of a family of cylinders which cut
the given surface G = 0 in the curves which satisfy (1).

Consider the equation ydz + zdy — (¢ 4+ y + 2)dz = 0. This does not satisfy the
condition (5) and hence is not completely integrable ; but a set of integral curves
may be found on any assigned surface. If the surface be the plane z = « + y, then

ydz + 2dy — (x+y +2)dz=0 and dz=dr+dy
give (z+2)dz+@+2)dy=0 or 2z+y)dx+Qy+2x)dy=0
by eliminating dz and z. The resulting equation is exact. Hence
224+zy+y?2=C and z=z+y

give the curves which satisfy the equation and lie in the plane.

If the equation (1) were integrable, the integral curves may be used to obtain
the integral surfaces and thus to accomplish the complete integration of the equa-
tion by Mayer's method. For suppose that F (z, y, 2) = C were the integral surfaces
and that F(z,y, z)= F(0, 0, z,) were that particular surface cutting the z-axis at z,.
The family of planes y = Az through the z-axis would cut the surface in a series
of curves which would be integral curves, and the surface could be regarded as
generated by these curves as the plane turned about the axis. To reverse these
considerations let ¥y = Az and dy = \dx ; by these relations eliminate dy and y from
(1) and thus obtain the differential equation Mdr + Ndz = 0 of the intersections
of the planes with the solutions of (1). Integrate the equation as f(x, z, \) = C and
determine the constant so that f(z, z, \) = f(0, 2y, \). For any value of \ this gives
the intersection of F(z,y, 2) = F(0, 0, z,) with y = Az. Now if X be eliminated by
the relation A = y/x, the result will be the surface

f (z, z, 3-:) =f (0, 2, 251)’ equivalent to  F(z, y, 2) = F(0, 0, z,),
which is the integral of (1) and passes through (0, 0, z,). As z, is arbitrary, the
solution contains an arbitrary constant and is the general solution.

It is clear that instead of using planes through the z-axis, planes through either
of the other axes might have been used, or indeed planes or cylinders through any
line parallel to any of the axes. Such modifications are frequently necessary owing
to the fact that the substitution f(0, 2,, A) introduces a division by 0 or a log 0 or
some other impossibility. For instance consider

Yz +2dy —ydz=0, y=2Ar, dy=»Ndz, A%z + N\edz —A\zdz =0.
Then Ndz + Zdz——;m-f

z

*

=0, and )\z-f:f(.t, Z, \).
x

But here f(0, 2, \) is impossible and the solution is illusory. If the planes (y — 1) =\z
passing through a line parallel to the z-axis and containing the point (0, 1, 0) had
been used, the result would be

dy =2z, (14 \z)%dz + Nedz — (1 + \z)dz = 0,
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Ndz — (14 A\z)dz z

a4 MEZCQITME_§ and o = N).

or + (1+M)2 ,  an z 1+ f(xvza )
z z

Hence z— =—2z, Oor T—-=—2,=C,
14\ Y

is the solution. The same result could have been obtained with z =Xz or y =\ (z — a).
In the latter case, however, care should be taken to use f(z, 2, \) = f(a, 24, N).

EXERCISES

1. Test these equations for exactness ; if exact, integrate ; if not exact, find an
integrating factor by inspection and integrate:

(@) W+2)dz+ (z+2)dy + (£ +y)dz=0, (B) y?dx + zdy — ydz =0,
(v) 2dz + ydy — Va¥ —2? — yidz = 0, () 22(dx — dy) + (z — y) dz = 0,
() @z + y%2+ 2z2)dx + 22ydy + 22dz =0, (¢) zydz = zzxdy + y2dz,
Mzy-1)e—1lde+y@z—1)(—1)dy+z(x—1)(y —1)dz=0.
2. Apply the test of integrability and integrate these:

(a) (22 — y? —2%)dx + 2zydy + 222dz = 0,

B) @+v2+22+1)de+ 2ydy + 22dz =0,

(v) + @)%z + zdy = (y + a)dz,

(8) (1—x%— 2y%)dz = 2xzdx + 2 y22dy,

(€) z2dxz? + y2dy? — 22d2? + 2 zydady = 0,

($) z(xde + ydy + 2d2)? = (22 — 22 — y?) (xdz + ydy + zdz)dz.

3. If the equation is homogeneous, the substitution = = uz, ¥ = vz, frequently
shortens the work. Show that if the given equation satisfies the condition of inte-
grability, the new equation will satisfy the corresponding condition in the new
variables and may be rendered exact by an obvious integrating factor. Integrate :

(@) (¥* + yz)de + (xz + 2)dy + (¥* — 2y)dz = 0,
(B) (x%y — y® — y%)dx + (xy? — 222 — ) dy + (xy? + 22y)dz = 0,
() @+ vz +20)de + @ + 2z + 2 dy + (22 + 2y + yP)dz = 0.

4. Show that (5) does not hold ; integrate subject to the relation imposed :

(@) ydxz + ady — (z + y + 2)dz =0, T+y+z=k or y=kz,

(B) c(xdy + ydy) + V1 — a2 — b2y2dz = 0, a?x? + b%Y? + c%22 =1,

(v) dz = aydx + bdy, y=kr or 224+ y?2422=1 or y=f(x).

5. Show that if an equation is integrable, it remains integrable after anychange
of variables from z, y, z to u, v, w.

6. Apply Mayer’s method to sundry of Exs. 2 and 3.

7. Find the conditions of exactness for an equation in four variables and write
the formula for the integration. Integrate with or without a factor :
(@) (22 + y2 + 2a2)dx + 2xydy + 22dz + du =0,
(B) yzudx'+ xzudy + zyudz + xyzdu =0,
() @+z+wde+@+z+uw)dy+@E+y+uwdz+ (@ +y+2)du=0,
(8) u(+2)dr+u(y +2+1)dy + udz — (y + 2)du = 0.

8. If an equation in four variables is integrable, it must be so when any one of
the variables is held constant. Hence the four conditions of integrability obtained
by writing (5) for each set of three coefficients must hold. Show that the conditions
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are satisfied in the following cases. Find the integrals by a generalization of the
method in the text by letting one variable be constant and integrating the three
remaining terms and determining the constant of integration as a function of the
fourth in such a way as to satisfy the equations.

(@) 2y +2)dz+z(u—x)dy + y(z—wydz + y (¥ + 2)du =0,

(B) uyzdx + uzz log zdy + uxy log zdz — xdu = 0.

9. Try to extend the method of Mayer to such as the above in Ex. 8.

10. If G(, ¥, 2) = a and H (z, y, z) = b are two families of surfaces defining a
family of curves as their intersections, show that the equation

(G, H,—G.H,)dx + (G,H,— G H))dy + (G;H; — G H)dz=0
is the equation of the planar elements perpendicular to the curves at every point
of the curves. Find the conditions on G and H that there shall be a family of sur-

faces which cut all these curves orthogonally. Determine whether the curves below
have orthogonal trajectories (surfaces) ; and if they have, find the surfaces:

(@y=z+a z=z+D, ®B) y=az+1, z=b,
(@) Z2+y*=ad z=b, @) azy=ga, zz2=0b,
(&) 22+ y2 +22=a? zy =0, ($) 22+ 292+ 822 =a, zy + 2=,

(n) logzy =az, z+y+2z=>, @) y=2azx+ a% z=2bx + b2

11. Extend the work of proposition 3, § 94, and Ex. 11, p. 234, to find the normal
derivative of the solution of equation (1) and to show that the singular solution may
be looked for among the factors of =1 = 0.

12. If F= Pi + @j + Rk be formed, show that (1) becomes F.dr = 0. Show
that the condition of exactness is VxF = 0 by expanding VxF as the formal vector
product of the operator V and the vector F (see § 78). Show further that the condi-
tion of integrability is F+(VxF) = 0 by similar formal expansion.

13. In Ex. 10 consider VG and VH. Show these vectors are normal to the sur-
faces G = a, H = b, and hence infer that (VG)x(VH) is the direction of the inter-
section. Finally explain why dr.(VGxVH) = 0 is the differential equation of the
orthogonal family if there be such a family. Show that this vector form of the family
reduces to the form above given.

111. Systems of simultaneous equations. The two equations

d dz
d;z = f(=x, ¥, 2), dz =g(=, ¥y, ?) (6)

in the two dependent variables y and #z and the independent variable x
constitute a set of simultaneous equations of the first order. It is more
customary to write these equations in the form

dx _ dy dz : )
= = b
X@y,2) Y@ y2) Z@>y2)

which is symmetric in the differentials and where X:Y:Z =1:f:g.
At any assigned point z, ,, 2, of space the ratios dx:dy:dz of the
differentials are determined by substitution in (7). Hence the equations
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fix a definite direction.at each point of space, that is, they determine a
lineal element through each point. The problem of integration is to
combine these lineal elements into a family of curves F(x, y, 2) = C,,
G (x, y, z) = C,, depending on two parameters C, and C,, one curve pass-
ing through each point of space and having at that point the direction
determined by the equations.

For the formal integration there are several allied methods of pro-
cedure. In the first place it may happen that two of

de dy dy dz de dz
) ===

Xy Yy z' Xz

are of such a form as to contain only the variables whose differentials
enter. In this case these two may be integrated and the two solutions
taken together give the family of curves. Or it may happen that one
and only one of these equations can be integrated. Let it be the first
and suppose that F(z, y) = C, is the integral. By means of this inte-
gral the variable z may be eliminated from the second of the equations
or the variable y from the third. In the respective cases there arises
an equation which may be integrated in the form G (y, 2, C,)=C, or
G (z, 2, F) = C,, and this result taken with F(z, y) = C, will determine
the family of curves. :

Consider the example 2z = ydy = % Here the two equations

yz Tz oy

2e v anq g,
y z
are integrable with the results z8 — y® = C,, 22 — 22 = C,, and these two integrals
constitute the solution. The solution might, of course, appear in very different
form ; for there are an indefinite number of pairs of equations F(z, y, z, ) =0,
G (z, 9, 2, C,) = 0 which will intersect in the curves of intersection of z® — y3 = C,,
and 22 — 22 =C,. In fact (y® + C,)? = (22 + C,)? is clearly a solution and could
replace either of those found above.

dx dy dz

Consider the example ——— —— = —~-=_——. Here
2 —y2—22 22y 22z
%_/ = ﬁ, with the integral y = Cyz,
z

is the only equation the integral of which can be obtained directly. If y be elimi-
nated by means of this first integral, there results the equation

dx _ dz
This is homogeneous and may be integrated with a factor to give
224+ (C3+1)22=Cpz or z?+y%+22=C,.
Hence y=Cg, 224+ y2+22=0Cy
is the solution, and represents a certain family of circles.

or 2zzdr+ [(C2+1)22—2%]dz=0.



262 DIFFERENTIAL EQUATIONS

Another method of attack is to use composition and division.

dx__cl;/_ﬁ_/\dz+;4dz/+vd... ®)
X Y Z AX 4+ pY +vZ
Here A, p, v may be chosen as any functions of (z, y, 2). It may be
possible so to choose them that the last expression, taken with one of
the first three, gives an equation which may be integrated. With this
first integral a second may be obtained as before. Or it may be that
two different choices of A, u, v can be made so as to give the two desired
integrals. Or it may be possible so to select two sets of multipliers that
the equation obtained by setting the two expressions equal may be
solved for a first integral. Or it may be possible to choose A, u, v s0O
that the denominator AX 4+ uY +vZ = 0, and so that the numerator
(which must vanish if the denominator does) shall give an equation
Mz + pdy + vdz =0 ©)
which satisfies the condition (5) of integrability and may be integrated
by the methods of § 109.
_ dy _ dz
2+yityz ?+yi-az @+ )2
as 1, —1, —1; then AX +uY + vZ =0 and dr — dy — dz =0 is integrable as

z — y — z = C,. This may be used to obtain another integral. But another choice
of \, u, v as 2, y, 0, combined with the last expression, gives

Consider the equations

. Here take \, u, »

zdr + ydz dz
= or log(z2+ y?) =log22+ C,.
FEr Ay @)z @+ v =logs+ 6y
Hence z—y—2z=0C, and %4 y2=0C,22?

will serve as solutions. This is shorter than the method of elimination.
It will be noted that these equations just solved are homogeneous The substi-
tution & = uz, y = vz might be tried. Then

udz+2zdu _ vdz+zdv _ dz _ zdu 2dy
WrP+o wWtvP—u utv V—uwwtov wWB—uw—u
du dv _dz

or = =
—uw+4v u—w-—u 2z

Now the first equations do not contain z and may be solved. This always happens
in the homogeneous case and may be employed if no shorter method suggests itself.

It need hardly be mentioned that all these methods apply equally to
the case where there are more than three equations. The geometric
picture, however, fails, although the geometric language may be contin-
ued if one wishes to deal with higher dimensions than three. In some
cases the introduction of a fourth variable, as

T Y Y =%, 10)
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is useful in solving a set of equations which originally contained only
three variables. This is particularly true when X, ¥, Z are linear with
constant coefficients, in which case the methods of § 98 may be applied
with ¢ as independent variable.

112. Simultaneous differential equations of higher order, as

&z _ dx dy &y _ dx dy
W_X<m’ ¥ at dt)’ a8 = Y(‘v’ Vrat at )’

&r 1 /d¢\? dr d 1d/,de dr d

7 (@)=r(e 52 FER)= (5 )
especially those of the second order like these, are of constant occur-
rence in mechanics; for the acceleration requires second derivatives
with respect to the time for its expression, and the forces are expressed
in terms of the codrdinates and velocities. The complete integration of
such equations requires the expression of the dependent variables as
functions of the independent variable, generally the time, with a num-
ber of constants of integration equal to the sum of the orders of the
equations. Frequently even when the complete integrals cannot be
found, it is possible to carry out some integrations and replace the
given system of equations by fewer equations or equations of lower
order containing some constants of integration.

No special or general rules will be laid down for the integration of
systems of higher order. In each case some particular combinations of
the equations may suggest themselves which will enable an integration
to be performed.* In problems in mechanics the principles of energy,
momentum, and moment of momentum frequently suggest combinations
leading to integrations. Thus if

x" = X, y" — Y, z" = Z,
where accents denote differentiation with respect to the time, be multi-
plied by dz, dy, dz and added, the result
x"dx + y'"dy + 2'"dz = Xdx + Ydy + Zdz 11)

contains an exact differential on the left ; then if the expression on the
right is an exact differential, the integration

Y&+ Y+ 2% = | Xdx + Ydy + Zdz + C 11’
Yy )

* It is possible to differentiate the given equations repeatedly and eliminate all the
dependent variables except one. The resulting differential equation, say in z and ¢, may
then be treated by the methods of previous chapters; but this is rarely successful except
when the equation is linear.
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can be performed. This is the principle of energy in its simplest form.
If two of the equations are multiplied by the chief variable of the other
and subtracted, the result is

ye'"' —xy'"' = yX — Y 12)
and the expression on the left is again an exact differential; if the
right-hand side reduces to a constant or a function of ¢, then

yx' —xy' = f fO+C (12"

is an integral of the equations. This is the principle of moment of
momentum. If the equations can be multiplied by constants as

"+ my" + nz" =X +mY + nZ, 13)

so that the expression on the right reduces to a function of ¢, an inte-
gration may be performed. This is the principle of momentum. These
three are the most commonly usable devices.

As an example: Let a particle move in a plane subject to forces attracting it

toward the axes by an amount proportional to the mass and to the distance from
the axes; discuss the motion. Here the equations of motion are merely

d%z d¥y d’x _ %y _
mae-=—kmz, mﬁ_—kmy or Et;_—kz’ F7
d%r dzy dz\2 (dy\2
Then zd7+y(—u—2=—k(:cd:c+ydy) a.r'ld (Et—)+(a)=_(z2+ya)+g.
B dy 4y _,

In this case the two principles of energy and moment of momentum give two
integrals and the equations are reduced to two of the first order. But as it happens,
the original equations could be integrated directly as

a2z dx\2 dr

—“dx = - kxdz. =) =— kx2 2 —_—  _ =dt
dae ! (dt) +0% C? — k2

azy (dy2 dy

— dy =— kyd, —)=—Fky?+ K2 pe———
a ™ kydy, dt) kot + B, \/Kz_kys_‘u‘

The constants C2 and K2 of integration have been written as squares because they
are necessarily positive. The complete integration gives

Vkz = Csin(Vkt +C,), Vky = Ksin(Vit + K,).

As another example : A particle, attracted toward a point by a force equal to
r/m? 4+ h2/r® per unit mass, where m is the mass and A4 is the double areal velocity
and r is the distance from the point, is projected perpendicularly to the radius vec-
tor at the distance Vmh; discuss the motion. In polar codrdinates the equations
of motion are

2, 2 2
m[d—r—l((l—‘ﬁ)]:R:—m—r—ﬂ-v z‘i(ﬂd_tﬁ>=¢=0'.
a2 r\dt md 3 rdt\ dt
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The second integrates directly as r2d¢/dt = h where the constant of integration &
is twice the areal velocity. Now substitute in the first to eliminate ¢.
L P N o YL S (dr) _r +C
a2 m s az - m2 a) = "
Now as the particle is projected perpendicularly to the radius, dr/dt = 0 at the
start when r =vVmh. Hence the constant C is h/m. Then

.__dy.‘__—_—dt and @:dt give M:d(ﬁ.
h 12 h r2 r2
- _ 1— —
m m? hm
~mh 1_1_(e40p
Hence h =¢+C or AT

Now if it be assumed that ¢ = O at the start when r = Vmh, we find C = 0.

Hence r2= mh is the orbit.
1+
To find the relation between ¢ and the time,
mde '
r2d¢ = hdt or =dt or t=mtan-1
¢ 1t ¢ mtan—¢,

if the time be taken as t = 0 when ¢ = 0. Thus the orbit is found, the expression
of ¢ as a function of the time is found, and the expression of r as a function of the
time is obtainable. The problem is completely solved. It will be noted that the
constants of integration have been determined after each integration by the initial
conditions. This simplifies the subsequent integrations which might in fact be
impossible in terms of elementary functions without this simplification.

EXERCISES
1. Integrate these equations:
de dy dz d:c dy dz
(e ) Tz oy (ﬁ) = oy
d:c dy dz d:c_dy dz
™ Z z yz zy (@ ) @z z+y
da: dy dz dx dy dz
(e — = () —=-=0—"+-=——"—.
z r+z2 —1 3y+4z 2y+456z2
. dz dy dz
2. Integrate th tions : = = ,
ntegra e equations (@) v —
de dy _ dz de _ dy _ dz
LR b P s
®) e _  dy dz (e) de _ dy _  dz
vz—22t 2yt —ay p@—y) | zw—2) ye-2) z2@—9)
©® dx _ dy _ dz ) dx . =dy dz
= = ] = -_— 1
2P—2) y@—07) z@—9) 2@ =) Y@+ 2@+
dz d dz dr d dz
O -=="F =" =a, () - =—"1

y—z x+y z+2 y—z_z+y+t=x+z+t=
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3. Show that the differential equations of the orthogonal trajectories (curves
of the family of surfaces F(z,y, 2) = C are dz:dy:dz = F;: F,: F;. Find the curves
which cut the following families of surfaces orthogonally :

(@) a?x® + 022 + 22 =C, (B) zyz=C, () ¥? = Czz,
(8) y==ztan(z + O), (¢) y =xtanCz, ($) z=Cuzxy.

4. Show that the solution of dz:dy:dz2 = X:Y :Z, where X, Y, Z are linear
expressions in z, y, z, can alwayg be found provided a certain cubic equation can
be solved.

5. Show that the solutions of the two equations
%‘" +Tz+y) =T, ‘;t—” +T@z+ V) =T,
where T, T, T, are functions of {, may be obtained by adding the equation as
‘%(z + )+ ATz + ly) =T, + 1T,

after multiplying one by !, and by determining \ as a root of
MN—-(a+d)\+ab—ab=0.

6. Solve: (a) t%+2(z—'y)=t, t%+z+5y=t’,
(8) tdz = (t — 2z)dt, tdy = (tz + ty + 22 — t)dt,
() ldz mdy ndz dt

mn(y —2) = nl(z — ) =lm(z—y) s

7. A particle movesin vacuo in a vertical plane under the force of gravity alone.
Integrate. Determine the constants if the particle starts from the origin with a
velocity V" and at an angle of @ degrees with the horizontal and at the time ¢ = 0.

8. Same problem as in Ex. 7 except that the particle moves in a medium which
resists proportionately to the velocity of the particle.

9. A particle movesin a plane about a center of force which attracts proportion-
ally to the distance from the center and to the mass of the particle.

10. Same as Ex. 9 but with a repulsive force instead of an attracting force.

11. A particle is projected parallel to a line toward which it is attracted with
a force proportional to the distance from the line.

12. Same as Ex. 11 except that the force is inveréely proportional to the square
of the distance and only the path of the particle is wanted.

13. A particle is attracted toward a center by a force proportional to the square
of the distance. Find the orbit.

14. A particle is placed at a point which repels with a constant force under
which the particle moves away to a distance ¢ where it strikes a peg and is
deflected off at a right angle with undiminished velocity. Find the orbit of the
subsequent motion.

15. Show that equations (7) may be written in the form drxF = 0. Find the
condition on F or on X, Y, Z that the integral curves have orthogonal surfaces.
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113. Introduction to partial differential equations. An equation
which contains a dependent variable, two or more independent varia-
bles, and one or more partial derivatives of the dependent variable
with respect to the independent variables is called a partial differential
equation. The equation .

0 0 0z 0z
P(ac,y,z)£+Q(x,y,z)af;:R(x,y,z), p=z 9=5}’ (14)

is clearly a linear partial differential equation of the first order in one
dependent and two independent variables. The discussion of this equa-
tion preliminary to its integration may be carried on by means of the
concept of planar elements, and the discussion will immediately suggest
the method of integration.

When any point (z,, y,, 2,) of space is given, the coefficients P, Q, R
in the equation take on definite values and the derivatives p and ¢
are connected by a linear relation. Now any planar element through
(%, ¥, 2,) may be considered as specified by the two slopes p and ¢ ; for
it is an infinitesimal portion of the plane 2 — 2 = p(x —x) + ¢ (¥ — ¥,
in the neighborhood of the point. This plane contains the line or lineal
element whose direction is

dr:dy:dz=P:Q:R, 15)

because the substitution of P, Q, R for de =2z — =z, dy=y —y,,
dz =z —z in the plane gives the original equation Pp + Q¢ = R.
Hence it appears that the planar elements defined by (14), of which
there are an infinity through each point of space, are so related that all
which pass through a given point of space pass through a certain line
through that point, na.mel).f the line (15).

Now the problem of integrating the equation (14) is that of grouping
the planar elements which satisfy it into surfaces. As at each point
they are already grouped in a certain way by the lineal elements through
which they pass, it is first advisable to group these lineal elements into
curves by integrating the simultaneous equations (15). The integrals
of these equations are the curves defined by two families of surfaces
F(x, y, 2) = C, and G (x, y, z) = C,. These curves are called the charac-
teristic curves or merely the characteristics of the equation (14). Through
each lineal element of these curves there pass an infinity of the planar ele-
ments which satisfy (14). Itis therefore clear that if these curves be in
any wise grouped into surfaces, the planar elements of the surfaces must
satisfy (14); for through each point of the surfaces will pass one of the
curves, and the planar element of the surface at that point must there-
fore pass through the lineal element of the curve and hence satisfy (14).
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To group the curves F(z, y, 2) = C,, G(=, ¥, 2) = C, which depend
on two parameters C,, C, into a surface, it is merely necessary to intro-
duce some functional relation C,=f(C,) between the parameters so
that when one of them, as C,, is given, the other is determined, and
thus a particular curve of the family is fixed by one parameter alone
and will sweep out a surface as the parameter varies. Hence ¢o integrate
(14), first integrate (15) and then write

Gz, y, 2) =®[F(x,y,2)] or &®(F, G)=0, (16)
where @ denotes any arbitrary function. This will be the integral of
(14) and will contain an arbitrary function &.

As an example, integrate (y — 2)p + (z — z)qg = = — y. Here the equations

i _ Ay _ dz
v—2 z—2 z—y

give 22432421=C),, z2+y+2=0C,

as the two integrals. Hence the solution of the given equation is
z+y+2=2@2+y2+2%) or P +y2+22,2+y+2)=0,
where & denotes an arbitrary function. The arbitrary function allows a solution
to be determined which shall pass through any desired curve; for if the curve be
f(x, y,2) =0, g(z, ¥, 2) = 0, the elimination of z, y, z from the four simultaneous
equations :
F(Za Y, Z) = Cl’ G(Z’ Y, Z) = sz f(Z, Y, 2) = 0, g(xa Y, Z) =0
will express the condition that the four surfaces meet in a point, that is, that the
‘curve given by the first two will cut that given by the second two ; and this elimi-
nation will determine a relation between the two parameters C; and C, which will
be precisely the relation to express the fact that the integral curves cut the given
curve and that consequently the surface of integral curves passes through the given
curve. Thus in the particular case here considered, suppose the solution were to
pass through the curve y = 22, z = ; then
2?2+y2+22=C, <+y+2=0, y=2z% 2=z
give 222+ at=C,, 2*+2x=0C,,
whence (C242C,—C))2+8C}—24C,—16C,C,=0.
The substitution of C; =22+ %2+ 22 and C, =z + y + z in this equation will
give the solution of (y —z)p + (2 — %) ¢ =« — y which passes through the parabola
y=2a% z=x¢.

114. It will be recalled that the integral of an ordinary differ-
ential equation f(z,y,y, -, ¥”)=0 of the nth order contains n con-
stants, and that conversely if a system of curves in the plane, say
F(z,y,Cp, -+, C,)=0, contains n constants, the constants may be
eliminated from the equation and its first » derivatives with respect
to x. It has now been seen that the integral of a certain partial
differential equation contains an arbitrary function, and it might be
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inferred that the elimination of an arbitrary function would give
rise to a partial differential equation of the first order.” To show
this, suppose F(z, y, 2)=®[G(x, y, 2)]. Then
F;+Fp=%-(G;+Gp), F +Fq=% (G +06yq)
follow from partial differentiation with respect to  and y; and
(F,G, — F,G))p + (F,G; — F,G))q = F,G, — F,G,
is a partial differential equation arising from the elimination of &'
More generally, the elimination of » arbitrary functions will give rise
to an equation of the nth order; conversely it may be believed that
the integration of such an equation would introduce » arbitrary func-
tions in the general solution.
As an example, eliminate from z = ® (zy) + ¥ (z + y) the two arbitrary func-
tions ® and ¥. The first differentiation gives
p=¥.y+¥, ¢=%-2+V¥, p-g=@Fy-—2)9%.
2. 2 2
Now differentiate again and let r = i 1y 8= oz 1 t= oz, Then
ox? oxdy oy?
r—8=—%& 4 (y—xz)®” -y, S—t=%+(y—2)®”-z.
These two equations with p — ¢ = (y — z) ¥’ make three from which

4y 0%z %z 2z x4y (az az)
zr—+y)s+yt=——(p— or t——2+yY) —+y—=——(———
@+y) Y y(P q9) P ( ‘y) 2zt yay’ z—y\z P

may be obtained as a partial differential equation of the second order free from
® and ¥. The general integral of this equation would be z = ® (xy) + ¥ (z + ¥).

A partial differential equation may represent a certain definite type
of surface. For instance by definition a conoidal surface is a surface
generated by a line which moves parallel to a given plane, the director
plane, and cuts a given line, the directrix. If the director plane be taken
as z = 0 and the directrix be the z-axis, the equations of any line of
. the surface are

z=0C,, y=Cgx, with C, =®(C)
as the relation which picks out a definite family of the lines to form a
particular conoidal surface. Hence z = ®(y/x) may be regarded as the
general equation of a conoidal surface of which z = 0 is the director
plane and the z-axis the directrix. The elimination of ® gives px+qy=0
as the differential equation of any such conoidal surface.

Partial differentiation may be used not only to eliminate arbitrary func-
tions, but to eliminate constants. For if an equation f(z, y, 2, C,, C,) =0
contained two constants, the equation and its first derivatives with respect
to z and y would yield three equations from which the constants could
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be eliminated, leaving a partial differential equation F(x, , 2, p, ¢) =0
of the first order. If there had been five constants, the equation with
its two first derivatives and its three second derivatives with respect
to x and y would give a set of six equations from which the constants
could be eliminated, leaving a differential equation of the second order.
And so on. As the differential equation is obtained by eliminating the
constants, the original equation will be a solution of the resulting dif-
ferential equation.

For example, eliminate from z = Az? 4+ 2 Bxy + Cy? + Dz + Ey the five con-
stants. The two first and three second derivatives are
p=24Ax+2By+D, q=2Br+2Cy+ E, r=24, s8=2B, t=2C.
Hence z=—}re?— fty? — sy + pzr + qy
is the differential equation of the family of surfaces. The family of surfaces do
not constitute the general solution of the equation, for that would contain two
arbitrary functions, but they give what is called a complete solution. If there had
been only three or four constants, the elimination would have led to a differential
equation of the second order which need have contained only one or two of the
second derivatives instead of all three ; it would also have been possible to find three
or two simultaneous partial differential equations by differentiating in different ways.

115. If f(z,y,2 C,Cp=0 and F(x,y,2p,9) =0 an

are two equations of which the second is obtained by the elimination of
the two constants from the first, the first is said to be the complete solu-
tion of the second. That is, any equation which contains two distinect
arbitrary constants and which satisfies a partial differential equation of
the first order is said to be a complete solution of the differential equa-~
tion. A complete solution has an interesting geometric interpretation.
The differential equation F =0 defines a series of planar elements
through each point of space. So does f(x, y, 2, C,, C;) =0. For the
tangent plane is given by

o L o
o(x - xo) + a;‘/'o(y - yo) + 0z
with S @y Yoy 2 Cpy C) =0

X

as the condition that C, and C, shall be so related that the surface
passes through (x,, y,, #,). As there is only this one relation between
the two arbitrary constants, there is a whole series of planar elements
through the point. As f(z,y, 2, C,, C,) = 0 satisfies the differential equa-
tion, the planar elements defined by it are those defined by the differen-
tial equation. Thus a complete solution establishes an arrangement of
the planar elements defined by the differential equation upon a family
of surfaces dependent upon two arbitrary constants of integration.

o(z - zo) =0
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From the idea of a solution of a partial differential equation of the
first order as a surface pieced together from planar elements which
satisfy the equation, it appears that the envelope (p. 140) of any family
of solutions will itself be a solution; for each point of the envelope is
a point of tangency with some one of the solutions of the family, and
the planar element of the envelope at that point is identical with the
planar element of the solution and hence satisfies the differential equa-
tion. This observation allows the general solution to be determined from
any complete solution. For if in f(x, y, 2, C}, C,) =0 any relation
C,=®(C)) is introduced between the two arbitrary constants, there
arises a family depending on one parameter, and the envelope of the
family is found by eliminating C, from the three equations

of | Ao of _
C,=®(C), a—c—l+d—claT,2— A f=0. (18)
As the relation C, = &(C,) contains an arbitrary function &, the result
of the elimination may be considered as containing an arbitrary func-
tion even though it is generally impossible to carry out the elimnination
except in the case where ® has been assigned and is therefore no longer
arbitrary. :

A family of surfaces f(z, y, 2, C,, C,) = 0 depending on two param-
eters may also have an envelope (p. 139). This is found by eliminat-
ing C, and C, from the three equations

f(x, 9,2 C, C) =0, %=0’ -;—‘(};=O.
This surface is tangent to all the surfaces in the complete solution.
This envelope is called the singular solution of the partial differential
equation. As in the case of ordinary differential equations (§ 101), the
singular solution may be obtained directly from the equation;* it is
merely necessary to eliminate p and ¢ from the three equations

F(x,y,2p9)=0, Z_;':O’ %f=0-
The last two equations express the fact that F(p, ¢) = 0 regarded as
a function of p and ¢ should have a double point (§ 57). A reference
to § 67 will bring out another point, namely, that not only are all the
surfaces represented by the complete solution tangent to the singular
solution, but so is any surface which is represented by the general
solution.

* It is hardly necessary to point out the fact that, as in the case of ordinary equations,
extraneous factors may arise in the elimination, whether of C;, C; or of p, q.
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EXERCISES

1. Integrate these linear equations: v

(@) zzp + yzq = ay, ®) a(p+9) =g () 2’ + v =22
() —yp+2q+1+22=0, () yp—2g=2*—p% () @+2)p=y,
(n) 2?p—2yq + 2 =0, @) @a—2)p+(O—v)g=c—z

(¢) ptanz + gtany = tanz, (%) @2+ 22 —2%)p—2zyg + 222 =0.

2. Determine the integrals of the preceding equations to pass through the curves :

for (a) 22+y2=1,2=0, for B)y=0,z=z2,
for (7):(/:23,2:1, for (e)z=z,y=z,

3. Show analytically that if F(z, y, 2z) = C, is a solution of (15), it is a solution
of (14). State precisely what is meant by a solution of a partial differential equa-
tion, that is, by the statement that F'(z, y, z) = C, satisfies the equation. Show that
the equations

0z oz cF oF oF
P— — =R and P— —4+R=—=0
az+Qay az+Qay+ 0z
are equivalent and state what this means. Show that if F=C, and G = C, are
two solutions, then F = & (@) is a solution, and show conversely that a functional
relation must exist between any two solutions (see § 62).

4. Generalize the work in the text along the analytic lines of Ex. 8 to estab-
lish the rules for integrating a linear equation in one dependent and four or n
independent variables. In particular show that the integral of

dz. dzx, dz

e § ,
Pl Pn Pn+1

o 0
p‘g"1 4.+ P"OTZ,. = P, ;1 dependson
and that if F, =C,, ---, F, = C, are n integrals of the simultaneous system, the
integral of the partial differential equation is & (Fy, .-, F,,) = 0.

ou ou ou
5. Integrate: (a) z— — 42— =ayz
g (a) 2z+yay+ P L

ou ou ou
8) (y+z+u)5+(z+u+x)a—y+(u+x+z/)5£—x+z/+z.
6. Interpret the general equation of the first order F(z, y, 2, p, ¢) = 0 as deter-
mining at each point (z,, ,, 2,) of space a series of planar elements tangent to a

certain cone, namely, the cone found by eliminating p and ¢ from the three simul-
taneous equations .

F(20y¥0s20s2,9) =0, (Z—2)P+ W —¥)q=2—2,
oF oF
T—T))——(Y—Y¥ — =0.
( o)a ( O

7. Eliminate the arbitrary functions:

(@) z+y +2=2@+2+ 2%, B) 2@+ 9% z—2Y) =0,
() 2=+ +¥E—y) (%) z=ewd(x—y),

() z=12 +2&(z-1+ logy), ©® 0(‘3, v, i) =0.
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8. Find the differential equations of these types of surfaces:
(@) cylinders with generators parallel to the line z = az, y = bz,
(B) conical surfaces with vertex at (a, b, c),
(v) surfaces of revolution about the linez:y:2=a:b:ec.
9. Eliminate the constants from these equations:
(@) 2= (z+a) (¥ +), () a@® +y?) + b2 =1,
(M @—a+@=0+@—c)t=1 @) @—al+@—b*+@E—c)?=d
(e) Ax? + Bzy + Cy? + Dxz + Eyz =22
10. Show geometrically and analytically that F(z, y, 2)+aG(@,y,2)=bis a
complete solution of the linear equation.

11. How many constants occur in the complete solution of the equation of the
third, fourth, or nth order ?

12. Discuss the complete, general, and singular solutions of an equation of the
first order F (z, ¥, 2, u, u, ,, uz) = 0 with three independent variables.

13. Show that the planes z = az + by + C, where a and b are connected by the
relation F(a, b) = 0, are complete solutions of the equation F(p, g) = 0. Integrate:
(@ pg=1, (B ¢=p"+1, () P+ @2 =m?,
(8) pg=k, () klogg+p=0, () 8p?—2¢*=4pq,
and determine also the singular solutions.

14. Note that a simple change of variable will often reduce an equation to the
type of Ex..18. Thus the equations

F(I-’, 2) 0, F(p,q) =0, F(?B, ’ﬂ) 0,
z z z oz
with z=e%, T =e", z=e¥,x=e",y =ev,
take a simpler form. Integrate and determine the singular solutions:
(@) g=2z+pz, (8) 2%+ yg* =27 (™) z=pq,
(3) ¢=2yp% (&) (p—9+@—2?=1, (§) z=pmgm

15. What is the obvious complete solution of the extended Clairaut equation

z=ap + yq + f(p, g) ? Discuss the singular solution. Integrate the equations:
(@ z=ap+yg+Vpi+¢*+1, (B)z=2zp+yg+(p+q?
(7) z=2p + yg + Py, (8) z=2p +yg—2Vpq.

116. Types of partial differential equations. In addition to the
linear equation and the types of Exs. 13-15 above, there are several
types which should be mentioned. Of these the first is the general
equation of the first order. If F(x, y, 2, p, ¢) = 0 is the given equation
and if a second equation ®(x, ¥, 2, p, ¢, ) = 0, which holds simultane-
ously with the first and contains an arbitrary constant can be found,
the two equations may be solved together for the values of p and ¢, and
the results may be substituted in the relation dz = pdx + gdy to give a
total differential equation of which the integral will contain the con-
stant « and a second constant of integration . This integral will then
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be a complete integral of the given equation; the general integral may
then be obtained by (18) of § 115. This is known as Charpit’s method.
To find a relation ® = 0 differentiate the two equations
Fx,y,2p9=0 oy, %P9, 2)=0 19)
with respect to « and y and use the relation that dz be exact.

d
F,+ Fp+F, P+F =0, o],
’ / ’d 4 4
¢z+q>,p+¢,d—§+¢qa=0, —F,
, d d )
F,+F,q+F, £+F'—1=O, &, -
it
@, + &g + @] -;’+¢dy 0, —F,
dp _dq R
@—%=0, F';prQqu.
Multiply by the quantities on the right and add. Then

(Bt pE) G + (P4 R e = e — By o2 — (4 4Fy) G2 = 0. (20)
Now this is a linear equation for ® and is equivalent to
dp dg dx dy dz d
Fi+pF, " Fj+qF, —F~ —F  —@F+4F)
Any integral of this system containing p or ¢ and & will do for ®, and
the simplest integral will naturally be chosen.

- (@1)

As an example take zp(z + ¥) + (¢ —p)—22=0. Then Charpit's equa-

tions are
dp dg _ dz

—zp+p’(w+1/) p—22¢+pe(@+y) 20—q—2@E+Y)
dy dz
TTp 2 2pg—pr+ )
How to combine these so as to get a solution is not very clear. Suppose the sub-
stitution z = e*’, p = e¥’p’, ¢ = e#’q’ be made in the equation. Then
re+y)+p@—-p)—-1=0
is the new equation. For this Charpit’s simultaneous system is
dp” _dg _ dz _dy _ dz

P P 2—¢—@+y) -—p 20%—2pq—p@+¥)
The first two equations give at once the solution dp’ = dg’ or ¢’ = p’ + a. Solving

PE+N+P(@-p)—1=0 and ¢=p +a,
1 1 de + dy
= ’=—+a Ay = ———
P=ere+y "Tarz+s " at+z+y

+ ady.
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Then 2z =log(a+z+y)+ay+db or logz=logla+z+y)+ay+bd
is a complete solution of the given equation. This will determine the general
integral by eliminating a between the three .equations

z=e¥tdat+z+y), b=fla), O=@+S(@)@+z+y) +1,

where f(a) denotes an arbitrary function. The rules for determining the singular
solution give z = 0; but it is clear that the surfaces in the complete solution can-
not be tangent to the plane z = 0 and hence the result z = 0 must be not a singular
solution but an extraneous factor. There is no singular solution.

The method of solving a partial differential equation of higher order
than the first is to reduce it first to an equation of the first order and
then to complete the integration. Frequently the form of the equation
will suggest some method easily applied. For instance, if the deriva~
tives of lower order corresponding to one of the independent variables
are absent, an integration may be performed as if the equation were
an ordinary equation with that variable constant, and the constant of
integration may be taken as a function of that variable. Sometimes a
change of variable or an interchange of one of the independent variables
with the dependent variable will simplify the equation. In general the
solver is left mainly to his own devices. Two special methods will be
mentioned below.

117. If the equation is linear with constant coefficients and all the
derivatives are of the same order, the equation is

(¢, D} +a, D} 'D,+---+ @, D,D} '+ a, Dz =R(z, y). (22)
Methods like those of § 95 may be applied. Factor the equation.
ao(Dx —a,D,) (D — asz) co (D — @D,z =R (x, y). (22')
Then the equation is reduced to a succession of equations

Dz — aDz=R(z, y),
each of which is linear of the first order (and with constant coefficients).
Short cuts analogous to those previously given may be developed, but
will not be given. If the derivatives are not all of the same order but
the polynomial can be factored into linear factors, the same method will
apply. For those interested, the several exercises given below will serve
as a synopsis for dealing with these types of equation.
There is one equation of the second order,* namely

1P A o ™

viee o2 ot o @3)

* This is one of the important differential equations of physics; other important equa-
tions and methods of treating them are discussed in Chap. XX.
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which occurs constantly in the discussion of waves and which has there-
fore the name of the wave equation. The solution may be written down
by inspection. For try the form

u(x, ¥, 2, ) = F(ax + by + ¢z — Vi) + G (ax + by + ¢z + Vi). (24)
Substitution in the equation shows that this is a solution if the relation

a® + * 4+ ¢ =1 holds, no matter what functions F and G may be. Note
that the equation ’
ax + by + ¢z — Vit =0, ad+0P+d=1,

is the equation of a plane at a perpendicular distance V¢ from the origin
along the direction whose cosines are a, b, ¢. If ¢ denotes the time and
if the plane moves away from the origin with a velocity V, the function
F(ax + by 4+ ¢z — Vt) = F(0) remains constant ; and if G = 0, the value
of u will remain constant. Thus » = F represents a phenomenon which
is constant over a plane and retreats with a velocity V, that is, a plane
wave. In a similar manner » = G represents a plane wave approaching
the origin. The general solution of (23) therefore represents the super-
position of an advancing and a retreating plane wave.

To Monge is due a method sometimes useful in treating differential equations
of the second order linear in the derivatives r, s, ¢ ; it is known as Monge's method.
Let Rr+Ss+ Tt=V (25)

be the equation, where R, S, T, V are functions of the variables and the derivatives
p and g. From the given equation and

dp = rdx + sdy, dg = sdx + tdy,
the elimination of r and ¢ gives the equation
s(Rdy? — Sdxdy + Tdz?) — (Rdydp 4+ Tdxdq — Vdxzdy) = 0,
and this will surely be satisfied if the two equations

Rdy? — Sdzdy + Tdx? =0,  Rdydp + Tdwdg — Vdzdy = 0 (25)
can be satisfied simultaneously. The first may be factored as
dy - f,(, ¥, 2,9, q)dz = 0, dy — £, &, ¥, 2, p, Q)dx = 0. (26)

The problem then is reduced to integrating the system consisting of one of these fac-
tors with (25") and dz=pdx + gdy, that is, a system of three total differential equations.
If two independent solutions of this system can be found, as

Uy (Ct, Y, 2, D, q) = Cl? Uy (Z, Y, 2, D, Q) = Czs

then u, = & (u,) is a first or intermediary integral of the given equation, the general
integral of which may be found by integrating this equation of the first order. If
the two factors are distinct, it may happen that the two systems which arise may
both be integrated. Then two first integralsu, = ¢ (u,) and v, = ¥ (v,) will be found,
and instead of integrating one of these equations it may be better to solve both for
p and ¢ and to substitute in the expression dz = pdz + gdy and integrate. When,
however, it is not possible to find even one first integral, Monge’s method fails.
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As an example take (z + y) (r — t) =— 4p. The equations are
@+y)dl—(@+y)de?=0 or dy—de=0, dy+de=0
and (= + y)dydp — (x + y) dzdg + 4 pdady = 0. (A)

Now the equation dy — dz = 0 may be integrated at once to give y =z 4 C,. The
second equation (A) then takes the form

2zdp + 4pdr — 22dg + C,(dp — dg) =0;
but as dz = pdz + qdy = (p + g)dz in this case, we have by combination
2 (zdp + pdx) — 2 (xdg + gdz) + C, (dp — dg) + 2dz =0

or Rz+C)(P—q)+22=C, or +y)(p—q +22=0C,.
Hence E+V(Pp—+2z=¢@Wy—2) (27)
is a first integral. This is linear and may be integrated by

dz dy dz dz dz

=— = or =K — = .
Tty z+y Fw—o)—2z =N K TEE, —20-22

This equation is an ordinary linear equation in z and z. The integration gives

2x

2z 2z
K zek1 =\/’el"xfl>(K1 —2r)dz + K,.

2x 2z
Hence (z+ y)zeﬂ'v—fexub(Kl —2r)dz=K,=¥(K,)=V¥(x+ %)

_is the general integral of the given equation when K, has been replaced by = + y
after integration, —an integration which cannot be performed until & is given.
The other method of solution would be to use also the second system containing
dy + dx = 0 instead of dy — dx = 0. Thus in addition to the first integral (27) a
second intermediary integral might be sought. The substitution of dy + dx =0,
y +a=C, in (A) gives C, (dp + dg) + 4pdz = 0. This equation is not integrable,
because dp + dg is a perfect differential and pdz is not. The combination with
dz = pdzx + ¢gdy = (p — g)dz does not improve matters. Hence it is impossible to
determine a second intermediary integral, and the method of completing the
solution by integrating (27) is the only available method.
Take the equation ps — ¢gr = 0. Here S=p, R=—¢q, T=7V =0. Then

—qdy? —pdxdy =0 or dy=0, pde+qdy=0 and —qgdydp=0

are the equations to work with. The system dy = 0, qdydp = 0, dz = pdx + qdy,
and the system pdz + gdy = 0, gdydp = 0, dz = pdx + gdy are not very satisfactory
for obtaining an intermediary integral u; = ® (u,), although p = ®(2) is an obvious
solution of the first set. It is better to use a method adapted to this special
equation. Note that

a(g)=ps—qr, and ﬁ(i):o gives 1= 7().
: oxr \p p

oz \p »?
ox cxr
By (11), p. 124, q__ (_) ; then ZE=_7()
P oY/z oy

and s=— [y + ¥ @) =2@) + ¥ ().
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EXERCISES
1. Integrate these equations and diseuss the singular solution:

(@pt+gt=22, (B P+PNz=pz, () @P+Y@z+qw)=1,
(3) pq =pz + qv, () PP+ =z +y, (§) ap?—22p + 2y =0,
(n) 2=22(p—9q), (6 g(z+¢)=1, () p(Q+¢®)=qz—0),
() 2p1+9) =gz, () 2@*—-1)=2%?% (0) 22(P?+¢2+1)=¢?,
(») p=(z+y9)?% (o) pz=14+¢%, (7) z—pg=0, (p) ¢=zp+p>

2. Show that the rule for the type of Ex. 18, p. 278, can be deduced by Charpit’s
method. How about the generalized Clairaut form of Ex.15?
3. (@) For the solution of the type f,(z, p) = f,(¥, ¢), the rule is: Set

fl(zv p) =f2(ya ‘1) =a,
and solve for p and q as p = g,(z, a), ¢ = g,(¥, a) ; the complete solution is

2= [a@ ad+ [0, day +0.
(8) For the type F(z, p, q) = 0 the rule is: Set X =z + ay, solve

dz dz dz dz
F(z, 5 aﬁ) for —= =¢(z a), andlet fm =f(z a);
the complete solution is z + ay + b = f(2, a). Discuss these rules in the light of
Charpit’s method. Establish a rule for the type F(z + ¥, p, g) = 0. Is there any
advantage in using the rules over the use of the general method ? Assort the exam-
ples of Ex. 1 according to these rules as far as possible.

4. What is obtainable for partial differential equations out of any characteristics
of homogeneity that may be present ?

5. By differentiating p = f(z, ¥, 2, q) successively with respect to z and y show
that the expansion of the solution by Taylor’s Formula about the point (z,, ¥4, Zo)
may be found if the successive derivatives with respect to y alone,

oz o% o%z oz

bt} ! el M ] -
oy oyt oyt oy
are assigned arbitrary values at that point. Note that this arbitrariness allows the
solution to be passed through any curve through (z,, ¥,, z,) in the plane = z,.

6. Show that F(z, y, 2, p, q) = 0 satisfies Charpit’s equations
de _ dy _ dz _ dp _  dq

—F, —F, —(pF,+qF) F,+pF, F,+qF,
where u is an auxiliary variable introduced for symmetry. Show that the first
three equations are the differential equations of the lineal elements of the cones of
Ex. 6, p.272. The integrals of (28) therefore define a system of curves which have
a planar element of the equation F = 0 passing through each of their lineal tan-
gential elements. If the equations be integrated and the results be solved for the
variables, and if the constants be so determined as to specify one particular curve
with the initial conditions z,, y,, 24, 2o, 95, then

T =2 (U Tgy Ygs 205 Pos 90)y ¥ =Y (-)yz2=2(-"), Pp=p(-), ¢g=4q(--).

du =

(28)
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Note that, along the curve, ¢ = f(p) and that consequently the planar elements
just mentioned must lie upon a developable surface containing the curve (§ 67). The
curve and the planar elements along it are called a characteristic and a characteristic
strip of the given differential equation. In the case of the linear equation the
characteristic curves afforded the integration and any planar element through
their lineal tangential elements satisfied the equation ; but here it is only those
planar elements which constitute the characteristic strip that satisfy the equation.
What the complete integral does is to piece the characteristic strips into a family
of surfaces dependent on two parameters.

7. By simple devices integrate the equations. Check the answers:
@ 22 =@, @Z=0 0 gz=t4a,
(&) s+2f@=9@), () ar=uzy, (§) er=(@—-1p.

8. Integrate these equations by the method of factoring: '
(@) DE—a2D})z=0, () (D-—Dy)tz=0, () (DDj—Df)z=0,
(8) (D3+38D.Dy+2D))z=z+y, (¢) (Dz—D:Dy—6D))z=ay,
(£) (D2 —D2—8D; +8Dy)z=0, (1) (BB—D2+2D:+1)z=e"=.

9. Prove the operational equations:

(@) e==Dyp (y) = (1 + azDy + } 2D} + .- ) $ (4) = 6 (v + az),
1

(8) gy 0= e=By 20 = 6Dy p(4) = 6 (4 + a2),
x = v ¢

@) g Rl ) = ewidy [ e tD R )t = [ Ry + az— )k
'z v

10. Prove that if [(D; — a; D)™ - - - (Dz — axDy)™]z = 0, then
2=0,U+ a2) + 2Py + ) + -+ Mo (Y + @) + -

+ Py + ax) + 222y + ) + - - + 2™ 1B, (¥ + ar2),
where the &'s are all arbitrary functions. This gives the solution of the reduced equa-~
tion in the simplest case. What terms would correspond to (D, — aD, — g)mz = 0 ?

11. Write the solutions of the equations (or equations reduced) of Ex.8.

12. State the rule of Ex. 9 (y) as: Integrate R (z, y — az) with respect to « and
in the result change y to y + ax. Apply this to obtaining particular solutions of
Ex. 8 (8), (¢), (n) with the aid of any short cuts that are analogous to those of
Chap. VIII.

13. Integrate the following equations:
(@) (D2—D%, +D,—1)z=cos(x+2y)+ev, (B) a¥2+ 2zys+ Y2 = 2?4 33,
(v) (D24 Dy + Dy— 1)z =sin(z + 2y), . (@) r—t—8p+3g=ext2y,
(¢) (D2—2D. D%+ D}yz=2-1, ) r—t+p+38q—22z=ex—v—zxly,
() (D2—D:Dy,—2D2 + 2D, + 2D,)z=e2x+8v 4 sin (22 + y) + 2v.

14. Try Monge’s method on these equations of the second order :
(a) ¢%r — 2pgs + p¥ = 0, B8) r—a%t =0, () r+s=—p,
(3) ¢+ q)r—(p+g+2pg)8+p(1+p)t=0, (€) 2%r + 2ays + ¢t = 0,
() @+cg)r—20b+cg)(a+cp)s+(a+cp)2t=0, (n) r+ ka%t=2as.
If any simpler method is available, state what it is and apply it also.
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15. Show that an equation of the form Rr + Ss + Tt + U (1t — s?) = V neces-
garily arises from the elimination of the arbitrary function from
0@, ¥ 2 P, Q) =%, ¥, 2, P, 9)]-
Note that only such an equation can have an intermediary integral.

16. Treat the more general equation of Ex. 15 by the methods of the text and
thus show that an intermediary integral may be sought by solving one of the systems

Udy + N\, Tdz + \,Udp =0, Udz + M\ Rdy + \,Udg = 0,
Udz 4 \,Rdy + \,Udg =0, Udy + N\, Tdz + \Udp = 0,
dz = pdx + qdy, dz = pdz + qdy,

where \; and A, are roots of the equation N3(RT + UV) + AUS + U2 = 0.

17. Solve the equations: (@) $2—1rt=0, (8) 82— 1t =a?,
(v) ar+bs+ct+e(rt—sd)=h, (3) zgr+ ypt + 2y (s? — rt) = pq.





