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PREFACE

TO THE SECOND EDITION.

Tais Volume contains—
19, Enunciations, numbered according to Euclid, of aZ the
Propositions in Books i-iv and vi of his Elements of Geometry :
29, Proofs of these Propositions in which the essentials of
Euclid’s methods are followed :
3% an Abridgement of Book v, including so much only as
is necessary to render valid the proofs of Book vi:
49, Addenda at the end of each Book, arising out of its
k principles, in which are given—
' (a) All the most obvious Corollaries to the Propositions ;
() Some immediate Developments of the Propositions ;
(¢) The proofs of many useful Additional Theorems ;
(4) Numerous Theorems as Exercises to be proved;
accompanied by Hints towards the proofs of the more difficult :
59, General Addenda arranged in Sections; wherein will be
found most of the fundamental Propositions of Maxima and
Minima, Concurrency and Collinearity, Centres of Similitude, Co-
axal Circles, The Tangencies, Inversion, Harmonic Section, and
C Poles and Polars. ,
» The whole Work is divided into two Parts.
\ Part I— Plane Geometry without Proportion — contains
= Books i-iv, with their Addenda.
§§\ Part II—Proportion, and Modern Geometry — contains
X Books v and vi, with their Addenda; and the eight Sections’
~ entitled General Addenda.,
; Each Part concludes with a collection of Problems for solution.
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In considering what modification of Euclid’s proofs might 1
be admissible, the question at once arose— Why is it that,
while in all other Sciences, text-books seldom outlive a generation,
Euclid’s Zlements still hold their place as the basis of Geometry;
and moreover that, in spite of the weighty arguments which have
been urged against them, there can be no doubt but that a
strong preponderance of feeling exists in favour of their
retention in that position?

To the present Editor (after much reading about, and discussion
of the question) it seems that there are Zwo substantial reasons,
of expediency and convenience, out of which the feeling arises.

19, an established order of geometric proof is expedient for
examination purposes ;

20, a recognised numbering of fundamental results is con-
venient for reference.

As co-operative reasons may be added—the fact that there is no
consensus of opinion among experts that any other scheme yet
proposed is superior to Euclid’s; and the sentiment of repugnance
at the thought of sweeping away an institution rendered vener- |
able by the usage of more than 2000 years. 1

From these considerations it becomes apparent, on the one
hand, that what is essential to be retained in Euclid is his order, |
numbering, and general mode of proof; and, on the other hand,
that what is non-essential, and of small (or no) importance, is
the accidental details of his proofs—whether, for example, i. 20
is proved by bisecting an angle, or producing a side.

It may strengthen this position to state the fact that there does
not exist a modern edition which gives Euclid pure and simple.

The modifications of proof have teen made solely for the
sake of greater brevity, clearness, and simplicity. They are all
strictly in accordance with Euclid’s order and methods. In
making these changes the Editor 'has not been guided by & priori
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considerations of what might, could, would, or should be
thought improvements; but by what he himself has (in many
years' experience) actually found to be clearer, and to present
fewer obstacles to a large number of learners of very varied
age and mental calibre.

In the first edition, proofs of four Propositions in Book i, one
in Book ii, and four in Book vi, were omitted ; because these Pro-
positions are neither necessary links in the chain of proof, nor
of intrinsic geometrical value. Those omitted in Books i and ii are
now inserted in an Appendix, to meet the requirements of ex-
aminations.

Definitions, Axioms, and Postulates, are introduced as they are
needed; and certain Axioms and Postulates, tacitly assumed by
Euclid, are inserted. This plan seems preferable to that of
loading the beginner’'s mind with a string of words, many of
which will not be needed till he is far advanced in the subject;
and some not at all. The Index at the end gives the means
of finding any one when it is wanted.

The “Abridgement of Book v is given in the notation, and

" according to the methods set forth by the late Professor De
Morgan in his Connexion of Number and Magnitude.

The present custom of omitting Book v, though quietly as-
suming such of its results as are needed in Book vi, is
singularly illogical; and is indefensible on any ground, except-
ing that this Book has been found too difficult for the average
learner, Nor does it mend the matter, but the reverse, to give—
as some modern writers do—the arithmetical treatment of Pro-
portion, which applies only to the exceptional case of commen-
surable magnitudes, as a substitute for a rigorous treatment
applying to magnitudes of all kinds. The Editor has therefore
taken special care to avoid that confusion of commensurable and
incommensurable magnitudes, which arises from introducing purely
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arithmetical processes in the treatment of the latter—a confusion
most assuredly not to be found in Euclid. What is here given
is at once strictly accurate, and quite within the capacity of any
one who has capacity enough to understand Book vi.

Dominated as all teachers are by examination programmes, it

may not be irrelevant to call special attention to the extraordinary
anomaly prevalent in such programmes—that Book vi is usually

named without the parts of Book v needed in its proofs. Thus.

_ the learner finds that while an iron logic is insisted on in the first
four books—so that the omission of no link in the chain of proof
(how simple soever) is permitted—ever after, complex principles
are assumed without a hint of the incongruity. If it is necessary
to prove that two sides of a triangle are greater than the third,
surely it is necessary to prove ex @quali, componendo, and alfer-
nando. Every teacher admits the absurdity of the prevailing
system; but the truth is that what does not ‘pay’ in examinations
is not, and is not likely to be, taught.

Our appeal in this matter is not to teachers, but to Examining
Boards. -

But the main point which the Editor has aimed at is to give all -

demonstrations in their most compact form consistent with proof.
His experience, ‘as a teacher for twenty years, has shown him that
NOTHING is so great a hindrance to the learner, especially when
commencing Z%e Elements, as Euclid’s prolixity. And while tc
the beginner this prolixity is a stumbling-block, to the more
proficient scholar it is a nuisance. A feeble learner is.lost in
Euclid’s maze of words: while, in an examination-hall, an able
candidate discards it as quite incompatible with the amount he has
to get through in a limited time. In fact the raison d'éfre of this
book is to give, in the clear, compact, orderly form that suits the
necessities of modern examinations, some such rearrangement of
Euclid, as most teachers probably find themselves compelled to
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arite out for successive generations of pupils. Furthermore,
Euclid’s text being admittedly an insufficient geometrical basis
for even a very limited mathematical education, it is supplemented
by additional matter sufficient for the needs of most students.

A large number of the Exercises given for solution have been
frequently tested; and, besides, all of those on Books i-vi, and
most of the rest, have been worked through by boys : it is therefore
safe to assert that there are plenty which cannot have the charge
brought against them of being ‘ too hard.’

As a great aid to brevity, symbols and contractions, where the
symbols merely stand in place of words, are freely used; and as
affording a clear, ready view of the steps of a demonstration, each
step is invariably placed in a separate line: indeed throughout
the book there will be observed a studious avoidance of crowding.
Geometry arranged on the plan of ‘herrings in a barrel’ is repulsive
and confusing.

In drawing the diagrams the Editor has taken pains to make
them clear and accurate; and has maintained in them an exact
identity of lettering with that in the corresponding text. He hopes
that they will be found an attractive feature of the work.

References have been omitted because learners—

19, very generally ignore them; and

20, will gain greater benefit by having to hunt up the references
themselves.

It is suggested that writing in the references (in pencil) should
form part of the business of preparation.

Various Propositions, distinguished as A, B, C, etc., and some
Corollaries, have become so stereotyped in Cambridge editions
of Euclid, that they have almost got to be considered portions of
his text; but they are additions made by Simson, and therefore
are no more in place in what professes to give a strict list of
Euclid’s Propositions, than any other of the numerous addwons
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that have been made to his original compilation. They are there-
fore here relegated to the Addenda. Such references as Euc. i. 32,
Cor. (1), or Euc. vi. C, are nonsense. There is nothing cor-
responding to them in Euc/id. The only exception to this is that
in vi. 3 the case of external bisection (sometimes called vi. A.) has
been included in the proof, on the ground (noticed by many com-
mentators) that the expression—¢which also cuts the base '—
indicates that the bisector was probably intended by Euclid to be
either internal or external. '

Special names for remarkable Points, Lines, or Theorems—
particularly where such name indicates the discoverer—have been
freely used. Quotations like Plolemy’s Theorem, Ceva's Theorem,
Simson’s Line, the Pedal Triangle, the Orthocentre, &c., are highly
convenient and  interesting. Much more historical nomencla-
ture would have been used, but for the obscurity in which ‘
the history of geometrical invention is involved.

In putting together the Addenda the Editor has been mainly
aided by Lardner's Euclid, Thomson's Euclid, Catalan’'s Théorémes
el Problémes de Géomélrie Elémentaire, and especially by the late
Professor Townsend's Modern Geometry : this last work is of course
ke authority in its own department; and to it students are referred
who desire further information. The Syllabus of the Associalion
Jor the Improvement of Geomelrical Teaching has also been consulted
with advantage, and with regret that the plan of this book did not
permit more use of it. The additions have been made solely on
the ground of utility for further work; either because they give
useful results or suggestive methods.

Since the appearance of the first edition the Editor has received
much gratifying testimony that it has gained the approval of a
large number of teachers and learners. Dissentients from its
- modus operands there have been as a matter of course. These,
however, appear to be chiefly teachers who, on 2 prior: grounds,
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think it not likely to suit young learners. They seem to think
that there is a special educating power in much speaking, to which
the brevity of this book would be fatal. This view is presumably
founded on the misconception—that Euclid not only uses the
syllogistic form of reasoning, but also that he gives a// the steps of
his syllogisms. Now this is co far from being the case that if one
of the more elaborate Propositions (e.g. i. 47) be written out, with
the full statement of every syllogictic step inserted, it will be found
to extend to some three or four times the length of the original.
Again, Euclid often trusts to the reader’s intuition to bridge a step :
e.g. in his very first Proposition the intersection of the circles is
based neither on axiom or argument: it is left to intuition. Euclid
omits many steps: the view taken here is that by omitting more
the reasoning is more clearly apprehended— that the profuse
verbiage and repetitions, which it is the aim of this volume to
supersede, do not tend to greater, but to less appreciation of the
logic—that the more argument is focused the clearer and stronger
impression it produces—that, in fine, brevity is the soul of reason-
ing, as it is of wit. The Editor was brought to this conclusion
solely by experience. Often has he seen a learner’s (apparently
hopeless) difficulties removed by the simple process of putting
down in brief symbolic language, the few leading steps that con-
stituted the essence of the proof. And with regard to the use of
symbols in place of words, is not a word a symbol? Whether we
write triangle, or A, we equally use a symbol. And if the former
describes the character of the figure, the latter gives a picture of
it, which is better. Surely in this matter common sense must
prevail. _

It may perhaps be not altogether superfluous here to note that
beginners in Geometry must be taught; and that merely hearing
a lesson is not teaching. The young learner should have every
step of every syllogism fully brought out for him by the teacher vivd



xii PREFACE.

voce. He should be at first taken along very slowly, with constant
repetition, and his work, so to speak, prepared for him. Taught
in this way the beginner soon ceases to need teaching, and can
prepare his work from Euclid Revised with ease, accuracy, and
complete grasp of its proofs.

The attention of those who desire greater freedom, than some
examination programmes have hitherto permitted, is directed to the
recommendation passed by the Cambridge Board of Mathematical
Studies (May 10, 188%) that “the actual proofs of propositions
as given in Euclid be not required.” It is an encouraging sign.

The Editor desires here to record his thanks—

19, to his Cambridge friends (guondam pupils) Professor J.
Larmor, of St. John’s College, Mr. R. A. H. MacFarland, of Caius
College, and Mr. A. Larmor, of Clare College, for much help in
* revising the proof-sheets, and for many useful suggestions ;

29, to his friend, Professor Purser, of Queen’s College, Belfast, for
the original proofs (now for the first time printed) of the Theorems
on pages 323, 350, 389, and for several original Exercises ;

39, to correspondents who have kindly pointed out mistakes in
the first edition.

But it is distinctly to be understood that the Editor is alone °
responsible for the general plan and execution of the work : which
work is an endeavour to meet what an Editorial Note in the
Messenger of Mathematics (New Series, vol. i, p. 14) calls—* our
great educational want—a reformed Euclid, as distinguished from
a new Geometry.”

Can it be necessary to add that any further indication of faults
will be esteemed a kindness?

ROYAL ACADEMICAL INSTITUTION, BELFAST.
November, 1887.




CONTENTS.
Part 1.

BOOK i.

Addenda to i.
Corollaries
Additional Theorems
Exercises .

BOOKii. . .. . .. .
Addenda to ii.
Corollaries .
Additional Theorems
Appendix containing the omltted Proposxtlons i ii
Exercises .

BOOK iii,
Addenda to iii.
Corollaries . . . .
Additional Theorems . . . .
Exercises .

BOOK iv.
/Addenda. to iv.
Corollaries . . . .
Additional Theorems
Exercises .
Problems depending on i
" " i, ii
" » i-iii

» ” i-iv . . . . .

PAGE
1-53

54
5577
78-85

86-98

99
100-114
115-118
119-131

122-159

160
161-179
180-191

192-206

207
208-21%
218-220
221-223
221-224
221-235
221-10N



xiv CONTENTS.

Part II.
PAGE
BOOKv. . . . . . . . . . . 229-243
Addendas to v. . . . . . . . . . 244-24]
BOOK vi. . . . . . . . . . . . 248-279
Addenda to vi.
Corollaries . . A . . . ) . 280
Additional Theorems . . . . . . . 282-300 I
Exercises . . . . .. . . . . 301-308
General Addenda. 4
Section i. Maxima and Minima . . . . . 309-32%
Section ii. Concurrency and Collinearity . . . . 328-338
Section iii. Centres of Similitude . . . . . 339-345
Section iv. Co-Axal Circles . . . . . . 346-352
Section v. The Tangencies . . . . . . 353-358
Section vi. Inversion . . . . . . 359-366
Section vii. Harmonic Ranges . . . . . . 367-371
Section viii. Poles and Polars . . R : . 373-377
Miscellaneous Problems . . . . . . . . 378-382
Miscellaneous Exercises . . . . . . . . 383-395

Index . . . . . . . . . . . . 397-400



Parr I.

PLANE GEOMETRY WITHOUT PROPORTION.






c— ———— "

PRELIMINARY.

Geometry is the Science which treats of the relative shape, size
and position of hypothetical figures: it is based on definitions,
axioms and postulates: these granted, all the rest follows by pure
reasoning.

Definitions state the meanings which are to be attached to certain
words.
" Axioms state truths which the human mind is so constituted as
to admit when the words in which they are stated are understood.
Postulates require us to admit that certain processes can be per-
formed, or that certain statements are to be conceded.
Propositions—that is, subjects proposed for consideration—are,
in geometry, of two kinds :
(1) problems—in which from dafa the construction of a speci-
fied figure is to be effected :
(2) theorems—in which from an Aypothesis a specified conclusion
isto be demonstrated. '

Note—Two theorems are said to be conwverse, each of the other, when the
bypothesis of each is the conclusion of the other.

Def. A point has position, but cannot be measured or divided.

Def. A line has position and length, but not breadth or thick-
ness,

4x. The intersections of lines are points.

Def. A line is said to be straight when the part of it between
any two points in its length lies evenly between those points.

Post. Let it be granted that the idea of straightness involves, as
a consequence, that two straight lines cannot have two points in
common without having all intermediate points in common.

Post. Let it be granted that a straight line may be drawn from
any one point to any other point.

Note—When we draw a straight line from a point A to a point B, we are
sid to ‘join AB’; and for brevity the line terminated at A and B may be
called ¢ the join of AB.’

. B
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Post. Let it be granted that a straight line may be produced to
any length in the same straight line.

Note—When we speak of producing a straight line AB, we are to be under-
stood to mean that it is produced from the end B; but when we speak of
producing BA, we are to be understood to mean that it is produced from the

- end A.

Def. When two straight lines intersect, their inclination to each
other is called an angle ; the two lines are said to make, or form,
or confain the angle, and are called the arms, or sides, of the angle;
and 'their point of intersection is called the verfex of the angle.

Note—When the straight lines forming an 'angle terminate at their point of
intersection, as in the annexed figure (1), the angle may be denoted by a single

(1 ©)
A E A

e

A
letter, placed at the common point : thus in fig. (1) the angle is denoted by A.

A
Otherwise, as in fig. (2), there is an ambiguity in writing A, for there is more
than one angle formed at A ; and therefore three letters are used, A being placed
in the middle, and the other two defining which of the angles formed by the

A
lines is meant : thus in fig. (2) the marked angle would be written BAC.

Def. A surface has position, length, and breadth, but not
thickness.

Def. The whole extent of a specified surface is called its area.

Def. A surface is called a plane when it is such that azy two

" points in it being joined by a straight line, all intermediate points

of the line are on the surface.

Def. A plane figure is a part of a plane bounded by a line or
lines; and when these lines are straight it is called a plane
rectilineal figure.

Def. If three straight lines are drawn in a plane so as to intersect

two and two, the plane figure formed is called a triangle.

e
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Def. The points in which lines forming a triangle intersect are
called the corners of the triangle; the parts of the lines between
the corners are called the sides of
the triangle ; and the parts of the lines
not between the corners are called

the sides produced of the triangle.

Def. The angles formed by the
sides of a triangle are called the in-
terior angles—or simply the angles
—of the triangle; and the angles
formed by the sides, and other sides

produced are called the exterior angles of the triangle.

Def. A plane figure, all points of whose boundary are equally

distant from a fixed point within it, is called
a cirele.

Def. The fixed point within a circle,
from which all points of its boundary are
equidistant, is called its centre.

Def. The boundary of a circle is called
its eircumference.

Def. The distance between the circumference of a circle and
its centre (measured by the line joining any point in the cir-

cumference to the centre) is called
its radius.

Note—By the nature of its definition all
radii of the same circle are equal.

Ax. If the centre C of one circle
is on the circumference of another
circle, and a point A on the circum-
ference of the first is within the
circumference of the second, the

circles will intersect in two points.

Post. Let it be granted that a circle may be described with its
centre at any given point, and its circumference at a given distance
from that point.

B 2
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Ax. If two or more magnitudes are equal to the same magni-
tude they are equal to each other.

Ax. If equal magnitudes are added to other equal magnitudes
(or to the same magnitude) the sums are equal.

Ax. If equal magnitudes are taken from other equal magnitudes
(or from the same magnitude) greater than themselves, the re-
mainders are equal.

Note—On the use of drawing instruments implied in the Postulates.

The Postulate on the description of a circle implies that a pair of com-
passes is to be used, whose points will maintain the same distance apart, as
one of them is swept round the circumference, the other being fixed at the
centre.

Incidentally also it assumes that compasses may be used for a limited
transference of distances: for if C is the
centre, and CA the distance at which the
circle is to be described; then if B is
another point on its circumference, the

C compasses, in passing round from A to B,

transfers the distance CA to CB.
And again, when the points of the com-
A passes are at B and C, if we keep B fixed,
D and sweep out another circle, with the
point at C, then if D is any point on the
circumference of the latter circle, BD, BC, and CA are all three equal to each
other; for we have never changed the distance apart of the compasses’ points.
So that, without doing more than the Postulate demands, we have transferred

the distance CA to BD. .

Now compasses will preserve the distance of their points apart just as well
when they are lifted, as when they are used to sweep out a circle. So that
Euclid’s refusal (implied in Prop. 2) to permit them to be used to transfer
distances, is an arbitrary and unmeaning restriction : moreover it is a restriction
never adhered to in practice. We say therefore that the use of compasses is
postulated for describing circles, and for the transference of distances. Cf.
‘Syllabus,’ p. 1.

The Postulates on the drawing of a straight line are usually taken to mean
that the use of an ungraduated straight-edge is permitted. But clearly this is
not drawing a straight line in the same sense in which compasses draw a
circle. The analogous mode of drawing a circle would be to make a circular
disc, like a coin, and use it to trace round. And as in this case there would at
once arise the question—How are we to make the disc circular? so in the
other there arises the question—How are we to make the edge straight ?
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Curiously enough, until the year 1864 no mechanical way of drawing a
straight line, similar to the mechanical way in which compasses draw a circle,
was known. But in that year such a way was discovered by M. Peaucellier, a
French engineer officer. The instrument he devised is known as Peaucellier's
Cell. The learner will find it easy and interesting to make one for himself.

The following is an outline of its mode of construction—

Take four bars of one length, and two of another length—the two may be
shorter or longer than the four; but when the two are taken shorter the
instrument is more compact, and works more freely.

Suppose, in the figure, that AQ, BQ, AP, BP are the longer bars ; and that
AO, BO are the shorter. .

Pierce holes in them at A, Q, B, P, O; and connect them through these
holes by pivots, all freely moveable, except the one at O, which is to be of the
nature of a nail or screw to go into a board on which the instrument is placed.

Now by means of another bar QC, of any convenient length, pivoted to the

others at Q, and to the board at C, the end Q can be made to move on the
circumference of a circle. If C be so placed that CQ is equal to CO, then, as
Q is moved about, P will go accurately along a straight line.

By experiment it will be found that, when CQ and CO are equal, so that P
draws a straight line, Q can only be made to go a par? of the way round the
circle; but that, when CQ and CO are unequal, P describes a circle, and by
properly arranging the distances, Q can be made to go entirely round one circle,
and P entirely round another.

The theory of the movement will be found on p. 360.
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ABBREVIATIONS.
The following symbols and contractions will be used as short-
hand equivalents for the ordinary words printed in immediate
connection with them.

.. therefore *.* because

= is equal to 3 parallelograms

> is greater than = is equal in all respects to
< is less than st. straight

+ together with rt. right

A8 angles pt. point

/s triangles alt. altitude

©¢ circles §q. square

|l# parallels quad. quadrilateral

1 8 perpendiculars rems, remaining

And a few more similar obvious verbal contractions.

Note—The symbol = is used solely as an equivalent for the words ¢ is equal
to’; and means only that the sum total of all that is placed before the symbol
is equal to the sum total of all that follows it. The symbol does not imply any
equality of part to part. Nor is the symbol ever used as, the equivalent of the
adjective ‘equal.’ Thus we write ‘make A equal to B’; or ‘A and B are equal.’

Similar remarks apply to the symbols > and <.

The ‘s’ after the symbols As, |8, &c., is dropped in the singular; and the
symbols ||, L, are used both for the corresponding noun and adjective.

A few other symbols are introduced on pp. 26, 53, 111, 177, 233, 243.

The period, to indicate the elision of a part of a word, as shown above, is
convenient for printing ; but, in wré#ing a contracted word, it is best always to
mark the place where the elision is made by an acute accent, in the manner

following—
st’ for straight p't for point
rect’ for rectangle rem’g for remaining
diag’s for diagonals alt’s for altitudes

When one series of magnitudes is said ¢ to be equal to,’ or “to coincide with,’
or ¢ to correspond to,’ a second series of magnitudes, ¢ respectively,’ this last
word indicates that such equality, or coincidence, or correspondence, is true
between the magnitudes of the one series and those of the other eack 0 each, in
the order in whick they are named.

For example: if X, Y, Z are stated to be ¢ respectively’ equal to A, B, C,

this means that X = A, Y =B, and Z =C,
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XN.B.—Until the learner is thoroughly familiar with the sequence
of the main geometrical truths, as linked together by Euolid, he
should write (in pencil) opposite any conolusion, depending on a pre-
vious Prop., the reference to that Prop.: e.g. on p. 12, line 14 depends
on the 4th Prop. of Book i,; which should be indicated thus—

A DBC= A ACB. (. 4).

Proposition 1.

PROBLEM—On a given finite straight line o construct a
triangle whose three sides shall be equal.

Let AB be the given st. line.
C With A as centre, and AB as

radius, describe a ®; and with

\ B as centre, and BA as radius,
describe a O.

' Suppose C one of the pts. in

which the Os cut; and join CA,

CB.

Since AC and AB are radii of the same @,
AC = AB.
Similarly BC = BA:
i.e. AC and BC are each equal to the same AB.
also AC = BC:
i.e. the three sides of the A ABC are equal.

Def. A triangle whose three sides are equal is said to be
equilateral.
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Proposition 2.

PROBLEM—From a given point to draw a straight line
equal to a given straight line.

The simple practical solution of this Problem is to place the points of the
compasses at the extremities of the given line; then to transfer them un-
changed, and place one of their extremities at the given point: the join
(effected by the ruler) of the given point to the point determined by the other
extremity of the compasses, is the line required.

Euclid's solution will be found in the Appendix.

Proposition 8.

PROBLEM—From the greater of two given straight lines
0 cut off a part equal to the lesser.

B Let AB be the greater line,
C the lesser.
With A as centre, and at
C a dist. which = C, describe
a ©; and let D be the pt.
where the ® cuts AB.

Then AD (being a radius of the ©®) = C:
i.e. AD is cut off as required.

Post. Let it be granted that a line, angle, or plane figure, may
be conceived to be transferred, without change of magnitude, from
any position to any other position.

MNote—TIt is sometimes convenient to imagine that the transferred figure leaves
its trace, or duplicate, behind it, in its old position: cf. Prop. 5.
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Ax. If a plane figure, or line, or angle, can be placed on
another, so that the two figures, or lines, or angles, entirely coin-
cide, they are equal in all respects. And conversely, if two plane
figures, or lines, or angles, are equal in all respects, then either
one of them can be placed on the other so that the two will entirely
coincide.

Def. Figures which can be made to coincide are said to be
identically equal; and the process by which they are made to
coincide is called superposition.

Example 1—1If two straight lines are equal, then if one is placed on the
osther so that a pair of their extremities coincide, the other pair of their ex-
‘remities must also coincide.

Example 2—If two angles are equal, then if one is placed on the other so
that their vertices and a pair of their containing lines coincide, the other pair
of their containing lines must also coincide.

Example 3—1f two circles have equal radii, then if the centre of one is placed
on the centre of the other, the circumferences of the circles will coincide.

For the radii of the circles being equal, every point on each circumference is
at the same distance from the common centre, so that no point on one can be
nearer to, or farther from the common centre than another.

Hence circles that have equal radii are identically equal.

Note (1)—When indicating the process of superposition, it is advisable to
ceep the order of the letters so as to correspond to the parts coincident: thus
to say, ‘A ABC coincides with A XYZ,’ should mean that each part of the one
coincides with each part of the other, % the order of the letters.

Note (3)—In using the symbol = (called the symbol of identity) it is impera-
tively necessary to write the letters, indicating the parts of the two figures that
ire ‘equal in all respects,’ so that the order of the two sets of letters may
sorrespond to the parts which are respectively equal: thus when we write

A ABC=AXYZ,
it is to be understood that we imply the sez of equalities

N N AN N N N
A=X B=Y, C=2;

side AB = side XY, side BC = side YZ, side CA = side ZX;
and, finally, area ABC = area XYZ.
Similarly for any two figures such that one is exactly superposable on the
other: for example, the symbol placed between two plane rectilineal figures of
1 sides each, involves an + 1 statements of equality.



10 EUCLID

Proposition 4.

'"THEOREM—If two triangles have two sides and the
cluded angle of the one, respectively equal to two sides
the included angle of the other, then the triangles are i

tically equal, and of the angles those are equal whickh
opposite equal sides.

A D
AA ¢ AF |
E
Let ABC, DEF be two As, in which

AB = DE,
AC = DF,
A N

and BAC = EDF.

Suppose A ABC to be so placed on A DEF that
pt. A may be on pt. D,

and direction of AB on direction of DE.
Then direction of AC will fall on direction of DF,

N A
BAC = EDF.
Also pt. B will coincide with pt. E,
AB = DE.
And pt. C will coincide with pt. F,
AC = DF.
also BC will coincide with EF.
So that A ABC can be made entirely to coincide with A D
A ABC = A DEF.
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Proposition 5.

THEOREM—If twn sides of a triangle are equal, tjie angles
whick are opposite to them are equal.

l
] A Let ABC be a A, in which
AB = AC.
Imagine the A to be turned about
.' AB as a hinge, until it is again in the

c c’ plane of the paper, so that AC takes
the position AC’.
Then AC, in the old position, = AB in the new;
AB 12 n, = AC’ ”»
N N
and CAB ” ’ = BAC’ »
ACAB ” = ABAC’ ,
i o AeB ’» ” = AéC' ”
[ But AQC’ is only AQC turned over.
* PAS
ACB = ABC.

Def. When a triangle has two sides equal it is called isosceles ;
the third side is called the base; the angle opposite the base is
called the vertical angle; and the corner of that angle is called
the vertex. '

Note (1)—Prop. 5 is often enunciated thus—Z7%e angles at the base of an
isosceles triangle are equal.

Note (2)—Euclid has a lengthy proof to show that the exterior angles, made
by producing the equal sides, are equal ; but he only uses the result to prove a
case of Prop. 7 (which is here omitted as useless) and the result follows at
once from Prop. 13, in combination with the Prop. just proved.

Euclid’s proof will be found in the Appendix.
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Proposition 6.

THEOREM—If two angles of a triangle are equal, the
sides which are opposite to them are equal.

A : Let ABC be a A, in which

ABC = ACB.
Assume AB, AC unequal.
From the greater (BA suppose)
cut off BD equal to AC; and
B C  join DC.

Then in As DBC, ACB, we have
DB = AC,

BC common,
PAY A
and DBC = ACB;
A DBC = A ACB.

But this is absurd, for A DBC is a part of A ACB.

*. the assumption that AB, AC are unequal has led to an
absurdity; and .. is not true:

ie. AB = AC.

Note (1)—Props. 5 and 6 are converses of each other, see p. 1.

Note (2) —The mode of proof of Prop. 6 is termed éndirect, or reductio ad
absurdum. 1t consists in assuming the contradictory of the required result, and
showing that the assumption leads to an absurdity: whence, the assumption
being untrue, the result is true.
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Proposition 8.

THEOREM—If two triangles have the three sides of the
one vespectively equal to the three sides of the other, then
the triangles are identically equal, and of the angles those

( are equal whick are opposite equal sides.

A A A
m ® (€))

B C 8 B c

D

Let the A be placed so that—
19, 2 pair of equal sides may have a coincident position BC :
20, the As may be on opposite sides of BC :
3%, the pair of sides BA, BD, terminated in B, may be an
equal pair; and likewise the pair CA, CD terminated in C.
Join AD, which may pass—
across BC, fig. (1),
or outside BC, fig. (2),
or through an end C of BC, fig. (3).
Then -+ BA = BD
B//\\D = BISA in all three cases.
And+ CA =CD,
A A
CAD = CDA in figs. (1) and (2);
~ sum of At BAD, CAD = sumof A®# BDA, CDAinfig.(1),
and diff. » ” = diff. ’ v in fig. (2).
in all three cases B//;«C = BBC.
So that the AA# come under the conditions of i. 4.

A BAC = A BDC.
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Proposition 7.

THEOREM—On the same base and on the same side of
it theve cannot be two triangles having the sides terminated
at one end of the base equal, and also the sides lerminated
at the other end equal.

This proposition is omitted because—

1°, it is only used by Euclid to prove Prop. 8, which has been here proved
independently :

2°, it is not a theorem of any geometrical value.
Euclid’s proof of it, and of Prop. 8 by means of it, will be found in the

Appendix.

Proposition 9.
PROBLEM— 70 bisect a given angle.

A

Let BAC be the given A.
Take any pt. P in AB; and

P Q from AC cut off AQ, equal to AP.

On side of PQ remote from A,
describe an equilat. A PXQ.

C Join AX.
X
Then in As APX, AQX, we have
AP = AQ,
AX common,
and PX = QX;

PAS VAN
- PAX = QAX:
i.e. AX bisects B:&C.
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Proposition 10.

PROBLEM— 70 bisect a given finite straight line.

e Let AB be the givén line.
On AB describe an equilat. A ABC;
A
and bisect ACB by CX, meeting AB
A = B in X.

Then in As CAX, CBX, we have
CA =CB,
CX common,
A A
and ACX = BCX;
AX = BX:
i.e. X is the mid pt. of AB.

Note—We now see the reason for describing the equilateral triangle in
Prop. 9, on the side 7emote from the corner of the angle; for, in this case, if
described otherwise, it would coincide with A ABC, and the construction for
CX would fail. .

Def. When one straight line stands upon another straight line,
and makes the adjacent angles equal, each of these angles is called
a right angle; and the lines are said to be at right angles to
each other.

Def. When two straight lines are at right angles each is called a
perpendicular to the other.

Def. When the sum of two angles is a right angle, each is called
the complement of the other; and the angles are said to be
complementary angles.

Def. When the sum of two angles is two right angles, each is
called the supplement of the other; and the angles are said to
be supplementary angles.



16 EUCLID

Note—That all right angles are equal is easily seen by considering two sets
cf them to be superposed.

P Q

A X B C Y D

Let PX, QY stand on AB, CD respectively, so that
A A
PXA = adjacent PXB,

A
and QYC = adjacent Q/Y\D.

Apply them so that X and Y coincide, and that AB, CD are in the same
direction. Then the assumption that PX, QY are not in the same direction
would obviously lead to the absurdity of an angle being both greater than, and
equal to the same angle.

Proposition 1l.

PROBLEM—70 draw a straight line at right angles to a
given straight line from a given point in the same.

Q Let AB be the given st. line;
P the given point in it.

Take any pt. X in AP; and
in PB take Y, so that

PY = PX.

A X P Y B

On XY describe an equilat. A XQY ; and join QP.
Then in As PXQ, PYQ, we have

PX = PY,
PQ common,
and QX = QY;

A A
<~ QPX = QPY.
And they are adjacent.
.~ PQ is at right angles to AB.
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Proposition 12.

PROBLEM—T70 draw a straight line perpendicular to a
given straight line, of unlimited length, from a given point
,  without it.

P Let AB be the given line;
P the given pt. without it.
Take a pt. C on the side of

! AB on which P is not; and
\ Q with centre P and radius PC
A B describe a ®, which must cut

AB in two pts.,;say X and Y.

Join PX, PY ; and bisect X/ISY by PQ, meeting AB in Q.
. Then in A& PQX, PQY, we have
PX = PY,
PQ common,
N\ A
and XPQ = YPQ;

A A
PQX = PQY.
And they are adjacent.

PQis 1 to AB.

~‘ - -~‘ -

Def. The point in which the perpendicular to a line, from a point
outside the line, meets it, is called the foot of the perpendicular.

Note—A line drawn, as in Prop. 11, from a point iz a given line, so as to
form two right angles with it, is said to be drawn a# »ight angles to the given
line; and a line drawn, as in Prop. 12, from a point ou#side a given line, so as
to form two right angles with it, is said to be drawn (or dropped) perpendicular
to the given line.

C
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Proposition 13.
THEOREM-—Tke angles whick one straight line makes
with another, upon one side of 1t, are logether equal to two
right angles.

P
Let st. line XY meet st. line AB, <o
Y A A
as to make with AB, AXY and BXY
on the same side of AB.
A X B

If XY is .L to AB the theorem is obvious.
But if not, draw XP L to AB.

A A
Then AXY and BXY are together made up of
A A A
AXP, PXY, and YXB;
which latter three make up

A N
AXP and BXP.
But each of these last is a right A.

A N
AXY + BXY = twort. AS.

Proposition 14.

THEOREM—If at a point in a straight line, two other
straight lines, on. the opposite sides of it, make the adjacent
angles together equal to two right angles, these two straight
lines must be in one and the same straight line.

At the point A in the st. line AB,
let the st. lines AX, AY, on opposite
sides of it, be so inclined that

z N N\
BAX +BAY = twort. A=

X A Y Assume that XA produced is in
direction AZ.
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Then, since BA meets st. line XAZ,
A
BAX + BAZ = two rt. A%,
A A A A
BAX + BAZ = BAX + BAY.
removing B;/&X from each side of this equality; we have
A
BAZ = BAY;
which cannot be, unless AZ lie along AY.
XA, AY are in a st. line.

Proposition 15.

THEOREM—If two straight lines cut one another, the ver-
tically opposite angles are equal.

Let the two st. lines AB, CD, cut
one another in X.

Then, since DX meets AXB,

BXD + DXA = twort. A-.
And, since AX meets DXC,

A A
AXC + DXA = twort. As.

A A A A
BXD + DXA = AXC + DXA.

N
., removing DXA from each side, we get

A A
BXD = AXC.
Similarly it can be shown that
A A
AXD = BXC.

C 2
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4 Propo'sition 16.

THEOREM—D" one side of a triangle is produced, the ex-
terior angle, so formed, is greater than either of the interior
angles which are remote from it.

Let side AB, of A ABC,
be produced, forming the ext.
cEbp.

Bisect CB in M.

Join AM; and produce it -
to E, so that ME = MA.
Join EB.

Then in As BME, CMA, we have

BM = CM,
EM = AM,
N A
and BME = CMA;
A A
MBE = MCA.
A A
CBD, which > MBE,
also > B(/')\A.

Similarly by producing CB to F, it could be shown that
A A A
ABF (which = CBD) > BAC.
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Proposition 17.

THEOREM—Any two angles of a triangle are z‘ogez‘lzer less
than two right angles.

This proposition is omitted because it is—

1° included in i. 32:

2°, not referred to in anything preceding i. 32:

3°, the converse of a theorem that Euclid states as an axiom, which will be
given hereafter, (p. 31); and it is of the nature of an axiom that its converse is
as axiomatic as itself.

Proof given in the Appendix.

Proposition 18.

THEOREM—If of two sides of a triangle one is longer
than the other, then the angle whick is opposite the longer

side is greater than the angle whick is opposite the shorter
side.

A In A ABC suppose that
! AB > AC.
' D Take D in AB so that
‘ Bisect A by AE, meeting BC in E. Join ED.
S Then in As CAE, DAE, we have

- AC = AD,

AE common,
A A
and CAE = DAE;
A A
ACE = ADE.
A A
But ADE > DBE.
A A
ACB > ABC.
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Proposition 19.

THEOREM—If of two angles of a triangle one is greater
than the other, then the side whkick is opposite the greater
angle is longer than the side whick is opposite the lesser

angle.
A

In A ABC suppose that
AA
B >C.
~

B C
1°, it cannot be true that AC = AB,

AN
for this necessitates that B = C.
20, nor can it be true that AC < AB,

A A
for this necessitates that B < C.
It remains .. that AC > AB.

Note—Recollect the order of Props. 18 and 19, by noticing that they corre-
spond to Props. 5 and 6.

Proposition 20.

THEOREM—Any two sides of a triangle are rtogether
greater than the third side.

A Let ABC bea A.
Take any two of its sides,

AB, AC; and bisect 'B»QC
c by AD, meeting BC in D.

A A
Then ADB > DAC;

also > B/AD.
AB > BD.
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Similarly it can be shown that AC > CD.
AB + AC > BC.

Note—This Theorem is a particular case of the more general one, that—
The shortest distance between two points is the straight line joining them.
There was a tacit assumption of the general truth as axiomatic, when every
point on the circumference of a circle was defined as equidistant from the
centre : such distance being measured by the straight line joining the point and
centre; for clearly the word ®distance, in that definition, could only mean
shortest distance. :

Proposition 21.

THEOREM—If from the ends of a side of a triangle two
straight lines ave drawn fo a point within the triangle, the
sum of them is less than the sum of the other two sides of
the triangle ; but they contain a greater angle.

\

A

Let P be a pt., withinthe A ABC,
to which BP, CP are drawn.
Produce BP to meet AC in X.

@

Cc

Then BA + AX > BX.
., adding XC to each side, we get
BA + AC > BX + XC,
i.e. > BP + PX + XC;
much more > BP + PC.

Again B/F;C > CZ(/:P,
.. much more > BAC.
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Proposition 22.

PROBLEM—70 construct a triangle when the lengths of
its three sides arve given.

o Let a, b, ¢ be the given
lengths : any two of these

b must together be greater
than the third, or they could

C— not be sides of a A.

Take BC equal to a, and call it the base.
Supposé the side terminated in B to be e.
With centre B, and radius e, describe a O.
» C) » b, 3
Then, as the vertex of the A is at a distance e from B,
. it must lie on the © centre B.
Similarly " ” C.
.., if A is a pt. common to these ©%, and AB, AC are joined,
then ABC is the reqd. A.

Note—That the ©® must have a common pt., outside BC, may be seen by
considering the only possible alternatives, diagrams of which are here drawn.

Let ©° centres B, C, cut BC (or BC produced) in X, Y respectively:
19, let © centre C be entirely within © centre B,
then BC + CY <« BX; i.e.a + b< c;
29, let ® centre C be entirely without © centre B,
then BX + CY < BC;ie.c + b< a;
3°, let % meet on BC only, so that X, Y coincide,
then BX + CY = BC;i.e.c + b = a.
But if &, b, ¢ can form a A, each of these is excluded by i. 20.
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Proposition 23.

PROBLEM—A? a given point, in a given straight line, to
make an angle equal to a given angle.

P A

R

n
B v
S
A
Let A be given; and let P be given pt. in given st. line PS.

A
Take any two pts. B, C in the lines which form A; and join BC.
Make A PQR, so that one side PQ may be on PS, and equal
to AB; and that QR, RP may be respectively equal to BC, CA.

Then A PQR = A ABC.
QPR = BAC.
ie. S/F\’R has been constructed as reqd.

Note—On the measurement of angles.

Angles, in common with all magnitudes, are measured by reference to some
unit. What this unit may be is quite arbitrary; but it is usual to employ one
of two. These are— )

1°, the practical unit, which is the ninetieth part of a right angle, and is
called a degree.

2°, the theoretical unst, which is that angle subtended at the centre of a circle
by an arc equal in length to its radius, and is called a radian.

An angle has been defined as the inclination of two straight lines which
intersect; but the idea of quantity of inclination is rather intangible. A befttex
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way to measure the size of an angle is to consider the quantity of rotation
necessary to bring one of the lines forming it into coincidence with the other;
and this quantity of rotation may be best estimated by the arc intercepted be-
tween the two lines on the circumference of a circle whose centre is at the corner,
or vertex of the angle.

By what has gone before we see that if a straight line is made to rotate
in one plane about an extremity, until it is in line with its original direction,
the amount of rotation needed to effect this indicates two right angles; so
that half this amount of rotation will indicate one right angle ; and again the
ninetieth part of the last will indicate one degree.

Thus, as ninety degrees will be indicated by the amount of rotation necessary
to make one arm of an angle travel over the fourth part of the whole circum-
ference of a circle, whose centre is the comer of the angle, so if the whole
circumference is divided into three-hundred and sixty equal parts, each of these
parts will subtend a degree at the centre.

For practical purposes the degree is subdivided into sixty equal parts, each
of which is called a mzinute; and the minute is again subdivided into sixty
equal parts, each of which is called a second. Thus, for example, the sixteenth
part of a right angle contains five degrees, thirty-seven minutes, and thirty
seconds ; and this is indicated by the notation 5° 37 30”.

The number of »adzans in two right angles is denoted by .

It is at once apparent that this mode of estimating angles does not limit the
magnitude of an angle to less than two right angles; and though Euclid has
only given a definition of angles that will apply to angles less than two right
angles, he does tacitly assume the existence of angles greater than two right
angles, both in Book iii and Book vi; and it is found, in other parts of mathe-
matics, not only convenient but necessary to discard any such restriction.

When a plane rectilineal figure has an interior angle greater than two right
angles, the figure is said to be »e-entrant ; otherwise it is said to be cornvex.

All rectilineal figures will be assumed conzex, unless the contrary is expressly
stated.

Proposition 24.

THEOREM—If two triangles have two sides of the one
equal to two sides of the other, eack to eack, but have the
angle contained by the one pair of sides greater than the
angle contained by the other pair ; then the side whick is
opposite the angle that is given greater, is longer than the
side whick is opposite the angle that is given less.
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A

Let ABC, DEF be two /s, in which

AB = DE,
and AC = DF, }
N N
but BAC > EDF.

At pt. D in DE, and on same side of DE as DF, make
A
DG equal to BQC ; and take G so that DG = AC or DF.

Bisect FBG by DH meeting EG in H. Join FH.
Then in AsGHD, FHD, we have

DG = DF,
DH common, 2
A A

and GDH = FDH;
GH = FH.

Adding HE to each, we get

GE = FH + HE,

GE > EF.
But in As ABC, DEG, since
AB = DE,
AC = DG,
A A
and BAC = EDG;
BC = EG.

.=, from above, BC > EF.
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Proposition 25.

THEOREM—If two triangles have two sides of the one
equal to two sides of the other, eackh to eack ; but have the
third side of the one longer than the third side of the other,
then the angle whick is opposite the side that is given longer,
is greater than the angle whick is opposite the side that is
Given shorter.

A _ D
B C F
Let AB'C, DEF, be two As in which
AB = DE,
AC = DF,
but BC > EF.

] AA
19, it cannot be true that A = D,
for this necessitates that BC = EF.

. AN
29, nor can it be true that A < D,
for this necessitates that BC < EF.

) A A
It remains .. that A > D.

Note—Recollect the order of Props. 24 and 25, by noticing that they corre-
spond to Props. 4 and 8.
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Proposition 26. (First Part.)

THEOREM—If two triangles have two angles of the one
equal to two angles of the other, eack to each, and lhave
likewise the two sides adjacent to these angles equal; then
the triangles are identically equal, and of the sides those
are equal whick are opposite equal angles.

C F
B E

Let ABC, DEF be two As in which
A

E,

A

F,

and BC = EF.
Suppose A ABC placed on A DEF so that
BC coincides with EF.

Then BA will lie along ED,

o> w>

AN
+ B=E.

And CA will lie along FD,
AA
C=F

also the intersection of BA and CA must coincide with the

intersection of ED and FD:
i.e. A must be on D.

So that A ABC can be made to coincide with A DEF.
A ABC = A DEF.



3° EUCLID

Proposition 268. (Second Part.)

THEOREM—IFf two triangles have two angles of the onc
equal to two angles of the other, eack to each, and have like-
wise the sides equal which are opposite one pair of equal
angles ; then the triangles are identically equal, and of the
sides those are equal whick are opposite equal angles.

A

AOA
B =E,
AA
C=F,
and CA = FD.

Suppose A ABC placed on A DEF so that
CA coincides with FD.

Then CB will lie along FE.
A

. C=F
B will be on the direction of FE.

And if AB fell anyhow excepting on DE (as in either of the
positions indicated by the dotted lines) it would make with DE
and EF a A, of which the equal As B and E would be one
exterior and the other interior and opposite.

Bat this cannot be.
So that A ABC can be made to coincide with A DEF.
A ABC = A DEF.

If the sides AB, DE are taken equal, the proof is similar.
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Def. If two straight lines, in the same plane, cannot, by produc-
tion, be made to meet, they are said to be parallel.
 Ax. If a straight line, meeting two other straight lines, makes
the two interior angles on the same side of it together less than
two right angles, the two lines are nof parallel ; but can be made,
by production, to meet on the side on which are the two angles
less than two right angles.

Note (1)—This is Euclid’s test of parallelism ; and clearly is not an axiom in
the strict serse of the word axiom, given at the beginning of the book. Euclid
himself considered that the converse of it (Prop. 17)—which is just as axiomatic
—needed proof. He also thought it necessary to prove some theorems of a
more axiomatic character, e. g. that two sides of a triangle are together greater
than the third side.

Many substitutes for this axiom have been suggested: the best of them is
this—“ Two intersecting straight lines cannot éozk be parallel to the same
straight line.”

All the propositions about parallels can be deduced from this last axiom.

_ ltwill be a good exercise for the learner to try and make the deduction for
l' bimself. In the following propositions Euclid’s methed is followed.

Note (2)—If two straight lines AB, CD are crossed by another straight line ;
and the angles thus formed are denoted by numbers, as in the figure; it is usual
to call—

each of the angles marked 1, 2, 3, 4, an nferior angle;
each of the angles marked 5, 6, 7, 8, an exterior angle ;
the pair marked 1, 4, a/ternate angles ;
and also the pair marked 2, 3, a/fernate angles.

The words énterior, exterior, alternate, will be respectively abbreviated into

int.,, ext., altern.,
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Proposition 27.

THEOREM—If a straight line, crossing two other straight
lines, makes a pair of alternate angles equal, the lines whick
are crossed are parallel.

Let the st. line XY cross the st. lines AB, CD at the pts. S, R
A A
respectively ; so that ASR = altern. SRD.

If AB, CD could meet towards B and D, say in pt. O, as in
the fig., then SRO would be a A, in which

N A
ext. ASR = int. and opposite SRO.
But this cannot be.
Neither can they, for similar reasons, meet towards A and C.

they cannot be produced to meet :
i. e. they are ||.
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Proposition 28.

THEOREM—If a straight line is drawn across two other
straight lines, then the two lines whick are crossed will be
parallel, if—

either (a) an exterior angle is equal 1o the interior and
opposite on the same side of it ;

or (B) the two interior angles on the same side are together
equal to two right angles.

A 7/)( B Let the st. line XY cross the

st.lines AB, CD at the pts. S, R
C / R D
Y.

respectively.
A A
(a) Suppose that ext. XSB = int. and opposite SRD.
N A
Then since XSB = vert. opposite ASR,

A A
ASR = altern. SRD.
AB, CD are ||

(8) Suppose that B/S\R + SﬁD = twort. AS.
Now BSR + ASR = two rt. A"
A A A A
BSR + SRD = BSR + ASR.
.., removing B§R from each side, we get
SI,Q\D = altern, AgR.

again AB, CD are |.
D
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Proposition 29.

THEOREM—If a straight line cross two parallel straight
lines, it makes—
(a) either pair of alternate angles squal ;
(B) eactk exterior angle equal to the interior and opposite
angle on the same side ;
(y) either pair of interior angles on the same side to-
gether equal to two right angles.

\

A S B Let the st. line XY cross
the || lines AB, CD at S, R
respectively.

] R\ D
Y

(a) Take a pair of altern. A®s ASR, SRD; and assume that
A A
one of them (say SRD) < the other ASR.
A
Then, adding BSR to each, we get
A A A A
SRD + BSR < ASR + BSR;
i.e. < twort. AS,
AB, CD will meet towards B and D.

But this is contrary to the hypoth. that they are |.
the assumption is not true:

A A
i.e. ASR = altern. SRD.
Similarly B§R = altern. SﬁC.
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(8) And XgB = vert. opposite A/S\R.
X/S\B = int. opposite SﬁD on same side.
Similarly X/S\A = » SﬁC ”
A A A
(¥) To each of the equals SRD, ASR add BSR.

A A A A
Then SRD + BSR = ASR + BSR,
= two rt. AS,
A A
Similarly SRC + ASR = twort. As.

Proposition 30.

THEOREM—Straight lines whick are parallel to the same
straight line are parallel to eackh other. :

X
A R/ B Let st. lines AB, CD be
each || to PQ.
P S Q Draw XY across them,
/ meeting AB, PQ, CD in
C /T D R, S, T respectively.
Y

A
Then D%S = altern. TSP, since CD, PQ are ||,
= int. opposite SIQA, since PQ, AB are ||:

A A
i.e. DTR = altem. TRA.
CD and AB are ||.
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Proposition 3L

PROBLEM—Z70 draw a line through a given point parallel
to a given straight line.

Let P be the given pt.; AB
the given st. line.

Take any pt. Q in AB; and

join PQ.
/ 4 At the pt. P, in the st. line PQ,
. and on that side of PQ nof the
A A A
Q B same with PQB, make QPC

A
equal to PQB.
Then CP produced is || to AB,

A A
CPQ = altern, PQB.

Proposition 32.

THEOREM—/# any triangle—
(o) any exterior angle,made by producing a side, is equal
to the sum of tne two inlerior and opposite angles ;
(B) the three interior angles are together equal to two

right angles.

A
X Let side BC of any A ABC
be produced to D.
Draw CX || to BA.
B c °

A A
Then ACX = altern. CAB ;
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and DeX = int. opposite CQA,
A A A
(a) ACD = CAB + CBA.
A
Adding ACB to each side, we get
A N A A A
(8) CAB + CBA + ACB = ACD + ACB,

| =twoIt. A%

! Proposition 33.

THEOREM— TV straight lines whick join the extremities
of two equal and parallel straight lines, towards the same
' parts, are themselves equal and parallel.

A B Let AB, CD be equal and
|| st. lines; AC, BD their joins
towards the same parts.

C D Join BC.

Then in As ABC, DCB, we have
AB = DC,
CB common,
A A
and ABC = altern. DCB;
A ABC = A DCB.

' : .. AC = DB;

l A A

! and ACB = altern. DBC.
| .. ACis || to BD.

’ Def. When the opposite sides of a plane rectilineal four-sided
figure are parallel, it is called a pal"q.llelogram ; and either of the
* joins of its opposite corners is called a diagonal,
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Proposition 34.

THEOREM—/#% any parallelogram— ‘
(o) either diagonal divides it into two identically equal
triangles ;
(B) he opposite sides are equal ;
(y) the opposite angles are equal.

A B

Let ABCD be a [J; and
AC, BD its diags.

D C
Then in As ABD, CDB, we have
AgD = altern. CBB,

AISB = altern. Cé\D,
and BD common;
A ABD = A CDB.
Similarly A BAC = A DCA.
Whence also AB = CD, AD = CB;

A A A A
and BAD = DCB, ABC = CDA.

Note—The converses of this Prop. will be found in the 4ddenda, p- 58; and
also the important additions to it— 7%e diagonals of a parallelogram bisect each
other ; and conversely, a quadrilateral is a parallelogram if its diagonals bisect
each other.
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. Proposition 35.

THEOREM —Parallelograms on the same base, and between
the same parallels, are equal in area.

w @ €))
'Q _SP R Q SPR Q P S R

A B A B A B

Let 05 ABPQ, ABRS be on same base AB,
and between same | AB, QR.
Then sides PQ, RS, opposite AB, may
be conterminous, fig. (1),
or overlap, fig. (2),
or be clear of each other, fig. (3).
In all three cases, since As ASQ, BRP, have

A A
SQA = RPB,
A A
QSA = PRB,
and QA = PB;

A ASQ = A BRP.
But 0 ABPQ + A BPR = whole fig. ABRQ,
=D ABRS+ A ASQ
.., removing the equal As from each side, we have

O ABPQ = O ABRS.
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Proposition 36.

THEOREM— Parallelograms on equal bases, and betu
the same parallels, are equal in area. v

Q P S R Let ABPQ, CDRS
[7® on equal bases AB, !
and between the same
AD, QR.

A B c D ]oin AS, BR.

Then since AB = CD = SR,
and AB is || to SR;
AS = BR, and AS is || to BR.
ABRS isa .
Now [0 ABPQ = 0 ABRS,
they are on same base, and between same ||s;
and for similar reasons,
O CDRS = OO0 ABRS.
0 ABPQ = O CDRS.

Proposition 37.

THEOREM— Triangles on the same base, and between
same parallels, are equal in area.

X P_Q Y

Let As PAB, QAB be
same base AB, and betw
same |* PQ, AB.
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Draw AX || to BP,and BY || to AQ; and let them meet PQ,
produced both ways, in X and Y respectively.

Then ABPX and ABYQ are [

But they are on the same base, and between same |[*.

they are equal in area.
Now A ABP = half 0 ABPX,
and A ABQ = haf O ABYQ;
A ABP = A ABQ.

' ) Proposition 38.

THEOREM— Triangles upon equal bases, and between the
same parallels, arve equal in area.

X
e Q h ¢ Let As PAB, QCD
be on equal bases AB,
CD, and between the
< same |# PQ, AD.
A B C D

Draw AX || to BP, and DY || to CQ; and let them meet PQ,
produced both ways, in X and Y respectively.

Then ABPX and CDYQ are s
But they are on equal bases, and between same ||s.

they are equal in area.
Now A ABP = half 0 ABPX,
and A CDQ = half 0 CDYQ;
A ABP = A CDQ
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Proposition 89.

THEOREM— Triangles of equal area, which are on the
same base, and on the same side of it, are between the same
parallels.

P Q Let As PAB, QAB be equal in
area, and on the same side of same
base AB.

Assume that the || to AB, through
P, meets AQ in X; join XB.

A B

Then A PAB = A XAB,
they are on same base AB, and between same |8 PX, AB.
But A PAB = A QAB.
A XAB = A QAB.
Which is impossible unless X coincide with Q.
PX coincides with PQ :
i.e. PQis | to AB.

Proposition 40.

THEOREM— Triangles of equal area, whick have their
bases equal and in the same straight line, and whick are
on the same side of that line, are between the same parallels.

P Q
Let A*PAB, QCD be of
equal area, on equal bases AB,
CD, and on same side of st.

line ABCD.
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Assume that the || to AD through P meets CQ in X; join XD.
Then A PAB = A XCD,
they are on equal bases AB, CD,
and between same |# PX, AD.
But A PAB = A QCD.
A XCD = A QCD.
Which is impossible unless X coincide with Q.
PX coincides with PQ:
i.e. PXis || to ABCD.

Proposition 4l.

THEOREM—If a parallelogram and a triangle are on the
same base, and between the same parallels, the parallelogram
zs double the triangle.

Q P R

Let 00 ABPQ and A ABR
be on same base AB, and be-
tween same ¢ QR, AB.

Join AP.
A B

Then A PAB = A RAB,
they are on same base AB,
and between same |# PR, AB.
But 0 ABPQ is double A PAB.
J ABPQ is also double A RAB.
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Proposition 42.

PROBLEM—70 describe a parallelogram whick shall be
cqual o a given triangle, and have one of its angles equal to
a given angle.

Let ABC be a given A ;

A X Y
and O a given A.
Bisect BC in M ; and join
N A
o MA. Make CMX equaltoO;
and let MX meet | to BC
B M C through A in X.

Draw CY || to MX ; and let it meet AX in Y.
Then A AMC = A AMB,
they are on equal bases, and between same ||’.
A ABC is double A AMC.
But I MY is double A AMC,
they are on same base, and between same |[.

A A
and it has CMX equal to O.
i.e. MY is a [3J described as required.

Note—This is the first step of the process by which Euclid establishes the
quadrature of any rectilineal figure: that is the possibility of finding a square
equal in area to a given rectilineal figure. .

The remaining steps are given in i. 44 and 45, and ii. 14.
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Def. If any point is taken on the diagonal of a parallelogram,
and through it parallels drawn to the sides; then, of the four new
- parallelograms so formed, the two
M through which the diagonal passes

/ are said to be about the diagonal

of the original parallelogram ;

and the other two are called com-

plements of the former two.

Proposition 43.

THEOREM— T ke complements of parallelograms,which are
about the diagonal of a parallelogram, are equal in area.

A G D Let ABCD be a .
[ M Take any pt. Pin its diag.
P F BD; and draw EPF, GPH

|| to AD, AB respectively,
forming 7 EH, GF about

B H o] the diag. BD.

Then AP, PC are the complements of EH, GF.
Since a [ is bisected by its diag., we have
A EBP = A HBP;
A GPD = A FPD;
and A ABD = A CBD.
The last line gives '
A EBP + AGPD + OAP = A HBP + AFPD + OCP.
Whence, by reason of the two former lines, we get
O AP =OCP:
i.e. the compts. of EH, GF are equal.
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Proposition 44.

. PROBLEM—70 a given straight line to apply a parallelo-
gram, whick shall be equal to a given triangle, and have an
angle equal to a given angle.

D C G
Let AB be the given
/ M line; P given A ; and
MB H / O given A.
/" o
|

F A
Construct a [J having same area as P, and an A equal to O;
and then let it be transferred into the position BCDE, in which

one of the sides BC, containing CQE which = 8, is in same st.
line as AB.
Through A draw a || to BE or DC, meeting DE produced in
F. Join FB.
A A
Then AFD + CDF = twort. AS,
FD meets the ||#¢ AF, CD.
BFD + CDF < twort. A®.
FB, DC will meet towards B and C, say in G.

Through G draw a line || to AC or FD; and let EB, FA meet
this line in H, | respectively.

Then EA, CH are [ about diag. FG of O DI ;
and BD, Bl are complements of these.
OoBl=oBD=AP.
A A A
Also ABH = EBC = 0.
to AB has been applied a 0 ABHI, which has same area

A A
as A P, and an ABH which = O.
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EXERCISES.

1. In Prop. 1, if AB produced meets a circle in X, and D is the second
point of intersection of the circles; prove that triangle CXD is equilateral.

2. If ABC is an equilateral triangle, and BC is produced to D, so that CD,
CB are equal ; prove that DA is perpendicular to AB.

3. Show that the last exercise gives a means of drawing a perpendicular to a
terminated straight line, at an extremity, without producing it.

4. If two parallelograms have an angle in one equal to an angle in the other,
show that all their angles must be equal each to each.

5. If a pair of opposite sides of a parallelogram are divided into the same
number of equal parts, and the corresponding points of division joined, prove
that the joins will divide the parallelogram into equal parallelograms.

6. If a triangle and a parallelogram are between the same parallels, and the
side of the triangle which is on one of the parallels is double the side of the
parallelogram on the same parallel; show that the areas of the triangle and
parallelogram are equal.

7. ABCD is a four-sided figure, of which AD is the longest side, and BC
the shortest; prove that angle ABC is greater than angle ADC, and also
that angle BCD is greater than angle BAD.

8. ABC is an isosceles triangle, and the bisectors of the equal angles B and C
meet the opposite sides in X, Y respectively; prove that BY, CX, XY are equal.

9. ABC is any triangle, and the bisectors of the angles B and C meetin O;
if the parallel to BC through O meets BA in X, and CA in Y, prove that
XY = BX + CY.

10. Prove that any straight line through the mid point of a diagonal of a
parallelogram bisects the parallelogram.

11. If the join of the extremities of two straight lines, which are equal but
not parallel, makes equal angles, on the same side of itself with those lines,
prove that the join of the other extremities is parallel to it.

12. If the bisector of the vertical angle of a triangle also bisects the base,
prove that the triangle is isosceles.

NOTE—Any side of a triangle may be considered as the base, and then the
opposite angle is called the vertical angle, and the corner of that angle the
vertex.
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Proposition 45.

PROBLEM—T70 describe a parallelogram, whick shall J.
the same area as a given rectilineal figure,and have an a;
equal to a given angle.

O [HT

Let ABCDEF be given rectilin. fig.; O given A.
Divide given fig. into As by joining any one of its con
(say A) to each of the rest.

AN
Make .7 PQRS, equal to A ABC, so that Q = O
To RS apply 0 RSTU, equal to A ACD,so that SﬁU =
Then SﬁU = 6 = PGR.
A N A A
SRU + SRQ = PQR + SRQ,
= two rt. A8, since PQis || to SR.
QRU is a st. line.
Again ' SR meets |8 PS, QRU,
PgR = altern. SQU.
A A A A
PSR + TSR = SRU + TSR,
= two rt. A8, since ST is || to RU.
PST is a st. line.
And -+ PQ, TU are each || to SR,
PQis || to TU.
And QU has been shown || to PT.
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AA
PUisa[J; andinit Q = O.
Also PU = PR + SU,
= A ABC + A ACD,
= fig. ABCD.
PU has been constructed having same area as ABCD, and
an A equal to 6

And the process tay obviously be extended to as many As as
| rectilin. fig. is divided into.

' Proposition 46.

PROBLEM— With a given straight line as one side, to
' describe a plane rectilineal four-sided figure, suck that its
’ stdes are all equal, and its angles are all right angles.

| D c .
Let AB be the given st. line.
Draw AD L and equal to AB.
Through B and D draw BC, DC
respectively || to AD, AB; and let
them meet in C.
] A B

Then fig. ABCD is a 1.
CB = AD = AB = CD:
i. e. fig. has its sides all equal.
Alsoﬁ + 6 = twort. AS;
and 2 is right.
6 is also right.
<. also /B\ and 6, opposite these, are each right:

i.e fig. has its A S all right.
E
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Def. A plane rectilineal four-sided figure, all whose sides are
equal, and angles right angles, is called a square.

Note—From the mode of construction of a square it follows that—
1°, if straight lines are equal the squares on them are equal ;
2% if two squares are equal, any side of one is equal to any side of the other.

Def. If a triangle has one of its angles right, it is called a right-
angled triangle.

Def. In a right-angled triangle the side opposite the right angle
is called the hypotenuse.

Proposition 47.

THEOREM—/n any right-angled triangle the square on the
hypotenuse is equal to the sum of the squares on the other sides.

M
R Let ABC be a A having
A
N A right.
Q On BC describe sq. BXYC.
» AB » APQB.
c . AC ,  AMNC.
Draw AD || to BX, meet-
ing XY in D.
Join AY, BN.
X D Y

Then -+ BAC and CAM are each right,
BA and AM are in one st. line.
For a similar reason CA and AP are in one st. line.
And - in As ACY, NCB, we have
AC = CN, being sides of a sq.
BC = CY, ” »

A N A
and ACY = NCB, for each = ACB + art. A;
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A ACY = A NCB.
Now [0 CD = twice A ACY,
they are on same base CY, and between same ||* CY, AD.
And for similar reasons
sq. CM = twice A NCB.
OCD = sq. CM.
Similarly, by joining QC and AX, it could be shown that
O BD = sq. BP.
But 7 CD and .0 BD make up sq. CX.
sq. on BC = sq. on AB + sq. on AC.

Def. An angle greater than a right angle is called an obtuse
angle.

Def. If a triangle has one of its angles obtuse, it is called an
obtuse-angled triangle.

Def. An angle less than a right angle is called an acute angle.

Def. If a triangle has three acute angles, it is called an acute-
angled triangle.

Def. A plane rectilineal four-sided figure, all whose sides are
equal, but its angles no right angles, is called a rhombus.

Def. A plane rectilineal four-sided figure, whose sides and
angles are unrestricted, is called a quadrilateral ; and the joins of
its opposite corners are called its diagonals.

Def. A quadrilateral, which has oze pair of sides parallel, is
called a trapezium (or sometimes a trapezoid).

Def. A plane rectilineal figure of any number of sides is called
a polygon.

Def. If a polygon has all its sides equal it is said to be equi-
lateral.

Def. If a polygon has all its angles equal it is said to be equi-
angular.

E 2
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Proposition 48.

THEOREM—.f the square on one side of a triangle is equal
20 the sum of the squares on the other two sides, the angle
contained by the latter two sides is a right angle.

C

A B X Y

Let ABC be a A such that
sq. on AB = sq. on BC + sq. on AC.
Take a st. line XZ equal to AC; and draw ZY L to it, and

equal to CB.
Join XY.

Then sq. on XY = sq. on XZ + sq.on ZY, * 2 is right,
= sq. on AC + sq. on CB,

= sq. on AB.
XY = AB.
And since in As ACB, XZY, we have
AC = XZ, ’
CB = 2Y,
and AB = XY;
A A
ACB = XZY

i.e. = aright A.
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In addition to the abbreviations already indicated, the following will be used
in the Addenda and Exercises.

— to signify that the quantity which is placed after it is to be subtracted
from that which goes before it.

~ to signify that the diffzrence of the two quantities, between which it is
placed, is to be taken: this symbol is to be used instead of the one pteeedmg it,
when we do not know which of the two quantities is the greater.

The contraction ‘sq. on AB’ will be still further contracted into ABS?
which is to be considered solely as an abbreviation for these words—*t4e square
described on the straight line AB.

P instead of the words ‘45 not greater than’: this symbol includes the pos-
sibility of either = or < expressing the fact indicated.

Thus A } B means that

either A = B
or A < B.
Similarly 4 signifies ¢ #s #ot less than.’

So that A 4 B means that
either A = B

or A > B.

Again < stands for * s not equal to.”

Thus A 4 B means that
either A > B

or A< B.
Also, for brevity, ‘line’ means ‘straight line.’
Def. A corollary is an obvious inference from a demonstrated proposition.
In the Addenda will be found—
19, all the most evident and important corollaries to the propositions:
2°, some useful deductions, which follow immediately from the propositions,
but are not so obvious as to be properly termed corollaries :
3°, some useful theorems, depending only on Book i.
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COROLLARIES TO THE PROPs. IN Book i.

i. 5. Every equilateral triangle is also equiangular.

i. 6. Every equiangular triangle is also equilateral.

i. 13. (a) If two lines coincide in two separate points they coincide through-
out their entire lengths.

(B) If two lines intersect, the sum of the four angles at their common
point is equal to four right angles.

(v) All the consecutive angles made by any number of lines drawn
from one point, are together equal to four right angles.

(8) If one line meet another, the hisectors of the supplementary angles
are at right angles.

i. 16. (a) If one angle of a triangle is right, ar obtuse, the other two must
each be acute.

(B) Only one perpendicular can be drawn from a point outside a line
to the line.

Def. Any line drawn from a point to meet-a line, but 70# perpendicular to it,
is called an oblique.

(7) If from a point outside a line there .is drawn to the line the perpen-
dicular and any oblique, the foot of the perpendicular will lie on the acute-
angled side of the oblique.

(3) In an isosceles triangle the equal angles are acute.

i. 20. Either side of an isosceles triangle is greater than half the base.

i. 29. (a) If two intersecting lines are parallel to two others, the angle
between the first pair is either equal or supplementary to the angle between the
second pair.

(B) If two angles are equal, and one pair of the sides forming them
are parallel, the other pair are also either parallel, or inclined at double the
equal angles. )

i. 32. (a) Each angle of an equilateral triangle is one-third of two right
angles ; or two-thirds of one right angle.

(B) If one angle of a triangle is equal to the sum of the other two
it is a right angle ; and conversely.

(y) If a right-angled triangle is isosceles, each of its acute angles is
half a right angle ; and conversely.

(8) If two angles of one triangle are equal to two angles of another,
the remaining pair of angles are equal.

(€) In a right-angled triangle the acute angles are complementary.

($) In an isosceles triangle each of the two equal angles is half the
supplement of the third angle, or the complement of half the third angle.

(7) The sum of the four angles of any quadrilateral is equal to four

right angles.
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!
’ i 33. A quadrilateral which has two sides equal and parallel is a parallel-
L 34. (a) If one angle of a parallelogram is right all its angles are right.
(B) If two adjoining sides of a parallelogram (not right-angled) are

equal it is & rkombus.
i. 38. (a) A line from a comner of a triangle to the mid point of the opposite

side bisects the triangle; and conversely.

(B) If triangles on unequal bases are between the same parallels, then
the triangle on the longer base is greater than that on the shorter base; and
conversely.

i. 47. (a) A square is half the square on its diagonal.

(8) In a right-angled triangle the square on one of the sides forming
the right angle is equal to the difference between the squares on the hypo-
tenuse, and on the other side.

(v) If PQ is perpendicular to AB,

PA?~ PB? = QA? ~ QB2

THE FOLLOWING ARE SOME IMMEDIATE DEVELOPMENTS OF THE PROPS. IN
BOOK i.—NOT SO OBVIOUS AS TO BE PROPERLY CALLED COROLLARIES.

THEOREM (1)—The difference between two sides of a triangle is less than
the third side.

A In any A ABC,

AB + AC > BC,
c and AB 4 BC > AC.

If AC < BC, take AC from each side of the first inequality,
and then AB > BC—AC.

K If BC < AC, take BC from each side of the second inequality,
and then AB > AC—BC.

. always AB > AC ~ BC.
And similarly for the other pairs of sides.
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THEOREM (3)—Of all the lines that can be drawn to a given line, of |
unlimited length, from a given point without it—

(a) the perpendicular is the shortest ;

(B) any oblique is greater than any other oblique whick makes a less angle
with the perpendicular ;

(Y) to each oblique there is an equal ome, on the other side of, and making
the same angle with, the perpendicular.

R Let P be a pt. outside a line
AB of unlimited length.
Draw to AB, PN the ., and

A R Q N g9 B PQ any oblique.

A A
Then (a) PNQ (being a rt. A) > PQN;
PN < PQ.
Next, draw another oblique PR, so that
A A .
RPN > QPN.
A
Then (B) since PQN is acute,
A
PQR is obtuse ;
A
and .. > PRQ:
PR > PQ.
Lastly, draw the oblique Pq on side of PN remote from PQ, so that
A A
qPN = QPN.
Then (y) it is clear that
A PNg = A PNQ,
Pq = PQ.

Cor. 1. There cannot be zAree equal obliques drawn from a point to a line.
Cor. 2. A circle cannot cut a line in z4ree points.

Cor. 3. If from a comer of a triangle a line is drawn to the opposite side,
this line is less than the greater of the sides containing the angle at the comer,
if they are unequal ; or than either of them, if they are equal.
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THEOREM (3)—T7he sum of all the interior angles of any polygon and
Jour right angles, is equal to twice as many right angles as there are sides to
the polygon.

Let ABCD &ec., be any polygon.
D Take any pt. O within it; and join O
A to each of its comers A, B, C, D, &c.—
thus forming as many As as there are
sides to the f)ol.

C

Then, the three A® of each A make up two right A®.

.. sum of A®of all the A® = twice as many rt. A® as there are sides to pol.
But all the A® of the A® make up the int. AS of pol. + A®*round O.

And A*round O make up four rt. A%

*. int. Asof pol. + four rt. A® = twice as many rt. A*as there are sides to pol.

Note—If the polygon has 7 sides, then
all its int. A® = (72— 2) 180° measured in degrees,
or =(n-2)n » radians.
if pol. is equiangular, and each of its A%is a degrees, or 6 radians, we
have these convenient formulze, for numerical calculation,
’ na = (n—3) 180°,
or 0 =n—-2)w

Examples—(1) If a pol. has 20 equal A%, each of them = 1;2 x 180" = 162°

(2) Again, if each A of an equiangular pol. is 150°, the number
T 360
of its sides = ——— =12
180—150

THEOREM (4)—AUl the exterior angles of any polygon, made by producing
its sides successively the same way round, together make up four right angles.

Each ext. A + its adjacent int. A
= twort. A®
- all ext. A% + allint. A,
= twice as many rt. A*®as sides to pol.
= all int. A® + four rt. As.
+. all ext., A% = four rt. A®.
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THEOREM (5)—The diagonals of a parallelogram—
(a) bisect eack other ;

(B) divide the parallelogram into four triangles of equal area.

D C

'!' Let AC, BD, the diag®. of [ ABC
. cut in O.
B

A
Then in As AOB, COD, we have
A N
OAB = OCD,
N A
OBA = ODC,

and AB = CD;
A AOB = A COD,
AO = CO, and BO = DO.
Also A AOD = A COD,
they are on equal bases AO, CO.
Similarly A COB = A AOB.
the areas of the 4 A® are equal.

THEOREM (6)—(Converses of i. 34, and of (a) in preceding Theorem).
quadrilateral is a parallelogram if—
(a) its opposite sides are equal ;
or (B) its opposite angles are equal ;
or () its diagonals bisect eack other.

c Let AC, BD, the diag’. of qu
ABCD, cut in O.
First, (a) if AB = CD,
and AD = BC.
B

Then, since in As ABD, CDB we have
also BD common,
s AABD=ACDSB.
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*. altern. A® made by BD with the opposite pairs of sides are equal,
quad. isa [,
A A
Next, (8) if DAB = DCB,
N A
and ABC = ADC;
N\ N\ A N
DAB + ABC = DCB + ADC
= twort. A%,
since the four A* of a quad. make up four rt. A®.
opposite sides of quad. are ||
itisa .
Lastly, (y) if AD = CO,
and BO = DO.
Then, since in A* AOB, COD, we have
N N
also AOB = COD, being vertr. opposite,
A AOB = A COD.
Similarly A AOD = A COB.
altern. A®* made by BD with the opposite sides are equal.
. quad. isa [,

THEOREM (7)—If two parallelograms have two adjacent sides of the one
respectively equal to two adjacent sides of the other, and an angle of one equal
1o an angle of the other, the parallelograms are identically equal.

B Let [J* ABCD, PQRS,

(o} Q_ R
\ \ have AB = PQ,
\ \ AD = PS,
N
A D P S

N
and A =P.

Apply TJ AC to [ PR, so that
pt. A may be on pt. P, and direction of AB on that of PQ.
Then AD will be in direction of PS,

NN
- A=P.

And B, D will coincide respectively with Q, S,
AB = PQ, and AD = PS,
And BC will be in direction of QR,

~* BCis | to AD, and QR to PS.
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Lastly DC will be in SR, . ¥

B cC  Q R * DCis|[to AB,and SRto PQ. ¥
. C, the pt. of int. of BC,DC, }
\ \ \ will coincide with R, the pt. of rr
\ int. of QR, SR. :
A D P S .. [ will coincide entirely:

i.e. 0 ABCD = [ PQRS.

THEOREM (8)—If two right-angled triangles have one of the sides forming
the right angle in the one equal to one of the sides forming the right angle in
the other, and have also their hypotenuses equal, the triangles are identically
equal, and of the angles those are equal whick are opposite equal sides.

x .
Let ABC, XYZ be At in which
N N
C and Z are each right,
AC = XZ,
AB = XY,
[+ Y Z

Then AC? + BC? = AB? = XY? = X2Z2 + YZ%
BC = YZ.
And As come under cond®®. of. i. 8.
A ACB = A X2Y.

R i. 47. by dissection.
M O is centre of sq. on AB.
2 2 Through O lines are drawn
Q jland L to BC.
2| 2 1 Through mid pts. of sides of

sq. on BC lines are drawn || and
1 to AB.

It will be found, by experi-
mental cutting out of the pieces
(and can be proved by Book i),
that the pieces marked (2) are
identically equal; and that the
piece marked (1), in middle of
sq. on BC, = sq. on AC.
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Note—The above diagram should be carefully drawn on thin cardboard, and
the pieces cut out, and fitted together.

This is at once the most simple, and the most ingenious of the numerous
dissecting proofs that have been given of i. 47.*

The following similar dissection will cut any square into pieces that will,
’ with any other square, form a new

square.
2 Let AC, BD be the sgs. out of which
A a new sq. is to be formed.

2 DY Place them so that a side of one is in
2 same st. line with a side of the other.
X Let M be mid pt. of this common line
/N 12 AB; N the mid pt. of CD.
Draw MO, NO through O, the centre
2 of BD; and produce them on one way
2 to meet sides, and the other way till
2 MX = MO and NY = NO.
Pieces marked (2) will be found to be
identically equal.*

The following is another very simple way of dissecting two squares so that
the pieces will form one square.

K

Take any two sqs. ABCD, AEFG, and
place them so that two of their sides AB,
AG may be in the same st. line.
D c Take H, in AB, so that GH = AB.
E Produce AD to K, so that EK = AB.
Join HF, HC, KF, KC.
It will be found by experiment, or it is
easy to prove by Book i, that

A H
A CBH = A HGF = A CDK = A KEF;
and that CKFH is a square.
Thus the sqs. AC, AF have been cut into pieces which will form sq. HK.
Also these three sqs. are the sqs. described on sides of rt. angled A CBH, so
that this also proves i. 47.

* PERIGAL—Wesserger of Mathematics, New Series, vol. . p. 10A.
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Arithmetical Problem—To find three integer numbers such that, if they ex;
press the number of units of length of three straight lines, these lines will form
a right-angled triangle.

Take any 2 nos. @ and 4, of which 2 > 4.
Then from the identity

@+6% = (a7-8Y" + (208,
we see that ? + 4%,
and ¢?— 4% ) units of length,
and 2ab,
will form a right-angled A.

Example—Take the nos. 3 and 2.
Then 3%+ 2% = 13,
3'—a'=35
2x3x12=1I2
And (13)" = 169 = 144 + 25 = (12)" + (5)"
So that 5, 12, 13 will represent sides of a right-angled A.

HERE FOLLOW SOME USEFUL THEOREMS DEDUCIBLE FROM BoOK i.

THEOREM (9)—If two triangles have two sides of the one equal to two sides
of the other, eack to each, and have likewise the angles opposite to one of the
equal sides in eack equal, then the angles opposite to the other two equal sides
are cither equal or supplementary ; and in the former case the triangles are
identically equal.

A
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Let ABC, DEF be At in which

AB = DE,
AC = DF,

N N

and B = E.

N\ N
If A = EDF, A" are identically equal by i. 4.
If not, let A ABC be so applied to A DEF that pt. B may be on pt. E,
and direction of BA on ED. )

Then A will coincide with D,
BA = ED.

And BC will fall in direction of EF,

VASA
B =E.

Also pt. C will be on EF (or EF produced) say at X.
DF = AC = DX.

N N A N
DFX = DXF = suppt. DXE = supp. C.

Cor. A* C and F cannot be unequal and supplementary, and ... must be
equal if—
(a) they are of the same species—i.e. both right, or both acute, or both
obtuse ;
or (B) A* B and E are right,
for then A* C and F are acute;
or (y) AC or DF & AB or DE,

N N ASEAY
forthen BorE 4 CorF,
and .. A® C and F must be acute.
Hence when, in addition to the given cond®s, we know that any one of the
three (a), (B), (7) is true, it will follow that

A ABC = A DEF.

THEOREM (10)—If we consider any one of the angles of a triangle as the
vertical angle ; then a line perpendicular to the bisector of the vertical angle
makes an angle with—

(a) each of the lines forming the vertical angle, which is half the sum of the
base angles ;

(B) the base, whick is half the diference of the base angles.
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D
Let ABC be a A; AX the bisecto~
N
Y of BAC, meeting BC in X; CNP
1L to AX, meeting AB in P.
P, Produce BA to D; and draw AY
N
to bisect CAD.
B X [
A
Then XAY is right,
AY | to CNP.

A N A N
APC = DAY = YAC = ACP.
N A N
But CAD (which is double of either of these) = ABC + ACB.
N N N N
(a) either APC, or ACP = } (ABC + ACB).
N N N\
And (8) PCB = APC — PBC,
N N N
= } (ABC + ACB) — ABC,
A N
= } (ACB — ABC).
THEOREM (11)—If we consider any one of the angles of a triangle as the

vertical angle, then the angle between the bisector of the vertical angle and the
perpendicular from the vertex on the base is half the difference of the base angles.

A
N\
In A ABC let AX bisect BAC; and
AN be L to BC. .
¢ /\
Denote XAN by ¢.
XN C

Then we have the following equalities,
N
¢ + AXN = 1t. A,
N N N
B + § BAC = AXN,
N N N
¢ + t. A = AXB = } BAC + C.
Adding corresponding sides, and omitting A* common to both, we get
N N
19+ B=C,
ANAY
K ¢ = &QC—B).
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THEOREM (12)—1f two triangles are on equal bases (or the same base) and
between the same parallels, and any straight line is drawn parallel to the
common base line, the intercepts made on it by the sides (or the sides produced)
of the triangles are equal.

\ / /

Vi 14
AN

Y F\

Let As ABC, DEF be on equal bases BC, EF, and between same ||* AD, BF.
Let any st. line XY, || to BF, cut the sides AB, AC, DE, DF, in P,Q,R, S,

respectively.

Along PQ take O, so that PO = RS.
Join BO, CO, AO, ES.
Then by sets of A® on equal bases, and between same (|5, we have
A POB = A RSE,
A APO = A DRS,
A BOC = A ESF.
.., adding corresponding sides, we get
fig. ABCO = A DEF = A ABC,
which is impossible unless O coincides with Q.
PQ = RS.
If XY cuts sides produced, the proof is precisely similar.

Cor. An important particular case is that in which the triangles have a side
in common, when the Theorem becomes — Zke median (p. 69) drawn from any
corner of a triangle, considered as vertex, bisects every parallel to the base,
whether that parallel is lermiyated by the sides, or the sides produced.

F
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THEOREM (13)—The join of two mid points of two sides of a triangle is
parallel to the third side, and half of it.

A

In A ABC let D be the mid pt. of
AB, and E of AC.

Join DE; and produce it to F, so that
EF = DE. Join FC.

Then in A% AED, CEF, we have
AE = CE,
DE = FE,

N N
and AED = CEF;
A AED = A CEF.
FC = AD = BD.

N N
And ADE = CFE;
FCis || to BD.
FBisa .
DE = § DF = } BC, and is || to BC.

THEOREM (14)—If through the mid point of one side of a triangle a parallel
is drawn to either of the other sides, it will meet the third side in its mid point.

A
Thro’ D, the mid pt. of AB, in A ABC,
let DE be drawn || to BC, and meeting
E ACinE.
Draw CF, || to BA, to meet DE in F.
B & BCFDisa .

CF = BD = DA.
N N
And CFE = altern. ADE.
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Also in A* CEF, AED,
the A?® at E are equal.
A CEF = A AED.
AE = EC.

Cor. By (13) DE = § BC.

THEOREM (15)—If a series of parallels intercept consecutive equal parts of
any one line which they cut, they do the same on every other.

P R

Let a series of ||* cut the line
PQ in the consecutive pts. A, B,
C, D, &c. so that

AB = BC = CD = &c.

Let RS be any other line cut

by the |js.

\. Thro’ A draw a || to RS, meeting the series of [|* in the consecutive pts.
) Ab, ¢, d, &c.
i In A ACeg, since B is mid pt. of AC, and Bb is || to Ce,
‘ .. be = Ab.
Now draw Bxy || to bed, and meeting Ce, Dd in X and y respect?.
Then figs. Be, xd are [J9,
and x is mid pt. of By;
s .. ed =xy = Bx =be = Ab.
' And it is clear that the same process of proof may be extended to the rest of
the consecutive intercepts on Abed, &c.
And, by ||%, each intercept on RS = the corresponding intercept on Abed &e.

R - the consecutive intercepts on RS are equal.

. F 2
.
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THEOREM (16)—17 a right-angled triangle the mid point of the kypotenese
is equidistant from the three.corners ; and conversely.

¢ : In rt. angled A ACB, let O be mid

pt. of hypot. AB.
Draw ON || to BC, to meet AC in N.

Join CO.

Then by (14) N is mid pt. of CA.
And A®at N being rt. AS,
A ONC = A ONA.
OC = OA = OB.
For the converse : if in a A ABC, pt.-O in AB is such that
OA = 0B = OC;
A A N A
then OAC = OCA, and OBC = OCB.
A N\ N
ACB = CAB + C3A.

N\
ACB isrt.

Cor. If in the above AB = 2 AC, then A ACO is equilat.

THEOREM (17)— The joins of the mid points of the sides of a triangle divide
it into four triangles which are identically equal.

A
In A ABC let X, Y, Z be the respective mid

pts. of BC, CA, AB.
Z Then by (13) AX, BY, CZ are [s.
.. their diag®. YZ, ZX, XY divide them into

B % c identically equal As:

ie. AAYZ=AXZY=A ZXB=AYCX.

THEOREM (18)—/n any quadrilateral the joins of the mid points of adjacen!
sides form a parallelogram, whose area is half that of the quadrilateral, and
whose perimeter is equal to the sum of its diagonals.

Can be easily deduced from Theorems (13) and (17).
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THEOREM (19)—If two triangles of equal area are on opposite sides of the
same base, the join of their vertices is bisected by the base ; and conversely.

A P
Let A* ABC, DBC be of equal area and
on opposite sides of the same base BC.

B Draw BP, CP |i* to CD, BD respecty.,
and on same side of BC as A ABC.

Join AP.

Then BPCD isa 1.
A PBC = A DBC = A ABC.
AP is | to BC.
Also, Y being the intersec. of diag®. BC, PD of (7,
DY = YP.
And since XY is || to AP,
X is mid pt. of AD.
For the converse: the same construction being made ;
as before, Y is mid pt. of DP.
.., if X is mid. pt. of AD,
then XY is || to AP.
A ABC = A PBC = A DBC.

0

Def. Three or more straight lines which go through one point are said to be

concurrent.

Def. Three or more points which lie on one straight line are said to be
c.llinear.

Def- In a triangle the join of a corner to the mid point of the opposite side is
called a median of the triangle.

Note—Obviously a triangle has three medians.
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THEOREM (20)—The threc medians of a triangle are concurvent ; and the
distance of their point of concurrence from a corner is two-thirds of the length
of the median along whick it is measured.

Let BE, vF be two medians of A aBy,
E intersecting in G.
Join aG; and let it be produced to meet
Bvin D, and the || to yF thro’ 8 in H.
Join yH.

Then F being mid pt. of a8, and FG || to BH,
G is mid pt. of aH.

Also, since G is mid of aH, and E is mid of a7,
s BGEis| toHy.
<. BHyGisa [

And By, HG, its diag®., bisect each other in D.

the three medians are concurrent in G.
And Ga = GH = 2GD.

Def. The point of concurrence of the medians of a triangle is called its

centroid.
Note—The centroid corresponds to the centre of mass (or gravity, which is

the reason we represent it by G) of a physical triangular lamina.

THEOREM (21)—If two sides of a triangle are unequal the median which
bisects the shorter side is greater than the median which bisects the longer.

12

In A aBy let D, E, F be the respective
mid pts. of By, ya, aB.

W
o—)
~
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Suppose a8 > ay,
Let G be the centroid.
Then in A*aDB8, aDy, since
BD = YD'
aD is common,
but aB > ay;
N N
BDa > yDa.
Again in A® 8GD, yGD, we have
8D = 4D,
GD common,
N N
but DG > yDG;
BG > 4G,
.~ by (20) $§ BE > §vyF:
i.e. BE > yF.

THEOREM (22)—Of the two angles formed by a median with two adjacent
sides. that whick is formed with the shorter side is greater than that which is
Jormed with the longer. '

a

In A aBvy suppose a8 < av.
Let D be mid pt. of B%.

In a D produced take L, so that

DL = Da.
Join L.

Then in AsaDB, LD+, we have

aD = LD,
BD = 9D,
N N

and aDB = LDy;.

AaDB = A LDy.
oo yL =aB,and /. < ay.

N N

yaD < yLD,

N
.. also < BaD.
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THEOREM (23)—T"e three lines perpendicular to the sides of a tr:
their mid points are concurrent ; and their point of concurrence is eqn
Jrom the three corners of the triangle.

@

Let D, E, F be the mid pts. of
spective sides By, ya, aB of a A af

Let | #at D and E to 8y, ya m«
Join Ca, CB, C1.

A ——=y :

Then in A 8CD, yCD, we have .
BD = 7D:
CD common,
N N
and BDC = yDC;
BC = 4C = aC, by a similar proof.
Join CF. Then in A*aFC, BFC, we have
aC = 8C, ’
aF = BF,
and FC common;
N Ay
aFC = BFC.
And they are adjacent A®.
CFis L toaB:
i.e. the 1 #at D, E, F are concurrent in C.
And C has been shown equidistant from a, B, 7.

Def. The point which is equidistant from the three comers of a tr;
called its eircum-centre. '

Note—The circum-centre is the centre of a circle through the three
of the triangle; and it will be shown (iii. 10) that there is only one suc
which is therefore called the circumscribing circle. Hence the name
centre’ is to be regarded solely as a contraction for the words—¢cent,
carcumscribing circle.
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THEOREM (24)— T ke three lines bisecting the angles of a triangle are con-
current ; and the point of their concurrence is equidistant from its sides.

Let BI, v bisect the A® B, y of AaB7.
V Draw IU, IV, IW respectively L to 87,
79, aB.

Then in AsBIU, BIW, we have
N TAY
BUI = W],
N\ N\
18U = IBW,
and B common ;
s U = IW = IV, by a similar proof.
Join la. Then in A% alV, alW, we have
IV = IW,
la common,
and A®at W and V right;

N N\
s, by (8) laV = 1aW.
the bisectors of the A% of A aBy meetin l.
And | has been shown equi-distant from B, ya, aB.

Def. The point which is equidistant from the three sides of a triangle is
called its in-centre.

Note—The in-centre is the centre of a circle which meets the sides of the
triangle at the feet of the perpendiculars dropped from itself on the sides; and
it will be shown (iii. 16) that this circle touches the sides, and it is therefore
called the Zmscribed civcle. As in the case of the circum-centre, the name ¢ z72-
centre’ is to be regarded solely as a contraction for the words ¢ centre of the

inscribed circle. *

* See Zawcational Times, Vol. XXX VI. New Series, No. 16q.
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Def. If any one of the corners of a triangle is considered as the vertex, then
the perpendicular from the vertex on its base (or the distance of the vertex from
the base) is called the altitude of the triangle, with respect to that vertex and
base.

Note—Obviously a triangle has three altitudes.

THEOREM (25) — The three altitudes of a triangle arce concurrent.

R (43
\4

P

LetaBy bea A.
Thro’ a, B, v draw ||* to the opposite sides, forming 2 A PQR, so that

P, Q, R are respect?. opposite a, 8, 7.
Then a ByQ and ayBR are [J*.
aQ = By = aR.
Similarly 8 and v are mid pts. of PR, PQ.
.., by (23), the L #to the sides of & PQR at a, B, v, are concurrent.
Let O be their pt. of concurrence.
Then a O, produced to meet B in X, is L to B,
since it is | to QR, which is || to B+.
Similarly for 8O and yO.
.. the three altitudes of A a8« are concurrent in O.

Def. The point of concurrence of the three altitudes of a triangle is called its

orthocentre.
Note—In the case of an equilateral triangle it is clear that the centroid,
circum-centre, in-centre, and ortho-centre, are all coincident in one point, whick

may be called the centre of the triangle.
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THEOREM (26)—If from a vertex of a triangle, where two uncqual stdes meet,
there is drawn the altitude, median, and bisector of the vertical angle, the last
line will lie between the other two.

% In A aB¥, suppose that

ay > aB.
Draw aX an altitude, aD a

’ A
B median, and aA bisecting Ba7.
Then, since ya > Ba,
74N N
by (22) DaB > Day.
N
aA lies in DaB.
N N
4 Again, since 8 > v,
N A
Xay > XaB.
N
aA lies in Xavy.

N aS
.. aA lies in the part common to DaB and Xay:
i.e. aA lies between aD and aX.

THEOREM (37)— The bisectors of the exterior angles at two corners of a
triangle are concurrent with the bisector of the interior angle at the third
corney ; and their point of concurrence is equidistant from the two sides pro-
duced and the third side.

In A aBy let BE, vE
bisect the ext. A®at B, v.
Draw ER, ES, ET L
respect’. on sides opposite
% B, 7.
Join aE.
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Then in As ERB, ET B8, we have
N\ N
EBR = EBT,
N N
ERB = ETB,
and EB common ;
+. ET = ER = ES, by a similar proof.
Again, in A% EaT, EaS, we have
ET = ES,
E a common, l
N A )
also ETa and ESa each right ; S
N\ N
by (8) EaT = EaS,
the bisectors of ext. AS at B, v are concurrent at E with bisector of
int. A ata.
And E has been shown equidistant from 8T, 4 S, B7.

Def. The point which is equidistant from two sides produced and the third
side of a triangle is called its ex-centre.

MNote—The ex-centre is the centre of a circle which meets the sides of the
triangle at the feet of perpendiculars dropped from itself on two produced sides,
and the third side; and it will be shown (iii. 16) that this circle touches the
sides, and it is therefore called the exscribed circie to the unproduced side that it .
touches. Obviously a triangle has three ex-centres.

As in the case of the circum-centre and in-centre, the name ¢ ex-centre’ is to
be regarded solely as a contraction for the words ‘centre of an exscribed civcle’

THEOREM (28)— 7)e area of any quadrilateral is equal to that of a triangle
having two sides and their included angle respectively equal to the diagonals of
the quadrilateral and their included angle.

A L
(NL, Let ABCD be any quad.

Thro’ its corners draw ||* to its diag®.
forming ] PQRS.
Let diag®. cut in Q.

()

g
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Then SP = diag. DOB,
QP = diag. AOC,

N\ N
and SPQ = AOB.
Area quad. ABCD = } (PO + QO + RO + SO),
= } CJ PQRS,
= A SPQ.

Cor. When the diagonals are at right angles (as in the case of a rhombus)
area = 1 rect. under diags.
Note—See beginning of Book ii. (p. 86) for definition of a rectangle,
and meaning of the phrase rectangle wunder two lines.

THEOREM (29)—7he area of a triangle is half that of the rectangle under
an altitude and its corresponding base. i

P A Q
e Let AN be an altitude of A ABC.
Draw BP, CQ || to AN; and PAQ
Il to BC.
B N C

Then A ABC = } rect. PBCQ,
= } rect. under AN, BC.
And similarly for either of the other altitudes.

Cor. (1). The area of any quadrilateral is half the rectangle under one of its
diagonals and the sum of the perpendiculars on that diagonal from the corners
through which it does not pass.

Cor (2). If ris the distance of the in-centre from each of the sides of a

triangle ABC, then )
area A ABC = } r (AB+BC +CA).

Cor. (3). The area of a trapezium is half the rectangle under the sum of its
parallel sides and the distance between them.



EXERCISES ON BOOK i.

NOTE— T%e following Exercises ave all Theorems to be proved.

1. The bisector of the vertical angle of an isosceles triangle, 1°, bisects the
base, 29, is perpendicular to the base. '

2. If two isosceles triangles are on opposite sides of the same base, the join
of their vertices, 19, bisects the base, 2°, is perpendicular to the base.

3. The bisector of the external angle, formed by producing either of the sides
containing the vertical angle of an isosceles triangle, is parallel to the base.

4. The diagonals of a right-angled parallelogram are equal.

5. If a quadrilateral is bisected by each of its diagonals, it is a parallelogram.

6. Triangles on equal bases and of equal altitudes, are of equal area.

7. If a line is terminated by two parallels, all lines through its mid point,
terminated by the parallels, are bisected at that point.

8. If two sides of a triangle are unequal, any line drawn from their point of
intersection to meet the third side, is less than the greater of them.

9. If the diagonals of a quadrilateral are at right angles, the sum of the
squares on a pair of its opposite sides is equal to the sum of the squares on the
other pair,

10. If two lines intersecting at X are respectively perpendicular to two lines
intersecting at Y, each angle at X is either equal or supplementary to each angle
at.

11. If any point is taken in the bisector of an angle, it is equally distant from
the lines forming the angle.

12. If from any point in the bisector of an angle, parallels are drawn to the
lines forming the angle, so as to be terminated by these lires, the parallels so
drawn are equal.

13. If the bisector of an angle of a triangle divides the opposite side un-
equally, the greater segment is adjacent to the greater side.

14. If an altitude of a triangle divides its base unequally, the g’mdter ssgment
is adjacent to the greater side.

15. In a right-angled triangle, if one of the acute angles is double the other;
then the hypotenuse is double the least side.

16. If on the sides of a triangle ABC, equilateral triangles BCD, CAE,
ABF are drawn, all external to ABC ; then AD, BE, CF are equal.
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17. If in a triangle ABC, AD is drawn perpendicular to BC ; then—
AB? + CD? = AC? + BD?

18. If points are taken in each side of an equilateral triangle, so as to be
equidistant from the corners, the distances being measured the same way round
the triangle, their joins will form an equilateral triangle.

19. A theorem similar to the last is true when a square is substituted for an
equilateral triangle.

20. If the alternate sides of a polygon of » sides (7 being greater than 4) are
produced to meet, forming a star-shaped figure, the sum of all the angles at the
star points = (z—4) 7.

NOTE—Deduce from Addenda (3) and (4).

21. The lines which bisect the angles of a parallelogram, form a right.
angled parallelogram, whose diagonals are parallel to the sides of the original
parallelogram.

22. If two opposite sides of a parallelogram are bisected, the lines drawn
from the points of bisection to the opposite corners will trisect a diagonal.

23.' If any point in a diagonal of a parallelogram is joined to its corners, the
parallelogram is divided into two pairs of equal triangles.

24. If of the four triangles into which its diagonals divide a quadrilateral,
two opposite ones are equal, the quadrilateral has a pair of opposite sides
parallel.

25. The angle between the bisectors of two external angles of a triangle is
equal to half the sum of the adjacent internal angles.

26. If a quadrilateral is bisected by a diagonal, this diagonal bisects the
other diagonal.

NoOTE—See Addenda (19).

27. If A, B are points in one, and C, D points in another of two parallels;
and AD, BC cut in E; then area AEC is equal to area BED.
28. If P is a point in side AB of parallelogram ABCD, and PC, PD are
joined ; then
APAD + APBC = APDC.
29. In any triangle ABC, if BP, CQ are perpendiculars on any line through
A; and M is the mid point of BC; then MP is equal to MQ.

NOTE—Draw MX perpendicular to PQ ; and use Addenda (15).

30. If the side BC of a triangle ABC is produced to D, and AE is drawn
bisecting angle BAC, and meeting BC in E; then twice the angle AED is
equal to the sum of the angles ABD and ACD.
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31. An angle of a triangle is right, acute, or obtuse, according as the median
drawn from its corner is equal to, greater than, or less than half the side it
bisects.

32. If AD is parallel to BC; AC, BD meet in E; and BC is produced to
P, so that area PEB is equal to area ABC ; then PD is parallel to AC.

33. If from any two points of a fixed line, lines drawn to each of two fixed
points are equal, the join of the fixed points is perpendicular to the fixed line.

34. If a line is drawn from a given point, to make a given angle, with a
given line; its length, and the points of its intersection with the given line are
known.

35. The perimeter of an isosceles triangle is greater than the perimeter of
the rectangle of the same altitude and area as the triangle.

36. The sum of the distances of any point within a triangle from the corners
is less than the perimeter, but greater than half the perimeter of the triangle.

37. Any median of a triangle is less than half the sum of the two sides con-
terminous with it.

38. The sum of the three medians of a triangle is less than the perimeter, but
greater than three-fourths of the perimeter of the triangle.

39. If any point is taken within a triangle and lines drawn from the three
corners through it to meet the opposite sides, their sum is greater than half the
perimeter of the triangle.

40. If three lines are drawn bisecting the interior angles of a triangle, and
terminated by the opposite sides, their sum is less than the perimeter of the
triangle.

NoOTE—Deduce from Addenda (26) (2) and Ex. 38.

41. Any point being taken within a quadrilateral, 720¢ the intersection of its
diagonals, the sum of its joins to the corners is greater than the sum of the
diagonals.

42. The sum of the four sides of a quadrilateral is greater than the sum, but
less than twice the sum of its diagonals.

43. It is possible to draw, to meet within a triangle (not equilateral) two
straight lines, terminated in one side, which are together greater than the other
two sides, if one of the lines drawn is z0f terminated in a corner of the triangle.

44. If ABCD is a quadrilateral ; M the mid point of BD ; XMY the parallel
to AC, meeting the sides in X and Y; then AY bisects the quadrilateral.

45. 1If ABCD is a quadrilateral, in which AB, AD are equal; and CB, CD
are equal; and if M is the mid point of AC; then MA, MB, MC, MD
quadrisect the quadrilateral.
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46. Unless one diagonal of a quadrilateral is bisectéd by the other it is im-
possible to quadrisect it by joining its four corners to any one point within it.

NoTE—Use Addenda (19).

47- From a point within or without a parallelogram, lines are drawn to the
extremities of two adjacent sides, and of the diagonal conterminous with them ;
of the triangles thus formed that whose base is the diagonal is equal to the
sum or difference of the other two. Distinguish the cases.

48. If a comer of a square-edged sheet of paper is folded over and creased,
and then again folded over and creased, so that the creases are parallel and
equidistant, the triangle cut off by the first crease is one-third of the area
between the creases.

49. If ABCD is a quadrilateral such that BD, AC make equal angles with
DC, and that AC makes the same angle with AD that BD does with BC,
then AB is parallel to CD.

s0. If a point is taken within a square, the sumn of the squares on its joins with
the corners is equal to twice the sum of the squares on the perpendiculars
dropped from it on the sides.

51. If a point P is joined to the comers A, B, C, D of a rectangle, then

PA? + PC? = PB? + PD?.

53. The sum of the perpendiculars from any point within an equilateral
triangle on its sides is equal to its altitude.

NoTE— Use Addenda (39).

53. The sum of the perpendiculars from any point within an equilateral
convex figure is the same wherever the point is taken.

54. If a quadrilateral has a pair of opposite sides equal, and the other pair
unequal, then the equal sides are equally inclined to the bisector of the un-
equal sides.

55. If a rectilineal figure has 100 equal angles, each of them is 176° 24'.

56. If each angle of a rectilineal figure is 162°, the figure has 20 sides.

57. If from any point P within a triangle ABC perpendiculars PX, PY, PZ
are dropped on the sides respectively opposite A, B, C; then

BX? + CY? + AZ? = CX? + AY? + BZ3

58. If a quadrilateral has a pair of parallel sides, the join of their mid
points goes through the intersection of the diagonals.

59. The equiangular polygons which will completely fill up the space round
a point. only the same kind of polygon being used at once, are those of 3, 4,
or 6 sides ; but no others will do so.

NOTE—Use the note to Addernda (3).
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60. ABC is any angle, and AC is perpendicular to BC, if P can be found
in AC so that, BP being produced to meet the parallel to BC through A in Q,
PQ is twice AB, then angle PBC is one-third of angle ABC.

NOTE— The point P cannot be found by the use of an ungraduated ruler and
compasses.

61. The preceding construction for the trisector of any angle is equivalent
to the following—From a given point P on the arc of a semi-circle, let a line
be drawn meeting the arc again in A, and its chord in B, so that AB is equal
to the radius of the semi-circle.

62, If four rods PA, PB, QAC, QBD are pivoted at P, Q, A, B, so as to
be capable of angular motion in one plane ; and so that PAQB is a parallelo-
gram, and A, B the mid points of QC, QD ; then will C, P, D be in a straight
line, however the rods are moved about.

63. ABC is any triangle ; any parallelograms BADE, BCFG are placed on
BA, BC; DE, FG produced meet in H: then the sum of the areas AE, CG
is equal to the area of the parallelogram on AC, having sides parallel and
equal to BH. (Pappus’ extension of i. 47.)

64. The area of the equilateral triangle on the hypotenuse of a right-angled
triangle is equal to the sum of the areas of the equilaieml triangles on its sides.

NoTte—Let APB, BQC, CRA ¢ the A, B/A\C being right. Join PC, QA;
and drop L PM on AB. Then, casily, A ABQ = A PBC = } A ABC
+ A APB; and, similarly, A ACQ = } A ABC + A CRA; whence, by
addition, result follows.

65. If A and B are the centres of two circles; AP, BQ parallel radii; and
R, S the points in which PQ meets the circumferences again; then AR is
parallel to BS.

66. If a point is taken within a parallelogram, the sum of the triangles
formed by joining the point with the extremities of a pair of opposite sides is
equal to half the parallelogram.

67. If a point is taken witkout a parallelogram, the differesice of the triangles
formed by joining the point with the extremities of a pair of opposite sides is
equal to half the parallelogram.

68. If through any point P within a parallelogram ABCD parallels are
drawn to the sides, the difference of the parallelograms of which PA, PC are
diagonals is equal to twice the triangle PBD.

69. If the mid points of the conterminous sides of two triangles on the same
base (either on the same or opposite sides of it) are joined, the joins form a

parallelogram— excepting in one case.
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70. If from the ends of the base of a triangle perpendiculars are drawn on
the external bisector of the vertical angle, and their feet joined transversely to
the ends of the ba.se, the joins intersect on the internal bisector of the vertical
angle.

71. If in a triangle ABC, BC is greater than BA; D is a point in BC such
that BD is half the sum of AB and BC ; and E a point in BA produced such
that BE is equal to BD ; then ED bisects AC.

72. ABC is any triangle; BP, CQ are perpendicular and equal respectively
to BA, CA; PM, QN are perpendiculars on BC produced : then—

BC = PM + QN, when angles B and C are each acute ;
but BC = PM ~ QN, when one of them is obtuse.

73. In any quadrilateral the joins of the mid points of opposite sides, and
the joins of the mid points of the diagonals, cut in one point.

NOTE—S¢e¢ Addenda (18).

74. The bisectors of the infernal angles of any quadrilateral, form a quadri-
lateral whose opposite angles are supplementary.

75. The bisectors of the external angles of any quadrilateral, form a quadri-
lateral whose opposite angles are supplementary,

76. If the diagonals of a parallelogram cut in O, and P is any point within
the triangle AOB ; then

ACPD = AAPB + AAPC + ABPD.

77. A pair of the diagonals of parallelograms, which are about the diagonal
of a parallelogram, are parallel.

78. If a parallel is drawn to the hypotenuse of a right-angled triangle, and
terminated by the sides; and if its ends are joined to the vertices of the acute
angles ; then the sum of the squares on the joins is equal to the square on the
hypotenuse together with the square on the parallel to it.

79. If X and Y are the respective mid points of the sides AB, AC of any
triangle; and if BY, CX cut in O; then triangle AXY is equal to three times
triangle XOY.

8o, If a line PMQ is drawn through the mid point M of the side BC of a
triangle ABC, so as to cut off equal parts AP, AQ from AB, AC (produced
if necessary) respectively; then BP is equal to CQ.

81. If on the sides AB, BC, CD of a parallelogram ABCD, equilateral
triangles are described—that on BC towards the same parts as the parallelo-
gram, and those on AB, CD towards opposite parts—then the distances of the
vertices of the triangles on AB, CD, from that on BC, are respectively equal
- to the diagonals of the pamallelogram.

G 2
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82. If two triangles ABC, abe, have their sides, distinguished by corre-
sponding letters, parallel (ABC being the smaller), and if BP, CX are perpen-
dicular to be; CQ, AY to ca; and AR, BZ to ab ; then—

AP? + BQ? + CR? = AX? + BY? + C22,

NoTe—Drop L from A, B, C, on be, ca, ab; and use Ex. 57.

83. If a quadrilateral hasa pair of opposite sides equal, and a pair of opposite
angles equal, azd obtuse, it is a parallelogram ; but if the pair of opposite equal
angles are acute, not necessarily so.

NOTE—See Addenda (9).

84. If through the corners A, B, C of a triangle, parallels are drawn meeting
the opposite sides (produced if necessary) respectively in X, Y, Z; then

A AYZ = A BZX = A CXY = A ABC.
85. In the figure of i. 47—
(1) AX, QC are L ;
(2) AQBX = ANCY = APAM = AABC; )
(3) AD, QC, BN are concurrent ;
(4) the medians of A ABC are L to PM, QX, YN respectively; and
each median is half the line to which itis L ;
(5) if QH, AL, NK are L ® dropped on direction BC,

ABHQ=AALB, and ACKN = A ALC;
(6) Q, A, N are collinear;
(7) if XE, YF are L.® dropped on directions QB, NC,
AEBX=AABC=AFYC;
(8) QX? + NY? = 5BC?;
(9) sum of squares on sides of rectilineal figure XYNMPQ = 8 BC?;
(10) if QC cut AB in U, and BN cut AC in V, AU = AV;
N\
(11) if AX, QC cut in W, BW bisects QWX.

86. (1) (3) (3) (4) (5) (11) of 85, are also true when B/RC is not right.
87. If ABCD is a quadrilateral ; X, Y the respective mid points of AC, BD;
and O their intersection ; then—
4 AXOY = (AAOB + ACOD) ~ (AAOD + ACOB).
88. If a pair of opposite sides of a quadrilateral meetin O; and X, Y are

the mid points of its diagonals; then the quadrilateral is equal to four times
the triangle XOY.
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89. The following construction- will quadrisect any quadrilateral ABCD—
From X, Y, the mid points of AC, BD, draw XO, YO parallel to BD, AC;
then the joins of O to the mid points of AB, BC, CD, DA, will quadrisect
ABCD. :

NOTE—/oin X to the mid points of two adjacent sides, and use Addenda (17)
and 1. 37.

go. The following dissection will cut a square into two others, and inciden-
tally prove i. 47—On each side of the square, as hypotenuse, describe equal
right-angled triangles, so as to lie on the square, and have the shorter and
longer sides of each similarly situated with regard to the hypotenuse; then
cutting along the sides of the triangles will give pieces that will form the two
squares on the sides of one triangle.

NOTE—This (the Hindoo) is said to be the oldest of all the dissecting proofs.

91. The following construction will bisect a triangle ABC by a line through
a given point P in BC—Take the median AM, and draw MQ parallel to AP
to meet a side of the triangle in Q: PQ is the bisector.

92. The points P, Q, in which a line AB is trisected, may be found by any
one of the following constructions—

(@) Draw any line from A, and in it take X, Y, Z, so that AX, XY, YZ are
equal : join BZ, and draw XP,"YQ parallel to BZ, to meet AB in P, Q.

(B) Describe an equilateral triangle ABC on AB: let the bisectors of angles
A, B, meet in O ; and draw OP, OQ parallel to AC, BC to meet AB in P, Q.

(y) Describe any triangle ABC on AB: draw the median AM: join C to
the mid point of AM, and produce this join to meet AB in P; and draw MQ
parallel to CP. .

93. If a point O; and its distances a, b, ¢ from the comners of an equilateral
triangle, within which it lies, are given, the triangle can be constructed thus—
Make triangle OXC so that OX, XC, OC are respectively equal to a, b, ¢;
and construct an equilateral triangle OAX on OX; and join AC: then the
equilateral triangle on AC is the one wanted.

94. The converses of Exercises 1, 2, 3, 4, 5, 6, 11, 22, 26, 29, 33, 55, 56, are
true.

NOTE— Zhese converses should, in eack case, be enunciated before being proved.
1t is to be recollected that @ Theorem may have more than one converse.
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Def. A right-angled parallelogram is called a rectangle.

Note—From the properties of a parallelogram, we see that if—

1°, one angle of a parallelogram is right it is a rectangle ;

2°, the two lines which contain an angle of one rectangle are equal to the two
which contain an angle of another rectangle, each to each, the rectangles are
identically equal.

Since therefore a rectangle depends only on the lengths of a pair of adjacent
sides, it is said to be ‘under,’ or ¢ contained by,’ two of the sides which form
any one of its angles. The words ¢ rectangle under AB and CD’ will be
abbreviated into ¢ 7ect. under AB, CD,’ in Euclid’s Props.; and still further
abbreviated into * AB . CD’ in the Addenda and Exercises.

Proposition 1.

THEOREM—If there are two straight lines, one of whick
is divided into any number of parts, the rectangle contained
by the two straight lines is equal to the sum of the rectangles
contained by the undivided line and the several parts of the
divided line.

Let AB be the one line,
divided in C and D; and
X the other.

3 F G [ Draw AE so that it = X,
and L to AB.




E,in pts. F, G, | respectively.
Then all the figs. are rects.
And since X = AE = CF = DG = B|,
~. rects. Al, AF, CG, DI are respectively contained by
AB and X, AC and X, CD and X, DB and X.
But fig. Al = sum of figs. AF, CG, DI:
i.e. rect. under AB, X
= rect. under AC, X + rect. under CD, X + rect. under DB, X.

BOOK ii. 87
Draw || to AE, through C, D, B, meeting the || to AB, through
%
[
' 3 3
. Proposition 2.

THEOREM—If a straight line is divided into two parts,
the rectangles contained by the whole and eack of the parts
are logether equal to the square on the whole line.

A X Let AB be a st. line divided in X.
On AB describe sq. ABCD.
Draw XY || to AD, and meeting DC
inY.

Then figs. are rects.

(9}

And since AD = AB,
fig. AY = rect. under AB, AX.
Also since BC = BA,
fig. BY = rect. under AB, BX.
But figs. AY and BY make up fig. AC:
i.e. rect. under AB, AX + rect. under AB, BX = sq. on AB.

Note—Prop. 2 is that case of Prop. 1 when the divided and undivided lines
are equal,
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Proposition 3.

THEOREM—If a straight line is divided into any two
parts, the rectangle contained by the whole line and one of
the parts is equal to the square on that part together with the
rectangle contained by the two parts.

A

X

B Let AB be a st. line divided in X.

On AX describe sq. ACDX.
Draw BE || to XD ; and meeting CD

produced in E.

Then figs. are rects.
And since AC = AX,
fig. AE = rect. under AB, AX.
Also since XD = AX,
fig. XE = rect. under AX, XB.
But fig. AE = sum of figs. AD, XE :

i.e. rect. under AB, AX = sq. on AX + rect. under AX, XB.

Note (1)—Prop. 3 is that case of Prop. 1 when the undivided line is equal to
one of the parts of the divided line.

Note (2)—If in Props. 2 and 3 we consider AB, AX as two lines, so that BX
is their difference, then the two Props. may be included in this single enuncia-
tion—Z%e difference between the rectangle under two lines and the square on
one of them is equal to the rectangle under that one and their difference.
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Proposition 4.

THEOREM—If a straight line is divided into two parts,
the square on the whole line is equal to the sum of the
squares on the parts, logether with twice the rectangle con-
tained by the parts.

A X B Let st. line AB be divided in X.
On AB describe sq. ABCD.
E - Take E in AD so that AE = BX,
(¢) I ED = AX.

Draw XOG, EOF | to sides of sq.,
and meeting DC, BC respectively in
D G C G, F,

Then all the quads. are rects.
And BF = AE = BX.
fig. BO, being equilat., is a sq.; and it is on BX.
Similarly fig. DO is a sq.; and is on EO, which = AX.
Again since OF = OX, and OG = OE,
fig. CO = fig. AO.
Also, since XO = BX,
fig. AO = rect. under AX, BX.
But fig. AC = sum of figs. BO, DO, CO, AO:
i.e.

sq.on AB = sq. on AX + sq. on BX + 2 rect. under AX, BX.
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Proposition 5.

THEOREM—If a straight line is divided equally and also
unequally, the rectangle under the unequal parts, and the
square on the part between the points of section are together
equal to the square on half the line.

A X Y_ B -

Let st. line AB be divided

equally in X, unequallyin Y.
On BX describe sq.

BCDX.

H C
In XD take E so that XE = YB.
ED = XY.

Draw a || to AB through E, meeting ||* to BC through Y and A
in pts. F and | respectively; and let YF meet DC in H.

Then all the quads. are rects.
Now since AX = BC, and Al = XE = YB,
) AE = YC.
YC + XF = AF,
= rect. under AY, YB, ‘- Al = YB.
Also since ED = XY = EF,
EH is a sq.; and it is on EF, which = XY.
But figs. YC, XF, EH make up fig. XC:
i.e. rect. under AY, YB + sq. on XY = sq. on BX.
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Proposition 6.

THEOREM—If a straight line is bisected and produced to
any point, the rectangle contained by the whole line thus pro-
duced and the part of it produced, together with the square
on the half of the bisected line, is equal to the square on the
straight line made up of the half and the part produced.

A X B Y Let st. line AB be bisected in
) X, and produced to Y.
F| On XY describe sq. XYCD.
E In XD take E so that
XE = BY.
H C - ED = XB.

Through E draw a || to AY, meeting YC in G, and ||s to YC,
through B and A in F, | respectively; and let BF meet DC in H.
. Then all the quads. are rects.
Now since FG = BY = XE, ’
and FH = ED = BX = AX,
FC = AE.
FC + XG = AG,
= rect.under AY,YB, - YG = XE = BY.
Also ED = XB = EF.
EH is a sq.; and it is on EF, which = XB.
But figs. FC, XG, EH make up fig. XC: .
i.e. rect. under AY, YB + sq. on XB = sq. on XY.
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Proposition 7.

THEOREM—If a straight line is divided into any two
parts, the square on the whole line together with the square
on one of the parts is equal to twice the rectangle contained
by the whole line and that part, toget/zer with the square on
the remaining part.

A X B
E o) F
D C

Let st. line AB be divided in X.

On AB describe sq. ABCD.

In AD take E so that AE = BX.
ED = AX.

Draw XOG, EOF || to sides of sq.,

and meeting CD, CB respectively in
G, F.

Then all the quads. are rects.
And BF = AE = BX.
fig. BO, being equilat,, is a sq.; and it is on BX.
Similarly fig. DO is a sq.; and is on EO, which = AX.
Also since BF = BX,

ﬁg. AF =

rect. under AB, BX.

And since BC = AB,

rect. under AB, BX.

But figs. BD and BO make up figs. AF, XC, DO:

ie.

sq. on AB + sq. on BX = 2 reot. under AB, BX + sq.on AX.
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Proposition 8.

THEOREM—If a straight line is divided into any two
parts, four times the rectangle under the whole line and one
of the parts, logether witk the square on the other part, is
equal to the square on the straight line whick is made up of
the whole and the first part.

This proposition is omitted because—

1°, never made use of by Euclid ;

29, of very little use;

3° very lengthy;

4°, really contained in ii. 5 and 6 ; see ii. 4ddenda (3).

The student may work it as an exercise, in the same way as Props. 9 and 10
are done here ; or graphically from either of these figs.

a-b a

b a
Note—The manner in which the right-hand fig. applies to the Prop. is indi-
cated by this algebraic identity, which is its analogue—
48b + (a-b)*= (a+Db)3,

On p. 118 will be found a proof in which the Prop. is shown to be an easy
deduction from Props. 3 and 4.
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Def. A point taken in a finite straight line is said to divide the
line internally, or simply, to divide it; and, if the line is pro-
duced, a point taken on the produced part, is said (by analogy)
to divide the line externally; in either case the distances of the
point from the extremities of the finite line are called the segments

of the line.

Note—TIt follows, from this definition, that a straight line is equal to the sum ]
or difference of its segments, according as it is divided internally or externally.

Propositions 9 and 10.

THEOREM—/If a straight line is divided internally or
externally at any point, the sum of the squares on the seg-
ments is double the sum of the squares on half the line and
on the line between the point of division and the middle
point of the line.

() @

A MX B A M B X

Let AB be a st. line whose mid pt. is M.
Let it be divided in X, internally fig. (1), or externally fig. (2).
Then, by ii. 4, we have
sq. on AX = sq.on AM + sq. on MX + 2 rect. under AM, MX.
And, by ii. 7, we have
sq. on BX + 2 rect. under BM, MX = sq.on BM + sq. on MX.
~., putting AM for BM, adding corresponding sides, and
omitting 2 rect. AM, MX from each side, we get
sq. on AX + sq. on BX = 2 (sq. on AM + sq. on MX).

Note—TIt is clear that Props. 2 to 10 of Book ii are merely amplifications of
Prop. 1, and that they can be directly deduced from it. As a good exercise,
the learner should make the deduction in each case.
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Proposition 11.

PROBLEM— 70 divide a given straight line into two parts
so that the rectangle contained by the whole and one part
may be equal to the square on the other part.

Let AB be the given st. line.
X On AB describe the sq. ABCD.
A Bisect AD in E ; and join EB.

Produce EA to F so that
E/ EF = EB.

Complete the sq. AFGX, of which
AF is a side.

! H C

Then the A®at A being right, two sides of the sqs. must be in

the same direction; and since AF < AB, a corner X of sq on
AF must be on AB.

Produce GX to meet DC in H.
Since AD is bisected in E and produced to F,
-. rect, under DF, FA + sq.on AE = sq. on EF,
= sq. on EB,
= sq. on AB + sq.on AE.
Take sq. on AE from each side, and
rect. under DF, FA = sq. on AB.
But fig. FH = rect. under DF, FA, -+ FG = FA.
fig. FH = fig. AC.
Take fig. AH from each.
Then fig. AG = fig. XC,
= rect. under AB, BX, - BC = AB:
i.e. sq on AX = rect. under AB, BX.
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Def. When we speak of the projection of a terminated straight
line on another straight line, we mean the distance between the feet
of perpendiculars drawn from the extremities of the terminated line
on the other.

p Note—If AP is a terminated line, and AX

any other line through A; then, if PN is per-

: I pendicular to AX, AN is the projection of AP
A N X on AX.

Proposition 12.

THEOREM—/I7 an obtuse-angled triangle the square on
the side opposite the obtuse-angle is greater than the sum of
the squares on the sides forming the obtuse angle, by twice
the rectangle contained by either of these latter sides, and the
projection of the other wpon il.

Let ABC be a A in which ACB
is obtuse.

Draw AN Lto BC produced ; so

that CN is the projection of AC on BC.
B C N

Then, by ii. 4, we have
sq. on BN = sq. on BC + sq. on CN 4 2 rect. under BC, CN.
.., adding sq. on AN to each side; and recollecting that
sq. on BN + sq. on AN = sq. on AB, A
_ } . N is right,
and sq. on CN + sq. on AN = sq. on AC,
we get
sq. on AB =sq. on BC 4. sq. on AC + 2 rect. under BC, CN.
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Proposition 13.

THEOREM—/7 any triangle the square on a side opposite
an acute angle is less than the sum of the squares on the
sides forming the acute angle, by twice the rectangle con-
tained by one of the latter lines and the projection of the
other upon it.

A

C N . B N C

A
Let ABC be a A in which B is acute.

Draw AN L to BC, which may need to be produced, as in
fig. (1), or not, as in fig. (2) : then BN is the projection of AB on
Be- Now -+ BN is divided in C in fig. (1),

or BC » N in fig. (2);
.., in both cases, by ii. 4, we have
sq. on BC + sq. on BN = sq. on CN + 2 rect. under BC, BN.
.., adding sq. on AN to each side; and recollecting that

sq. on BN + sq. on AN = sq. on AB, AL
and sq. on CN + sq.on AN = sq. on AC,} ~ N is right,
we get
sq. on BC + sq. on AB’= sq. on AC + 2 rect. under BC, BN :
i.e.

- 5q. on AC < sq. on BC + sq. on AB by 2 rect. under BC,BW.
H
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Proposition 14.

PROBLEM— 70 describe a square whose area shall be equal
o the area of a given rectilineal figure.

o F
Cc D

Let A be the given rectil. fig.
Make a rect. BCDE, which = A.
Then, if BE = BC, BD is a sq., and problem is solved.
Assume BE and BC unequal.
Produce BE to F, so that EF = ED.
Bisect BF in O; and with O as centre, and BO as radius,

describe 2 ©.
Produce DE to meet this ® in X; and join OX.

Since BF is divided equally in O, and unequally in E,
. rect. under BE, EF + sq. on OE = sq. on BO,
= sq. on OX,
= sq. on EX + sq.on OE.
Take sq. on OE from each side.
Then rect. under BE, EF = sq. on EX:
i.e. the sq. described on EX = fig. A.
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COROLLARIES TO THE PROPS. IN BoOOK ii.

ii. 1. (a) If two lines are each divided into any number of part, the rectangle
under the lines is equal to the sum of the rectangles formed by each part of one
line with each part of the other.

(B) The rectangle under a line and the difference of two other lines, is
equal to the difference of the rectangles under the first line and each of the
others.

ii. 4. (@) The square on a line is equal to four times the square on its half.

(B) If a line is divided into any number of parts the square on the
whole line is equal to the sum of the squares on its parts, together with twice
the sum of the rectangles formed by each part with each other part.

Def. A line divided as in ii. 11, is said to be divided in medial section.

ii. 11. (a) In the given construction DA is produced to F so that the rect-
angle under the whole line produced (DF) and the part produced (AF) is equal
to the square on the original line (AD): that is DA is produced to F so that
FD is divided in A in medial section.

(B) Also sinee FD is divided in A in the same way as AB in X ; and,
if Y is taken in AD so that AY is equal to AF, then AD, AY being respectively
equal to AB, AX, it follows that AD is divided in Y in the same way as FD
in A—from all this we see that—If a line is divided in medial section, and a
part is taken in the greater segment so as to be equal to the lesser segment, the
greater segment will be divided in medial section.

Note—The term medial section may be extended so as to include the external
division of a line (see def. on p. 94) thus,

Def. A line is said to be divided in medial section—
19, infernally (constructed on p. 95) when
rect. under original line and Jesser segt. = sq. on greater segt. ;
29, externally (constructed on p. 103) when
rect. under original line and greater segt. = sq. on lesser segt.

ii. 14. The process of finding a square which is equal to the area of a given
figure is called the guadratare of the figure. This Proposition is the fourth
step in the quadrature of a given rectilineal figure—the preceding steps being
i. 42, 44, 45.

’ H 2
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SoME IMMEDIATE DEVELOPMENTS OF THE PROPS. IN BOOK ii.—NOT so
OBVIOUS AS TO BE PROPERLY CALLED COROLLARIES.

THEOREM (1)—The difference of the squares on two lines is equal to the
rectangle under their sum and difference.

° Let AB, AC be the lines, placed so that AC
A C B. _ the lesser is conterminous, and in the same
direction, with AB.
Then AB? = AB.AC + AB.CB.
And AB.AC = AC? + AC.CB.
adding, and omitting AB . AC from each side, we get
AB? = AC? + AB.CB + AC.CB,
or AB? — AC? = (AB + AC) CB,
= (AB + AC) (AB — AC).

Note—The last Theorem may be deduced at once from ii. 5, or from ii. 6;
A B cC D or it may be done graphically,
from the annexed figure, in which
AB, BC are the given lines;
BC the lesser, is produced to D
so that BD = BA; and fig. is
completed as in ii. 5

The learner should write out the complete construction and proof.

THEOREM (2)— The distance of the mid point of a finite straight line from a
point of internal division is half the difference of the segments ; and its distance
Jrom a point of external division is half the sum of the segments.

A M P B Q

Let AB be a finite straight line, divided internally in P, and extemally in Q:
take M the mid pt. of AB. .
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Then PM = PA — AM, if P lie in BM.
= PA — BM,
= PA — PB = PM,
2PM = PA - PB.
Similarly 2PM = PB — PA, if P lie in AM.
always PM = } (PA ~ PB).
Again QM = QB + BM,
= QB + AM,
= QB + QA - QM,
2QM = QB + QA,
or QM = } (QA + QB).

THEOREM (3)—The rectangle under two lines, together with the .rquarel on
half their difference, is equal to the square on half their sum.

This is merely ii. 5 and ii. 6 included in one enunciation.
For if AB is a line divided equally in
A X Yy B X, and unequally in Y.
Then, by ii. 5, AY.YB + XY? = BX2
But XY = § (AY « BY).
And BX = § (AY + BY).
Again, if AB is divided equally in X
A X B Y and produced to Y.
Then, by ii. 6, AY.YB + BX? = XY3
But BX = } (AY - BY).
And XY = § (AY + BY).
.. for any two lines AY, BY we have

AY.YB + (AY:BY)’ _ (AY : BY)’.

This Theorem is also a modified way of enunciating ii. 8.

For let AB be divided into any two
A X B Y parts in X.
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A X B Vv
Produce AB to Y, so that BY = BX.

Then, by ii. 8, 4AB.BX + AX? = AY2
But AX = AB — BX.
And AY = AB + BX.

.. again, for any two lines AB, BX, we have

AB.BX + {AB : BX}" _ {AB : BX}_

Note—We thus see that ii. 8 is really included in ii. 5 and ii. 6.

THEOREM (4)—T%e square on the sum of two lines is greater than the sum
of the squares on those lines by twice the rectangle under them.

This is only a modified enunciation of ii. 4.

THEOREM (5)— Zhe square on the difference of two lines is less than the sum
of the squares on them by twice the rectangle under them.

This is another way of enunciating ii. 7
A X B For ii.' AB is a line divided into any two
parts in X.

Then, by ii. 7, AB? + BX? = 2AB . BX + AX%
or AX? = AB* + BX? - 2AB. BX,
or (AB — BX)* = AB? + BX? — 2AB . BX,
which is the Theorem.

Theorem (6)— The square on the sum of two lines, together with the squarz
on their difference, is equal to twice the sum of the squares on the lines.

This is only another way of including ii. 9 and 10 in one enunciation.

(4)) (2)

A M X B AT M B X

-
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For if AB be a line, whose mid pt. is M; and X a pt. either of internal
division, fig. (1); or external division, fig. (2), then, by ii. 9 and 10, we have,

in both cases,
AX? + BX? = 3 AM? + 2 MX3,

or 4AM? + 4 MX? = 2 (AX? + BX?),
or (AX + BX)* + (AX «» BX)? = 3 (AX?* + BX?).

Note—This Theorem is also an immediate deduction from ii. 4 and ii. 7
taken together.

THEOREM (7)— The sum of the squares on any two lines is equal to twice
the square on half their sum together with twice the square on half their dif-
[erence.

This again is only another way of enunciating ii. 9 and 10 together.
For, as in preceding Theorem,
AX? + BX? = 2 AM? + 2 MX2
2 2
A 4 B = o X2 BXL, [AX~BX)
2 2

Extension of ii. 11—the external division of a line in medial section.

K On given line AB describe sq. ABCD.

Join M (the mid pt. of BC) to A.

C Produce BC toK, so that MK = MA.,

I On BK describe sq. BKGX, which
/M will have a side BX in same direction as

|- BA.

A B X Produce DC to meet XG in F.

D
i

‘Then, since BC is bisected in M, and produced to K,
BK .KC + BM? = MK? = MA? = AB? + BM2.
BK.KC = AB?:
i.e. fig. CG = fig. AC, since KG = BK.
Add fig. BF to each.
Then fig. BG = fig. AF:
i.e. BX? = AB. AX.
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SOME USEFUL THEOREMS DEPENDING ON BOOK ii.

THEOREM (8) (Euler's)—If four points A, B, C, D, are in order on the
same line, then

AC.BD = AB.CD + BC.AD.

A B c D By repeated applications of ii. 1, we get

AC .BD = (AB + BC) BD,
= AB.BD + BC.BD,
= AB (CD + BC) + BC. BD,
= AB.CD + BC.AB + BC.BD,
= AB.CD + BC (AB + BD),
= AB.CD + BC.AD.

X
Or Theorem may be proved graphi-
Y cally, from annexed fig. in which
BXis L to AD, and = BD,
CYis L to AD, and = CB.
Th ts. leted.
A 5 o en rects. are comple!

The learner should write out the proof.
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| .
THEOREM (9)—If from the vertex of an isosceles triangle any straight line
is drawn to meet the base internally, or externally, the difference of the squares

on one of the sides and on the line so drawn is equal to the rectangle under the
segments of the base.

A A
) (2)

B P M (o] B M C P

Let ABC be a A ; in which AB = AC.
And let BC be divided in P, internally fig. (1), externally fig. (2).
Draw AM 1 to BC,
Then ABZ?a~ AP? = BM? PM?,
(BM + PM) (BM ~ PM),
= BP. CP in both figs.

THEOREM (10)—T%e difference of the squares on two sides of a triangle is
equal to twice the rectangle under the base and the projection of the median,
bisecting the base, on the base,

A A
m (@)

B M N C B M C N

Let ABC be a A ; M the mid pt. of its base BC.
AN L to BC, fig. (1), or BC produced, fig. (2).
In fig. (1) 3MN = BN ~ CN.
Infig. (3) 2MN = BN + CN.

Also AB? < AC? = BN? o~ CN?,

(BN + CN) (BN~ CN),

2 BC . MN, in both figs.

[
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THEOREM (11)—In any triangle the sum of the squares on two sides is
equal to twice the square on half the third side together with twice the square
on the median whick bisects that side.

A In A ABC let AD be the median from A.
Draw AN L to BC.
Then, unless AN coincides with AD, one
of the A® at D (say ADB) is obtuse, and
B DN ¢ the other ADC is acute.

AB? = AD? + BD? + 2 BD.DN.
And AC? + 2CD .DN = AD? + DC3,
.., adding corresponding sides, putting BD for DC, and omitting 2 BD . DN
from each side, we get
AB? + AC* = 3AD? + 2BD?
In the case when AN coincides with AD the Theorem is an immediate de-
duction from i. 47.

THEOREM (12)— Tke sum of the squares on the sides of any quadrilateral is
equal to the sum of the squares on ils diagonals together with four times the
square on the join of the mid points of its diagonals.

D
Let ABCD be a quad.
c P, Q the respective mid pts. of AC, BD.
Join PB, PD.
A B

Then AB* + BC? = 2 BP? + 2 AP},
AD? + CD? = 2DP? + 2 AP},
AB? + BC? + CD? + DA? = 2 (BP? + DP?) + 4AP?,
= 4PQ? + 4BQ?! + 4AP?,
= 4PQ? + BD? + AC*
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’ Cor. An important particular case is that in which the quadrilateral is a
parallelogram, when the Theorem becomes— 7%e sum of the squares on the
sides of a parallelogram is equal to the sum of the squares on its diagonals.

THEOREM (13)—In any triangle three times the sum of the squares on
its threc sides is equal to four times the sum of the squares on its three
medians.

A Let AD, BE, CF be the medians of the A ABC.
E Then AB? + AC? = 3AD? + 2 BD?.
- 2AB? + 2AC? = 4AD? + 4BD?,
B b ¢ = 4AD? + BC%"-

And two similar results.
.., adding the three, and omitting AB? + BC? + CA? from each side,

we get
3(AB? + BC? + CA?% = 4(AD? + BE? + CF2,

THEOREM (14)—/n any triangle three times the sum of the squares on the
distances of the centroid from the three corners is equal to the sum of the squares
on the three sides.

A Let AD, BE, CF be the medians of
A ABC; G its centroid.
Then BG? + CG? = 2GD? + 2 BD2.
2BG? + 2CG? = 4GD? + 4BD*
= AG? + BC2

And two similar results.
., adding the thrge, and omitting AG? + BG? + CG? from each side,

we get
3(AG? + BG? + CG? = AB? + BC? + CA™.
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THEOREM (15)—If P is that point in side BC of triangle ABC jfor which
BP is kalf CP, then '
2AB? + AC? = 6BP? + 3 AP2,

A Draw AN L to BC.
Then, unless AN coincides with AP, one of the
s at P (say APB) is obtuse, and the other APC
acute.
B P N
AB? = BP? + AP? + 2 BP. PN,

or 2AB? = 2BP? + 2AP? + 2CP. PN.
And AC? = CP? + AP? — 3CP. PN,
= 4BP? + AP? —2CP.PN.
T , adding corresponding sides, we get
2AB? + AC? = 6BP? + 3 AP2
In the case when AN coincides with AP the Theorem is an immediate
deduction from i. 47.

4

THEOREM (16)— The sum of the squares on the distances of the three corners
of a triangle from any point is equal to the sum of the squares on their dis-
tances from the centroid, logether with three times the square on the distance
between the point and the centroid.

L]

A .
Let ABC bea A ; AD a median; and G
its centroid.
Let P be any pt. joined to A, B, C, D, G.
Then, since AG = 3 DG,
B c PA? + 2PD? = 6GD? + 3 PG
’ Also PB? + PC? = 3 PD? + 2BD?

.., adding and omitting 2 PD? from each side, we get
PA? + PB? + PC? = 4GD? + 2GD? + 2 BD? + 3 PG},
= AG? + BG? + CG? + 3 PG*
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Cor. When ABC is equilat., G is the centre of the A (see p. 74) ; and then
PA? + PB? + PC? = 3 (AG? + PG?).

THEOREM (17)—If the side AB, of a triangle ABC, is divided intom + n
equal parts; and if O is the point in AB for which AO contains 1 garts
and BO m parts ; then— .

m.AC? +n.BC?=(m + n).0C? + m.AO? + n.BO?

the dots denoting multiplication.

Cc ) If a line XY = length of each part,
then AO = n . XY,
BO = m . XY,
A 0 N B s m.AO =mn.XY = n.BO.

Draw CN L to AB, then if N is in BO

CSB is acute, and CSA obtuse.
m.AC? =m.(OC? + AO? + 2A0. ON).
Andn.BC? = n.(OC? + BO? — 2BO.ON).
.~., adding, and recollecting that m . AO — n . BO = o, we get
m.AC? +n.BC?=(m + n).0C? + m.AO? + n.BO?%

Note (1)—Theorems (11) and {15) are evidently particular cases of this.

Note (3)—Since AO = —2_ . AB, and BO = —=_ . AB, the above
m+n m+n

result may be written
mn

m.AC?+n.BC?=(m +n).0C? + . AB?
m+n

(Euler)

Cor. If AB is divided into m — n equal parts ; and if BA is produced to O,
so that AO contains n, and BO m of these parts, preceding Theorem becomes

m.AC?-n.BC?=(m -n).CO* + m.AO*-n.BO’,
which again may be modified as in Avze (3).
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THEOREM (18)— The distance of the mid point of a finite line from a line
of indefinite length, is half the sum of the distances of its extremities, when
the lines do not intersect, and half the difference, when they do.

8
@

m
M

P
X N Y A H
Let M be the mid pt. of a finite line AB; XY any indefinite line, which either )
does not cut AB, fig. (1),
- or does cut AB fig. (2).
Draw AP, BQ, MN L on XY ;
and MK, AH L on BQ (produced if necessary).
Then K is‘mid pt. of BH.
KQ = } (BQ + HQ) in fig. (1).
. MN =4}(BQ + AP) ,,
And KQ = } (BQ ~ HQ) in fig. (2).
. MN = } (BQ~AP) ,,

S

Note—1f in the above we consider that perpendiculars drawn from A and B
in opposite directions, towards XY are to be taken as additive in the one direc-
tion, and subtractive in the other, both above are included in

MN = 1 (AP + BQ).

With this convention MN is said to be the algebraic sum of AP and BQ.

Many of the preceding and analogous propositions are particular cases of
general theorems relating to a point of much geometrical importance, called the
mean centre. Of this point a formal definition will now be given.

Def. Let there be any system of points A, B, C, D, &c., and a corresponding
system of whole numbers a, b, ¢, d, &c.; let the line AB be divided intoa + b
equal parts, and let AM, contain b of them and BM, & of them ; also let CM,
be divided into a+b +c equal parts, and let M, M, contain' ¢ of them, and
CM, a +b of them ; and let this process be repeated so that a series of points
M, M &c., are similarly found ; then if M is the last point found, it is called
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the centre of mean position, or the mean centre of the points A, B, C, D, &c.,
Jfor the system of multiples a, b, ¢, 4, &c.

N.B.—The most important particular case is that in which

a=b=c=d=&c

For the satisfactory treatment of the properties of the mean centre it is essen-
tial that the preceding convention be adhered to—that if a set of perpen-
diculars are drawn to a line from points on opposite sides of it, all the perpen-
diculars on one side of the line are to be considered additive, and all on the
other side subtractive. The idea of this convention is not to be found in
Euclid ; but is the very basis of Modern Geometry.

In connection with it we shall occasionally use the following very useful
symbol.

= is to be read, and is solely the equivalent of —2ke algebraic sum of all such
quantities as.

Examples—1f we have a series of points A, B, C, &c., joined two and two,
then— .

(1) = (AB) means—the sum of all the joins :

(2) = (A ABC) means—tkhe sum of all the triangles whick can be got by
taking the joins three together : ’

(3) = (AB?) means—tke sum of all the squares on the joins.

THEOREM (19)—If A, B, C, &c., are a number of points, 8, b, ¢, dc., cor-
responding whole numbers, M the mean centre of the points for those num-
bers ; then, if perpendiculars AL, BL, CL, dc., and ML, are drawn to any
line—every point in the line being denoted by L—the position of M is given by
the relation—

@+b+e+d&).ML=a.AL + b.BL + ¢.CL 4 &

Or, which is the same thing briefly expressed,

ML.=(a) = =(a.AL)

: A 19, take the case of two pts. A, B.
X Draw M,X, BY L to AL.
v Then a.AL = a.(M,L + AX).
And b.BL =b.(M,L — XY).
L L L '

s. a.AL+Db.BL=(a +b).ML +a.AX - Db.XY.
Now since M, X is || to BY
M, X divides AY into & + b equal parts,
of which AX contains b parts, and XY coxg_&g.‘;ns Q.

Hi
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a.AX and b . XY each contain ab parts.
a.AX —b.XY = o,
a.AL + b.BL =(a + b). M,L.

C

M2 . 29, taking a third pt. C ; by what
has been proved,
B

L L LL L

@+b+c).M,L=(a+b).ML +ec.CL,
=a.AL +b.BL + ¢.CL
And, by an obvious extension of the process, we get the required result.

Cor. (1) For any line which passes through the mean centre ML = 0, and
a.AL + b.BL + ¢.CL + &c. = 0;
- or, briefly, when M lies in L,
I(a.AL) =o.
Cor. (2) Inthecase whena = b = ¢ = &ec.
ML = %(AL + BL + &)

where n = the number of points.

Some noticeable examples are—

(1) when there are three points whose joins forma A ; anda = b = e.

A Take BC as the line L.

Then ML = } AL.
M And, if AM meet BC in D, by drawing |I* to
—d1—¢ BC through M, and the mjd pt. of AM, we get

MD = } AD.
Similarly if BM_ meet AC in E, and we take AC as L, we should get
s L ME = } BE.
M is the centroid of the A.
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(2) When there are three points whose joins form a A ; and of such lengths
that BC, CA, AB can be respectively divided into &, b, ¢ parts, all of which
are equal.

A Take BC as L.
Then (BC + CA + AB) ML = BC . AL.
Now if » = dist. of the in-centre from each
B Y of the sides of A ABC,

»(BC + CA + AB) = 2 area of A ABC.
Also BC . AL = 2 area of A ABC.
ML = 7.
Similarly the distance of M from AC = 7,
M is the in-centre.

(3) when there are four points whose joins form a quad.; anda =b=c =d.
It will be easily seen that M is the intersection of the joins of the mid pts.
of opposite sides.

Note—If A, B, C, &c., are the positions, and a, b, ¢, &c., the respective
numbers of units of mass of a system of material particles, the mean centre is
the position of the centre of mass of the particles.

THEOREM (20)—1If M is the mean centre of the points A, B, C, &c., for the
cm::Mdzng numbers 8, b, 6, &c. ; and if P is any other point, then—
X(a.AP? = 3 (a.AM?) + PM?, = (a),
© where N = the number of points.

B
A Draw 1% AA’, BB, CC’, &c., from
the pts. to the join of- MP produced
indefinitely.
A

Then a . AP? = a . (AM? + PM*? + 3A’'M . MP).
And similar results hold for each of the pts.
Adding corresponding sides of all the results, we get
2(@.APH =X (a.AM?) + PM?X (a) + aPM X (8. AW).
I
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But, since M is the mean centre,
Z@.A'M) =o.
*. required result is true.

Cor. (1). Ifa=b=c=d=&c
3 (AP%) = = (AM? + n.PM?2

Cor. (2). In the particular case when there are two points, and & ="b, we have

P
AP? + BP? = AM? + BM? + 2 PM?,
= 2 AM? + 2 PM3,

A M B
A result which has been proved independently as Theorem (11).

Cor. (3). When there are two points, and & =2, b=1, we have

]

2AP? 4+ BP? = 2 AM? + BM? + 3 PM?,
= 6AM? + 3 PM3

This was proved as Theorem (15).

Cor. (4). When there are three points, and a=b =c¢, we get Theorem (16).

Note—The Theorem holds when the points A, B, C, &c., are collinear, and
P is any other point collinear with them: then, by giving particular values
to a, b, ¢, &c., various theorems will follow.

Theorem (17) is the general case for two points; and also holds when C is
on AB; so that then, by giving various values to m and n, we can get different
relations between the segments of a line,
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CONTAINING PREVIOUSLY OMITTED PROOFS.
Book i. Proposition 2.

Let P be the given pt., and AB the given
st. line.

Join AP; and on AP describe the equilat.
A APC.

Let © with A as centre, and AB as radius,
cut CA produced in D; and let ® with C
as centre, and CD as radius, cut CP produced
in X,

Then CX = CD, being radii of same @ ;
and CP = CA, being sides of an equilat. A.
-~ PX = AD.
But AD = AB, being radii of same O,
.~ PX = AB.

i.e. from the given pt. P a line PX has been drawn equal to the given line
AB.

Book i. Proposition &.

Let ABC be a A in which AB = AC.
In the production of AB take any pt. X ; and in the
production of AC take Y, so that AY = AX.
Join CX, BY.
Then in & s ACX, ABY, since
AC = AB, }
AX = AY,

N N I
and CAX = BAY;
;. AACX=AABY - - - (@)

12
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Now -.© AX = AY, and AB = AC,

... BX = CY.
A And as in the A ®* BXC, CYB we have also
CX = BY,
A A } , from (a)
and BXC = CYB;
s~ ABXC=ACYB - - - - (8)
A A ]
B C Now .- ACX = ABY, from (a)
A A
and BCX = CBY, from (8)
.. , subtracting corresponding sides, we have
X Y

A N
ACB = ABC,
A N\
Also CBX = BCY, from (8)

Book i. Proposition 7.

For suppose that on the same side of the same base AB, there are 2 A*
AXB, AYB, '

such tkat AX = AY, z
and BX = BY.

Join XY.

1°, let the vertex of each A be outside the
other A.

A B

N A .
Then AXY = AYX, . AX = AY,
A
and .. < BYX,
N
-, also, < BXY, * BX = BY,

N
ie. < AXY.
But this is an absurdity.
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Q 29, let the vertex Y of one A lie within the
other A,

Produce AX to P, and AY to Q.

A B

A A
Then PXY = QYX, .+ AX = AY,
A
and ... < BYX,
N\
-., also, < BXY, '» BX = BY,

/A
ie. < PXY.
Bat this is an absurdity.
.. the assumption that AX = AY, and BX = BY, simultaneously,
leads to an absurdity ; and .'. is not true:
i.e. there cannot be 2 such AS as are assumed.

Book i. Proposition 8.

A X Let ABC, DEF be A, such that
AB = DE, l
AC = DF, J
B c E - and BC = EF.

Suppose A ABC so applied to A DEF that
rt. B is on pt. E, and direction of BC on that of EF.
then pt. C will coincide with pt. F,
.+ BC == EF.
And if A, instead of falling on D, had a different position (as X) then on
the same side of the same base EF there would be 2 A% DEF, XEF,
such that ED = EX,
and FD = FX.
But this cannot be.
.*. A will coincide with D.
So that A ABC will coincide entirely with A DEF.
-. A ABC = A DEF.
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Book i. Proposition 17.

In any A ABC produce a side BC to X.
A Ay
Then ACX > ABC.
A N N A
.. ACX + ACB > ABC + ACB,
N A
B But ACX + ACB = art. A
N A
s ABC + ACB < art. A%

Book ii. Proposition 8.

Let st. line AB be divided in X.
Produce AB to Y, so that BY = BX.

A X B Y

Then s<i."on AX ¥ 4 rect. inder AB, BX,
= 5q. on AX + 4 sq. on BX + 4 rect. under BX, AX (by ii. 3)
= sq. on AX + sq. on XY + 2 rect. under AX, XY (- BX = BY)
= sq. on AY (by ii. 4).



EXERCISES ON BOOK ii

NOTE— These Exercises arve all Theorems to be proved ; and depend mainly
on the principles of Book ii.

1. The square on an altitude of an equilateral triangle is equal to three-
fourths the square on a side.

2. If any point within a rectangle is joined to its corners, the sum of the
squares on the joins to a pair of opposite corners is equal to the sum of the
squares on the other pair of joins. :

NOTE—/oin the point to the intersection of the diagomals, and use ii. Ad-
denda (11). '

3. If AXB, AYB are right-angled triangles on same side of same hypotenuse
AB; and AP, BQ are perpendiculars on XY produced, then

XP? + XQ? = YP! + YQ?

4. If the hypotenuse AB of a right-angled triangle ABC is trisected in X, Y;

then
CX? + CY? + XY? = § AB%.

NoOTE—Use ii. Addenda (11), and Cor. ii. 4 (a).

5. If ABC is an isosceles triangle, and XY is parallel to the base BC ; then,
if BY is joined,

Y? = CY? + BC.XY.

NoTE—From X, Y draw L ¢0 BC.

6. Any rectangle is equal to half the rectangle under the diagonals of the
squares on two of its adjacent sides.

7. If from any point perpendiculars are dropped on all the sides of any
rectilineal figure, the sum of the squares on the alternate segments are equal.

8. If ABC is any triangle, X a point in BC such that

AB? + BX? = AC? + CX?,
and M the mid point of AX; then BM = CM.

9. If AB is the diameter of a circle; X, Y points in AB equidistant from the
centre ;' P any point on the circumference ; then

PX? + PY? = AX? + AY? = BX? + BY?
Nore—Ce ii. Addernda (11), and ii. 10.
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10. If ABCD is a parallelogram such that BA = BD; then
BD? + 2BC? = AC?,

11. If a line is divided in medial section, the sum of the squares on the
whole line and on the lesser part is equal to three times the square on the
other part. .

12. If the square on an altitude of a triangle is equal to the rectangle under
the segments into which it divides the base, then the vertical angle is right.

13; Conversely to the last exercise—If a triangle is right-angled, then the
square on the altitude from the corner of the right angle is equal to the rect-
angle under the segments into which it divides the hypotenuse.

14. ABC is an isosceles triangle, whose vertex is A: if CX is the perpen-
dicular on AB; and XP the perpendicular on BC ; then

AB? = PA? + PX3

15. In any triangle ABC, if BP, CQ are perpendiculars on AC, AB (pro-

duced if necessary) then
BC? = AB.BQ + AC.CP.

16. If the extremities of any chord of a circle are joined to any point in the

diameter parallel to the chord; then the sum of the squares on the joins is

equal to the sum of the squares on the segments of the diameter.

17. If ABCD is a square, and X a point in AC such that AX = } AC; then

figure ABXD = 2 AX?

18. If BX, CY are squares on sides BA, CA of any triangle ABC, then

BC? + XY? = 2 (AB? + AC?).

NoTE—Draw AN L 20 XY ; and let NA meet BC in M : draw BP, CQ
L 70 NAM.

19. If squares are described on three sides of any triangle, and their corners
joined ; then the sum of the squares on the hexagon thus formed is equal to four
times the sum of the squares on the sides of the triangle.

NOTE— Use preceding Exercise.

20. The sum of the squares on the diagonals of any quadrilateral is equal to
twice the squares on the joins of the mid points of opposite sides.

NoOTE—Use i. Addenda (18), and Cor. ii. 4, (a).

21. If two sides of a quadrilateral are parallel, then the sum of the squares
on its diagonals is equal to the sum of the squares on its non-parallel sides
together with twice the rectangle under its parallel sides.
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32. If A, B, C, D are four collinear points; X the mid point of AB, Y the
mid point of CD, and M the mid point of XY ; and if P is azy point; then

PA? + PB? + PC? + PD? = MA? + MB? + MC? + MD? + 4PM3.

NoTE—Use ii. 9, and ii. Addenda (11). Or deduce from property of mean
centre on p. 113.

33. ABCD is any quadrilateral ; the mid points of its diagonals are joined,
and M is the mid point of this join; if P is any point; then

PA? + PB" + PC? + PD? = MA? + MB* + MC? + MD? + 4 PM2

24. In the figure of ii. 11; if DX meets BE in Y, and (when produced)
meets BF in Z; then DZ is perpendicular to BF and to AY. )

25. If X, Y, Z are the feet of any concurrent perpendiculars on the sides,
and D, E, F the mid points of the sides, respectively opposite corners A, B, C
of a triangle; then, of the rectangles under BC, XD, under CA, YE, and
under AB, ZF, the greatest is equal to the sum of the other two.

NoTE—Use ii. 13, and ii. Addenda (11).

26. If ABCD is a rectangle, X any point in BC, and Y any point in CD;
then ABCD = 2 A AXY + BX.DY.

27. If two opposite sides of a quadrilateral are bisected, then the sum of the
squares on the other sides together with the squares on the diagonals is equal to
the sum of the squares on the bisected sides together with four times the square
on the join of their mid points,

28. In any triangle ABC, X, Y, Z are the feet of the altitudes, and O the
orthocentre ; then

AB? + BC? + CA? = 2 (AX.AO + BY.BO + CZ.CO).

NOTE—Use ii. 12.

29. If a point is taken within a triangle at which its three sides subtend equal
angles; then the sum of the squares on the sides of the triangle is equal to twice
the sum of the squares on the joins of its corners to that point, together with the
sum of the rectangles under these joins taken two and two.

NOTE--Draw a L from one of the corners on one of the joins.

30. In any quadrilateral the sum of the squares on the four lines from the
middle of the join of the mid points of a pair of opposite sides to the corners of
the quadrilateral, is equal to the sum of the squares on the joins of the mid
points of opposite sides and the join of the mid points of the diagonals,
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Def. A straight line terminated at both ends by the circum-
ference of a circle is called a chord of the circle.

Def. Every chord through the centre is called a diameter.

Def. Any part of the circumference of a circle is called an are

of the circle.
Def. A proposition which is proved as directly subsidiary to
another proposition is called a lemma.

Proposition 1.
PROBLEM~—-70 find the centre of a given circle.

Lemma—Any pt. P equidistant from two given pts. A and B,
must lie in the L to their join through its mid pt.

P
For, joining P to M the mid pt. of
AB, in A PMA, PMB we have

PA = PB, \
PM common,
and AM = BM;
A A
AMP = BMP;
and .., as they are adjacent, each is right :
i.e. P liesinthe 1 to AB through M.
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Now take AB, AC two chds. of
the given ©.

Then the centre of the ©, being
equidistant from A and B, must (by
the ZLemma) lie in the L to AB
c through its mid pt. M.

Similarly it must lie in the L to AC through its mid pt. N.
But these .L8 will intersect in some pt. O,
they make acute A® with the join of M, N.

O is the centre of the ©.

Proposition 2.

THEOREM—If two points are taken on the circumference
of a circle, the chord whkick joins them must lie within the
circle. ’

Let A, B be the pts. ; O the centre
of the ©.

Take P any pt. in AB.

Join OA, OB, OP.

A A
Then OAB = OBA,
OA = OB.
A A
But APO > OBP,
A
also > OAP,
OA > OP:
i.e. the dist. of P from the centre < the radius.
». P lies within the O.
Similarly every other pt. in AB lies within the ©.
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Proposition 8.

THEOREM—If a diameter of a circle cuts a chord whick i
not a diameter, then if the chord is—

(a) bisected, it is also cut at right angles—

(B) cut at right angles, it is also bisected.

Let CD a diam. of a O, centre O
cut AB a chd,, not a diam., in M.
Join OA, OB.

(a) let M be mid pt. of AB.
Then in At OAM, OBM, we have
OA = OB,

OM common,
and AM = BM;
A®at M are equal ;
and .., being adjacent, are right:
i.e. CDis .L to AB.

(B) let A®at M be right.
Then in As OAM, OBM, we have
OA = OB,

A A

. also OAM = OBM,
A A
and OMA = OMB;
AM = BM:
i.e. AB is bisected in M.
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Proposition 4.

THEOREM—If two chords of a circle, whick are not both
diameters, cut one another, their point of iniersection cannot
be the middle point of both, though it may be the middic
point of either.

If one of the chds. is a diam.
its mid pt. is the centre.

.. it cannot be bisected by the
other which, not being a diam.,
does not go through the centre.

Let theée chds. AB, CD, neither of which is a diam., cut in P.
Join P with centre O.

Then, if OP bisects AB, OI/:\’B isart. A.

A
And, if OP bisects CD, OPD isart. A.
But these cannot happen simultaneously,

A A
for then OPB would equal OPD, a part of itself.
P is not the mid pt. of éo/% lines.

Note—The converse—If a point is the mid point of two chords of a circle,
these chords are diameters—can be proved in an exactly similar manner.

" Def. If one point is the centre of two or more circles, these
circles are called concentric.
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Proposition 5.

THEOREM—If two circles cut one another they are not
concentric.

A Let A be a pt. where two Os
cut.
Assume a common centre O.
Draw a line OBC cutting Os
in B, C.
Join OA.

Then OB = OA, being radii of same O.
And OC = OA, ” »
OC = OB, a part of itself.
the assumption of a common centre leads to an impossi-

bility; and .". is not true :
i.e. the Os are not concentric.

Def. Two circles are said to be in contaet (or to touch) at a
point, when they meet at that point without cutting each other.

Ax. If two circles touch, one
must be wholly within, or wholly
without the other.

Def. When two circles are in
contact, so that one is wholly
within the other, the one within
is said to have internal contact
with the one without.

Def. When two circles are in contact, so that one is wholly
without the other, the circles are said to have external contact.

Note—Any number of circles may have contact (either external or internal)
at the same point.
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Proposition 6.

! THEOREM—If one circle has internal contact with another,
the circles cannot be concentric.

A

Let A be a pt. where one O has
internal contact with another.

Assume a common centre O.

Draw a line OBC cutting the O¢
in B and C.

Join OA.

Then OB = OA, being radii of the same O.
And OC = OA, » »
+. OC = OB, a part of itself.

the assumption of a common centre has led to an impossi-
bility ; and .- is not true:

i. e. the O2 are not concentric.

Note (1)—The converses of Props. 5 and 6 will be found in the Addenda.

Note (3)—Props. 5 and 6 may be included in this single enunciation—JZf z%e
circumferences of two circles meet at a point, they cannot be concentric. The
case when the circles meet by external contact is axiomatically true.
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Proposition 7.

THEOREM—If from a point (not the centre) within a
circle, straight lines are drawn to the civcumference—

(@) the greatest is that whick goes through the centre ;

(B) the least is that which would, if it was produced, go
through the centre ;

(v) of any other two, that onc is the greater which subtends
the greater angle at the centre’;

(3) any one of the lines (excepting the greatest and least)
will have one other of the lines equal to it; but not more than
one. :

A Let P be a pt. within a O, whose
centre is O.
Of lines drawn to the circumference

o from P—
‘(a) let POA be the one through
P O, and PX any other.
Join OX.
Then PA = PO 4 OA,
= PO + OX,
and .. > PX.

(B) let BP be the one which, when
produced, goes through O.

Take PY any other; and join OY.

Then OY < PY + PO.

But PB + PO = OB = OY.

PB + PO < PY + PO.
PB < PY.
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. (y) let PX, PY be any two nof
A N
‘ C through O, such that POX > POY.

Then in As OXP, OYP, since
OoX = 0Y, \
OP is common,
A A
but POX > POY;
PX > PY.

(3) let PX be any line, not the
greatest or least.
Join OX; and draw another radius

A A
QY, so that POY = POX.
Join PY.

Then in As PXO, PYO, we have
OoX = 0Y,
OP common,
A A
and POX = POY;
«. PX = PY.
Nor can any third line (as PZ) be drawn so that
PZ = PX = PY.
For however it is drawn it will subtend a different angle at O
from PX and PY.
And .. (y) will be greater or less than PX and PY.

K
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Note—1t is customary in part (y) of Prop. 7, as well as in the corresponding
part of Prop. 8, to say—rhat whick is nearer the line through the centre is
greater than the one more remote—Ilt is difficult to see how, of three concurrent
lines, one can be properly said to be zearer to another than the third, without
some arbitrary definition of the sense in which the word  nzearer’ is used—as,
for example, that it is to mean—more nearly coincident with, To avoid this
difficulty the wording of the enunciation has been changed.

Proposition 8.

THEOREM—If from a point outside a circle straight lines
are drvawn lo meet its circumference—

(a) the greatest is that whick goes through the centre ;

(B) the least is that whkick would, if it was produced, go
through the centre ;

(v) of any two wkick are incident on the concavity of the
circumference, ov of any two whick are incident on the con-
vexity, that one is the grealer which subtends the greater
angle at the centre;

(8) any one of the lines, excepting the greatest ami least,
will have one other line equal to it, but not more than one.

P

Let P be a pt. outside a ©, whose
centre is O.

Of lines drawn to the circumference
0 from P—

(a) let POA be the one through O,
and PX any other. Join OX.




BOOK iii. 131

Then PA = PO + OA,
= PO + OX,
and .. > PX.

(8) let PB be that line which, when
produced, goes through O. .
Take PY any other line. join OY.

Then PO < PY + YO,
i.e. PB + BO < PY + YO,
or PB < PY.

() let PX, PY be any two lines,
not through O, either Jo#2 meeting
the convexity, or fofk meeting the
concavity; and such that

A A
POX > POY.

Then, in either case, since in As POX, POY, we have
OoX = 0V, ’
OP common,,
A A
but POX > POY;
PX > PY.

K 2
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(3) let PX be any line, not the
greatest or least.
Join OX, and draw another radius

A A
QY, so that POY = POX.
Join PY. .

Then in As POX, POY, we have
OoX = 0Y,
PO common,
- A A
" and POX = POY;
PX = PY.
Nor can any third line (as PZ) be drawn so that
PZ = PX = PY.
For however it is drawn, it will subtend a different A at O from

PX or PY.
- And ... by (y) will be greater or less than PX and PY.

Proposition 9.

THEOREM—If more than two equal lines can be dyawn
Jrom a point within a circle to the circumference, that point
is the centre.

For if one line is drawn from a point, within a circle but not the
centre, to the circumf., only one other can be drawn from the
point so that the two may be equal.

.. if three equal lines can be drawn from a point to circumf.
that point must be the centre.
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Proposition 10.

THEOREM—Two circles (wkich do not coincide) cannot
have more than two points in common.

A Let O be the centre of a O.

Then if A, B, C are three pts. on
its circumf., they are equidistant from

o.
C

~. if A, B, C could be on circumf. of another ©, O would be
the centre of this other O ;

and then two concentric O® would cut:
which cannot be.

<., unless the O# coincide, they cannot have three pts. in
common.

MNote—The arrangement of the enunciation and proof, given above, avoids
the awkwardness of endeavouring to draw the impossible figure of two concen-
tric circles, cutting in more than two points.
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Def. The straight line on which lie the centres of two or more
circles is called their line of centres.

Proposition 11.

THEOREM—If one circle has internal contact with another,
their line of centres must go through a point of contact.

Let O be centre of outer O, and C
centre of inner O.

Then if OC produced do not go
through a pt. of cont., it must cut the
inner © firs/, say in B; and the outer
O afterwards, say in A.

Let P be a pt. of cont. Join OP, CP.
ThenOC + CP > OP.
But OP = OA, being radii of same O.
OC + CP > OA,
a fortiorr > OB,
i.e. >0C + CB.
CP > CB.
But CP = CB, being radii of same O.

.. the assumption that OC does not go through a pt. of cont.
leads to a contradiction; and .. is not true :

i.e. OC goes through a pt. of cont.
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Proposition 12.

THEOREM— When two circles have external contact their
line of centres must go through a point of contact.

Let O and C be the
centres of two O which
have ext. cont.

Then if OC do not go through a pt. of cont. it must cut each O
in a different pt.: suppose it cuts O% in A and B respectively.

Join OP, CP.
Then OP + CP > OC,
& fortior: > OA + CB.
But OP = OA, being radii of same O.
And CP = CB, » ”
OP + CP = OA + CB.

the assumption that OC does not go through a pt. of cont.
leads to a contradiction ; and .. is not true:

i.e. OC goes through a pt. of cont.

Note (1)—1It is customary, in enunciating this proposition, and the preceding,
to say that the line of centres passes through ke point of contact of the circles:
this assumes iii. 13.

Note (3)—The converses of Props. 11 and 12 will be found in the Addenda.
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Proposition 13.

THEOREM—Two circles cannot touck in morve than one
point.

Let O, C be the centres of two ©O% in contact: then OC, the
line of centres, passes through a pt. of contact—say P.

Assume Q to be another pt. of cont.
Join OQ, CQ.
19, let the contact be nfernal.

Then OQ < OC + CQ.

But CQ = CP, being radii of same O.
0Q < OC + CP,
ie. < OP:

But OQ = OP, being radii of same O.

the assumption of a second pt. of infernal contact leads to a
contradiction; and .. is not true.

20, let the contact be
external.

ThenOC < OQ + CQ;
or OP + CP < 0Q + CQ.

But OP = OQ, being radii of same O.
And CP = CQ, ” »
~ OP + CP =0Q + CQ.
the assumption of a second pt. of exZernal contact leads to a
contradiction ; and .. is not true:
i.e. in neither case is there a second pt. of contact.
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Proposition 14.

THEOREM—/7 a civcle chords whick are—
(a) equal, must be equally distant from the centre ;
(B) equally distant from the centre, must be equal.

(o Lemma—TIf in 2 rt. angled A the
hypotenuses are equal, and another
pair of sides are equal, the remaining
pair of sides must be equal. This
is an immediate consequence of i. 47.

Let AB, CD be chds. of a © whose centre is O. Join OA, OC.
Draw OM, ON respectively L to AB, CD.
.+ M, N are mid. pts. of AB, CD.

(a) if AB = CD, so that AM = CN.
Then in As OMA, ONC, we have
OA = OC,
AM = CN,
and A®at M and N right;

.., by the Lemma, OM = ON:
i.e. AB, CD are equidistant from centre.
(8) if OM = ON.

Then, in As OMA, ONC, we have

OA = OC,
OM = ON,
and A®at M and N right;
.., by the Lemma, AM = CN.
AB = CD.
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Proposition 15.

THEOREM—/7 a circle, of all chords whick can be drawn—

(a) the diameter is the greatest;

(B) that one, of any two, which is nearer the centre, is
greater than the other ;

(v) the greater, of any two, is nearer the centve than the
other.

(o Let AB be any chd. of a O, not
a diam. Join OA, OB.
Then (a) the diam. of O, being
equal to the sum of two radi,
= OA + OB,
and .. > AB.

Next, let CD be any other chd.’
Draw OM, ON Lt on AB, CD respectively. Join OC.

Then sq. on AM + sq. on OM = sq. on OA,
= sq. on OC,

= sq. on CN + sq. on ON.

(8), if OM < ON, so that sq. on OM < sq. on ON,
sq. on AM > sq. on CN;
or AM > CN:

ie. AB > CD.
And (y), if AB > CD,

then AM > CN, so that sg. on AM > sq. on CN,
sq. on OM < sq. on ON.
OM < ON.
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Def. A straight line is said to touch, or be a tangent to a
circle, if the line meets the circle, but does not, when produced,
cut it.

Proposition 16.

THEOREM—/7 a circle—

(a) a straight line perpendicular to a diameter at one of
its extremities touches the civcle ;

(B) any other line through the same extremity cuts the
circle.

Let O be the centre of a
O; and AOT a diam.

(a) At the pt. T let TB,
1 to AT be drawn; and let
P be any other pt. in this L.

Join OP.

A A
Then, since OTP is right, OPT is acute.
OP > OT, the radius of the O.
P lies without the ©.

Similarly every other pt. in TB, except T, can be proved to lie
outside the O.
PT touches the O.

A
(8) through T draw any other line TC, making with AT, ATC

acute.
Draw ON L to TC.

Then ON < OT, a radius of the O.
N lies within the O.

) % TC cuts the ©.
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Note—The preceding Prop. gives the solution of the Problem— 70 draw a
tangent 1o a circle at a given point on its circumference.

Proposition 17.

PROBLEM—From a point outside a circle to draw a tangent
2o the civcle.

Let A be the given pt. out-
side a © whose centre is O.

Join OA, cutting the O
in B.

With centre O and radius
OA describe a O.

Draw a line through B L
to OA meeting the outer ©
in C and D.

Join OC, OD cutting the given O in P, Q, respectively.
Join AP, AQ.
Then in A OPA, OBC, we have
OP = OB,
OA = 0OC,

A
and O common;
A A
OPA=0BC =art. A.
AP is a tangent to given O.
Similarly AQ » »
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Proposition 18.

THEOREM—If a straight line towch a circle, the vadius
\ drawn to the point of contact must be perpendicular to the
touching line.

Let a O, whose centre is O, be
touched at T by a st. line.

Then if the L ON from O on that
tang. does not go through T, it must
cut the O in some pt. A. Join OT.

N

A A
Then .- ONT is right, OTN is acute.
. ON < OT, a radius.

But ON > OA, another radius.

.. the assumption that the .L from O to the tang. at T does not
go through T leads to a contradiction ; and .-. is not true.

i.e. OT is L to the tang. at T.

Def. The straight line perpendicular to a tangent, at its point of
contact with a circle, is called a normal to the circle.

Note—The preceding Prop. is therefore equivalent to—A/X radii of a circle
are normals to it. Similarly the following Prop. is equivalent to—AX normals
o a circle will go through its centre.
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Proposition 19.

THEOREM—If a straight, line is a tangent to a circle the
perpendicular to it at the point of contact must go through
the centye.

Let TA be a tang. at T to a O
B whose centre is O; and let TB be .L
o to TA.
Then OT is 2 radius drawn to T
the pt. of cont. of a tang.

OTis L to TA.
But BT is L to TA.
A A
ATB = ATO.
But of these A® one is a part of the other, unless TB go

through O.
TB must go through O.

Def. The figure which is formed by a chord of a circle, and
either of the arcs which it cuts off, is called a segment of the
circle. '

Def. An angle contained by ‘two straight lines drawn from a
point in the arc of a segment to the extremities of its chord is called
an angle in the segment.

Def. The angle formed by any two chords drawn from a point
on the circumference of a circle is called an angle at the cir-
cumference; and is said to s/and on the arc intercepted between
the chords.
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Proposition 20.

THEOREM—7%e angle at the centre of a circle is double
the angle at the circumference, standing on the same arc.

()] (2)

/o

A
Let BC be an arc of a O, on which stand BOC at centre O,
N
and BAC at circumf.

Join AO; and produce it to meet circumf. in D.
Then OAB = OBA, - OA = OB.
BSD (which = sum of these A*) = 2 OA\B.
Similarly CSD =2 CA\O.

A
In fig. (1), where O is within BAC, by adding corresponding
t sides of these equals, we get

A A A A
COD + BOD = 2 (CAO + BAO)
A N
| i.e. COB = 2 CAB.
A
'{ In fig. (2), where O is without BAC, by taking the difference of
the corresponding sides, we get
A A A A
COD ~BOD = 2 (CAO ~ BAO)
A A
i.,e. COB = 2 CAB.

The case when O is on BA or CA is involved in the earlier
part of the proof.
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Proposition 21.

THEOREM—7/e a:zg’les in the same segment of a circle
are equal.

A
Let O be the centre of a ©O; CD
the chd. of a segt. of it.
B Take A, B any two pts. in the
arc of the segt.; and join OC, OD.
D AC, AD, BC, BD.

1°, when O lies on the same side of DC that A and B do, so
that the segt. > seml o, '

DAC and D/B\C are each half DSC.
DAC = DBC.

20, when O is either on CD, or on the side of CD remote from
A and B, so that each segt. =, or < semi O.

Join AB; and let Q be the intersection of a pair of the lines
DB, CA, forming the As.

A A A A A
Then DAQ + ADQ = DQC = QBC + BCAQ.
But ASQ = BeQ, by the 1st case.
DAC = DBC.
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Def. When any number of points are on the same circle they
rre said to be concyeclic.

Def. When four points are concyclic, the quadrilateral formed
iy their joins is called a eyclic quadrilateral.

Proposition 22,

THEOREM—Te opposite angles of a cyclic quadrilateral
wre supplementary.

(4
D Let ABCD be a cyclic quad.
Join AC, BD.
A A
Then BAC-= BDC,in same segt.
. A A
A B And CAD=CBD, , ,

.., adding corresponding sides of these equals, we get
A A A
BAD = BDC + CBD.
A
Add BCD to each side, then

AN A
BAD + BCD = the three A% of A BCD,
i.e. = twort. AS.

A A
BAD and BCD are supplementary.
Similarly it can be proved that

A A
CDA and CBA are supplementary.

Note—The converses of Props. a1 and 22 will be found in the 4ddenda.
L .
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Def. A line which cuts a circle is called a secant.

Note—It has been already noticed that a secant will cut a circle in two, and
only two, points—see i. Addenda (3) Cor. (2).

Def. If the angle in a segment of one circle is equal to the
angle in a segment of another circle, the segments are called
similar.

Proposition 23.

THEOREM—Two similar segmenis of circles on the same
side of a common chord must coincide.

Assume that on the same side of
AB, as a common chd,, there are two
similar segts. not coinciding.
A B
Since the segts. cut in A, B, they cannot cut again.
one segt. lies wholly within the other.
Draw secant APQ to cut the inner segt in P, and the outer segt.
in Q; and join BP, BQ.
A A
Then APB = AQB, since segts. are similar.

A A
But ext. APB, of A BPQ, > int. opposite AQB.
the assumption has led to a contradiction;
and ... is not true:
i.e. if similar segts. are placed on the same side of AB they will
coincide.
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Proposition 24.

THEOREM—Similar segments of circles on equal chords
are identically equal.

A B C D

Let there be similar segts. on the equal chds. AB, CD.
Apply them to each other so that—
A may be on C, and direction of AB on that of CD.
Then B will coincide with D,
-~ AB = CD.
And the segts. will coincide,
they are similar, and on same side of a common chd.
i.e. segt. on AB = segt. on CD.

Proposition 25.

PROBLEM—Given an arc of a circle to draw the rest of
the circle.

Same solution as Prop. 1 of this Book.

Ax. If a circle is superposed on an equal circle, so as to coin-
cide with it wholly—

19, any arcs of the circles which coincide are equal:

29, if an arc falls on an equal arc, so that one pair of their ex-
tremities coincide, the other pair of their extremities will coincide.

39, if an arc falls on an arc, so that their pairs of extremities
coincide, the arcs coincide throughout.

L2
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Proposition 26.

THEOREM—/7% equal circles the arcs whick subtend equal
angles, whether at the centres or civrcumferences, are equal.

Let C and O be the centres of equal O%; and let PAQ, XBY

be arcs in them such that PeQ = X6Y.

It will be sufficient to prove the Prop. for the case of central As,
-~ if the A® at the circumfs. are equal, those at the centre, being
double of them, must also be equal.

Superpose one O on the other, so that
C may be on O,
CP on OX,
and arc PA along arc XB.
Then CQ will fall on OY,
pCQ = XOY.
Q will coincide with Y.
arcs PAQ, XBY coincide.

arc PAQ = arc XBY.
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Proposition 27.

THEOREM—177 equal circles the angles whick stand upon
cqual ares arve equal, whether they are at the centres or cir-
cumferences.

b L

Let C and O be the centres of equal O¢; and PAQ, XBY

equal arcs in them respectively, subtending PGQ and XSY.
It will be sufficient to prove the central A® equal, ' those at
the circumfs. are halves of them.
Superpose one @ on the other, so that

C may be on O,
CP on OX,
and arc PA along arc XB.
Then Q will coincide with Y,
arc PAQ = arc XBY.
CQ will coincide with OY.

A A
PCQ = XOY.

D¢f. When a chord of a circle divides the circumference un-
equally the greater arc is called the major are, and the lesser arc
is called the minor are. ‘
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Proposition 28.

THEOREM—If in equal circles equal chovds are dyawn so
as to divide each circumference unequally, then the two major
arcs are equal, and the two minor arcs are equal.

Since a major and its corresponding minor arc make up the
circumf,, it is sufficient to prove the Prop. for the minor arcs.

Let C and O be the centres of equal ©%; and PQ, XY equal
chds. in them respecty. which cut off the minor arcs PAQ, XBY.
Join CP, CQ, OX, OY.

Then in the As CPQ, OXY, we have

CP = OX, being radii of equal Os,
CQ = OY, ” ”»

L and PQ = XY;
A A

- PCQ = XOY. '

If .-. one O is superposed on the other, so that
C may be on O,
CP on OX,

and arc PAQ along arc XBY ;
then CQ will fall on OY;
and Q will coincide with Y,
arcs PAQ, XBY coincide.
arc PAQ = arc XBY.
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Proposition 29.

THEOREM—If in equal circles chords are drawn so as to
cut off equal arcs, these chords are equal.

Let C and O be the centres of equal Os, in which equal arcs
PAQ, XBY are respectively cut off by the chds. PQ, XY.
Superpose one O on the other, so that
C may be on O,
P on X,
and PAQ along XBY.
Then Q will coincide with Y,
arc PAQ = arc XBY.
PQ = XY.

Note—The four preceding Props. are not usually proved by sugerposition ;
nor are the proofs here given, by that method, shorter than the usual proofs.
The great advantage of using it here is that each Prop. is thus made independent
of the rest, so that it is not necessary to recollect the order of the propositions.
Itis to be noted that in Prop. 28, when it is proved (in line 9 from the end)

N A
that PCQ = XOY, the conclusion follows at once from Prop. 26. The rest is
put in to obviate the need to recollect the order.
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Note—1t is obvious that the four preceding Props. are true when, for !
words egual circles, is substituted, the same circle: the superposition can tt
be effected by turning the circle about its centre as a pivot; one of thea
must then be supposed to remain fixed while the other is brought over it.

Ax. Every diameter of a circle bisects its circumference.

Note—1It is an immediate inference from this axiom that—the arc of ¢
segment of a semi-circle is a mznor arc.

Proposition 30.

PROBLEM— 70 bisect a given arc of a circle.

A
Let PAQ be the given arc.
Join PQ; and bisect it in B.
P B Q

Draw BA, L to PQ, to meet the arc in A. Join PA, QA.
Then in At PBA, QBA, we have
PB = QB,
AB common,
N A
and PBA = QBA;
AP = AQ.
minor arc cut off by AP = minor arc cut off by AQ.
But the parts into which arc PAQ is divided at A are minor arc:
-» AB produced is a diam.
<. BA bisects given arc PAQ.
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Proposition 38l1.

THEOREM—/7 a circle the angle in a segment whick is—
(a) @ semicircle, is a right angle ;

(B) greater than a semicivcle, is less than a rzgkt angle ;
(v) less than a semicircle, is greater than a right angle.

P——.Q
Let O be the centre of a O ;
AOB a diam.; P any pt. in one
: B of the semi O formed by AB.
v Join PA, PB, PO.

(«) since OP = OA, being radii,
A A
OPA = OAP.
A A
POB (which = their sum) = 2 OPA.
A A
Similarly POA = 2 OPB.
A A A A
2 (OPA + OPB) = POB + POA,
= two rt. AS.
A
APBisart. A.
A A
(8) .. also PAB < APB,
i.e. < art A.
And it is the A in segt. PAB, which > semi O.
(y) take Q any pt. in minor arc PB; and join QP, QB.
A A
Then PAB + PQB = two rt. A3,
ABQP is a cyclic quad.
N
And it has been shown that PAB < rt. A.
A
PQB > art. A.
And it is the A in segt. PQB, which < semi ©.
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Proposition 32.

THEOREM—If a straight line touck a circle, and fro
point of contact a straight line is drawn dividing the



e
to

~vhose

ON L

a P,
AN.
ng that

N
N is right,
). on OA,

5q. on 2 radius.
sq. on a radius.

CP) PD’

e Addmda.
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Proposition 34.

PROBLEM—T70 cut off from a given circle a segment whick
shall contain an angle equal to a given angle.

A
A/ Let A be the given A;

and Papt.onthegiven©.
Draw PT to touch

:A the © at P; and PQa
chd. of the O, such that

N A
B T TPQ = A

The two positions of T, in the fig., correspond to the cases of

A
A acute; or obtuse.
Then ‘- PT touches O, and PQ cuts it,

A
QPT = A in altern. segt.
A
segt. cut off by PQ contains an A equal to A.

Note—The preceding Prop. might be enunnciated thus—From a given circle
1o cut off a segment similar to a given segment.



BOOK iii. 157

Propositiop 35.

THEOREM—If two chords of a circle cut eack other, the
rectangle contained by the segments of ome chord is equal to
the rectangle contained by the segments of the other.

Let chds. AB, CD of O, whose
centre is O, cut in P.

Join OA, OP; and draw ON L
to AB.

Since AB is divided equally in N, and unequally in P,
rect. under AP, PB. + sq. on PN = sq. on AN.
.., adding sq. on ON to each side, and recollecting that
sq. on PN + sq. on ON = sq. on OP, 0.
and sq. on AN + sq. on ON = sq. on OA, } « N s right,
we get
rect. under AP, PB + sq. on OP = sq. on OA,
i.e. = sq. on a radius.
Similarly rect. under CP, PD + sq. on OP = sq. on a radius.
rect. under AP, PB = rect. under CP, PD..

Note—The converse of Prop. 35 will be found in the 4ddenda.
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Proposition 36.

THEOREM—If from any point outside a circle, two straight
lines are drawn, one of which cuts the circle and the other
touches it; then the rectangle contained by the whole line
which culs the civcle, and the part of it without the circle, is
equal to the square on the line whick touches it.

Let P be a pt. outside a O,
whose centre is O; and from
P let PT be drawn to touch O
in T, and PAB to cut it in A
and B.

Join OA, OP, OT; and draw ON L to AB.
Since AB is bisected in N, and produced to P,
-~ rect. under PA, PB + sq. on AN = sq. on PN.
.., adding sq. on ON to each side, and recollecting that
sq. on AN + sq. on ON = sq. on OA, A
and sq.on PN + sq. on ON = sq. on OP,}“ N is right,
we get
rect. under PA, PB + sq. on OA = sq. on OP,
= sq. on PT + sq. on OT.
But sq. on OA = sq. on OT.
~. rect. under PA, PB = sq. on PT.
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Proposition 387.

THEOREM—If from a point outside a circle, two straight
lines are drawn, one to cut the circle, and the other to meet it;
and if the square on the line whick meets it, is equal to the
rectangle contained by the whole line which cuts the circle,
and the part of it without the civcle, then the line which meels
the cirvcle touches it.

P

T Let P be a pt. outside a O,
whose centre is O; and from P let
PAB be drawn to cut the O, and
B S PT to meet it, so that

rect. under PA, PB = sq. on PT.

Join PO; and, on the side of PO remote from PT, draw PS
to touch the ©. Join OT, OS.

Then since PS touches the O, and PAB cuts it,
sq. on PS = rect. under PA, PB,

= sq. on PT.
PS = PT.
And since in As POT, POS, we have
PT = PS,
OT = 08S,

and PO common;

A A
PTO = PSO = art. A.
PT touches the O.
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THE FOLLOWING ARE THE MOST OBVIOUS COROLLARIES TO THE PROPs.
IN BooK iii.

iii, 2. The whole circumference of a circle is concave to its centre.

iii. 3. (a) If a line cut any number of concentric circles, the intercepts made
on it by any two of the circles are equal.

(B) If a series of parallel chords are drawn in a circle, all their mid
points lie on the same diameter.

iii. 4. (a) If two chords of a circle bisect each other, they are diameters.

(8) If the corners of a parallelogram are concyclic, it is a rectangle.

iii, 5, and 6. Concentric unequal circumferences cannot meet either by inter-
section or contact.

iii. 1o, Only one circle can go through three points.

Note—Hence the name circumcentre for the point equidistant from three
points [see i. Addenda (20)]; for it is the centre of the only circle that goes
through them, or circumscribes (see Defs. of iv.) the triangle formed by their
joins.

iii. 11 and 12. The join of the centres of two touching circles is equal to the
sum or difference of their radii, according as the contact is external or internal.

iii. 13. The join of the centres of two circles, which do not meet, is greater
than the sum, or less than the difference of their radii, according as one circle
lies without or within the other ; and conversely.

iii. 16. (a) The line perpendicular to a diameter of a circle at its extremity,
is the only tangent to the circle at that extremity.

(B) If any number of circles touch at a common point, they have a
common tangent at that point.

iii. 17. The two tangents to a circle, from an external point are equal.

iii. 18. If a chord of a circle touch a lesser concentric circle, the point of
contact is the mid point of the chord.

iii. 26, (a) Parallel chords of a circle intercept equal arcs; and conversely.

(B) Two perpendicular diameters quadrisect the circumference.

(y) If the opposite angles of a cyclic quadrilateral are equal, the
diagonal 7ot passing through their vertices is a diameter.

(8) Each pair of non-adjacent arcs, intercepted between perpendicular
chords, together make a semi-circumference ; and conversely.

(e) If the diagonals of a trapezium are equal its comners are concyclic;
and conversely.
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iii. 32. If any number of circles touch at the same point, either externally
or internally, a line through their point of contact cuts off similar segments from
all of them.

iii. 36. (a) If through a point, within or without a circle, two lines are drawn
to meet the circumference, the rectangle under the segments of the one is equal
to the rectangle under the segments of the other.

(B) Tangents to two intersecting circles, from any point in the

production of their common chord, are equal.

THE FOLLOWING ARE SOME IMMEDIATE DEVELOPMENTS OF THE PROPS. IN
BOOK iii.—NOT SO OBVIOUS AS TO BE PROPERLY CALLED COROLLARIES.

THEOREM (1)—If two circles cut one another, their line of centres bisects
their common chord.

Let O, centres C and O, cut in A
and B.

Let CO meet chd. AB in N.

Join CA, CB, OA, OB.

Then in A® CAO, CBO, we have
CA = CB,
OA = OB,
and CO common;

N N
ACO = BCO.
Again in A% CAN, CBN, we have
CA = CB,
CN common,
N N
and ACN = BCN;

.. AN = BN.
M
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Note—The preceding Theorem virtually contains in itself the comverse of
iii. 11 and 12.

For, by iii. 10, two O* cannot cut in more than two points.

And, by the Theorem, if they cut in two points their line of centres cannot go
through either of the points.

if the line of centres go through a point in which two ©% meet, the O3 -

mast touch at that point.
But this is the converse of iii. 11 and 12.

THEOREM (2)— The shortest chord that can be drawn through a given point
within a circle is the one whick is perpendicular to the diameter through that
point. :

Let O be given pt. within O, centre C;
AOCB the diam. through O;

POQ the chd. .1 to AB;

XOY any other chd. through O;

CN 1L to XY.

Then C{‘I\O (being right) > CSN,
CO > CN,
XY > PQ:
i.e. PQ is the shortest chd. through O.

THEOREM (3)—(Converse of iii. 21.) If any number of triangles, on the
same base, and on the same side of it, have equal vertical angles, their vertices
all lie on the arc of a segment of a circle, of which the base is a chord.

Let ABP, ABQ be any two of As,on same
side of same base AB, such that
N N
APB = AQB.
Assume that © through A, B, P cuts AQ
(or AQ produced) in X ; and join BX.
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N A N
Then AQB = APB = AXB, in same segt.
N N
But AQB < AXB, when X is in AQ;

N
or > AXB, when X is in production of AQ,
the assumption that Q is not on arc APB has led to a contradiction ;

and .". is not true :
i.e. Qis on arc APB.

Similarly every two, and .". all, of the vertices are on arc APB.

THEOREM (4)—(Converse of iii. 22.) If the opposite angles of a quadyi-
lateral are supplementary the quadrilateral is cyclic.

Let ABCD be a quad. such that

N N
B + D = twort. A"
Assume that O through A, B, C cuts AD
(or AD produced) in X; and join CX.

N N
Then ADC = suppt. ABC,
N
= AXC, -.- ABCX is cyclic.
A N
But ADC < AXC, when X is in AD ;

or > A;(\C, when X is in production of AD.
the assumption that D is not concylic with A, B, C has led to a contra-
diction ; and .'. is not true :
i.e. ABCD is a cyclic quad.

THEOREM (5)—1In a cyclic quadrilateral the external angle, made by pro-
ducing a side at one of its corners, is equal to the angle of the quadrilateral at
the opposite corner ; and conversely.

M2
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Let ABCD be a cyclic quad.; and let AD be
produced to X.

A N
‘Then CDX = suppt. ADC,
N
c = ABC.

B

And the converse (which is the more useful part of the Theorem) follows
easily by an indirect proof, similar to that of Theorem (4).

THEOREM (6)—1If two chords of a circle intersect within it, the angle between
them is equal to the circumferential angle on an arc which is equal to the sum
of the arcs sublended by that angle between the chords which is under con-
sideration.

Let AOB, COD be chds. of a O, cutting at a
pt. O within it.
Draw chd. DX || to AB.
Then arc AD = arc BX;
:. arc CBX = arc AD + arc CB.

>
O

N N
And BOC = CDX,
= A onarc CBX.

THEOREM (7)—1If two produced chords of a circle intersect without it, the
angle between them is equal to the circumferential angle on an arc which is
equal to the difference of the arcs intercepted between the chords.

o—2E&
Let AB, CD be chds. of a O, which,
being produced, meet at pt. O, outside it.

D
\- Draw chd, DX || to AB.
C
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Then arc BD = arc AX;
arc CX = arc AC — arc BD.
N N
And AOC = CDX,
= A on arc CX.

Def. A sector of a circle is the plane figure contained by two radii and the
arc they intercept.

THEOREM (8)—1n equal circles (or the same circle) sectors on equal arcs are
uentically equal.

Let PCQ, XOY be
sectors on equal arcs PQ,
XY, of equal ©s, whose
centres are C, O.

Superpose sector PCQ on sector XOY, so that
C may be on O,
and CP in direction OX.
Then CQ will be in direction OY,
PeQ = X/O\Y.
Also P will coincide with X, and Q with Y,
arc PQ will coincide with arc XY.
sector PCQ = sector XOY.

THEOREM (9)—[Converse of iii. 35 and Cor. (a) t0 36.] If four points arc
Y0 situated that the rectangle under the distances of two of them from the intcr-
section of their joins (or joins produced) is equal to the rectangle under the
distances of the other two from the same intersection, then the four points are
concyclic.

Let A, B, C, D, be four points
such that joins AC, BD meet in
X; and joins BC, AD produced,
meet in Y.
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10, let XA . XC = XB . XD.
Assume that O through three of the pts, say C, D, A, meets BD in some
point Q (not B).
Then XB . XD = XA . XC = XQ. XD.
. XB = XQ.
But this is absurd, for one of them is a part of the other.
20,let YA.YD = YB.YC.
Assume that © through C, D, A meets CB in some pt. P (not B).
Then YB.YC = YA.YD = YP.YC.
. YB = YP.
And again this is absurd, for one of them is a part of the other.
‘. in both cases the assumption that A, B, C, D are not concyclic leads
to an absurdity ; and .. is not true :
i.e. A, B, C, D are concyclic.

SOME USEFUL THEOREMS, MAINLY DEPENDING ON BOOK iii.

THEOREM (10)—If eack side of a quadrilateral touches the same circle, the
sum of one pair of ils opposite sides is equal to the sum of the other pair ; and
conversely. '

D
Let sides AB, BC, CD, DA, of quad.
s C ABCD, touch a O at pts. P, Q, R, S, re-
spectively.
Q Then AP = AS.
they are tangents from same pt. to ©.
A B

Similarly BP = BQ, CQ = CR, &c.
AB + CD = AP + BP + CR + DR,
= AS + BQ + CQ + DS,
= AD + BC. -
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Next let AB + CD = AD + BC.

A N
Bisect DAB and CBA by AO, BO;
and from pt. O draw OP, OQ, OS
respectively L to AB, BC, DA.

Then in A® OAS, OAP, we have
N\ A\
OAS = OAP,
N A
OSA = OPA,
and OA common ;
OS = OP, and similarly = OQ.

. O with O as centre, and any one of them as radius, will go through
P,Q,S; and will touch AB, BC, DA at those pts., ' the Asat P, Q, S
are right.

Assume that this © does not touch CD.

Draw CX a tangent to the O, so that it meets AD (or AD produced) in X.

Then AB + CD = BC + AD.
and AB + CX = BC + AX.
CD~CX-AD~AX,i.e.-DX.
But CD ~ CX < DX.

< the assumption that © does not touch CD leads to a'contradiction; and
<. isnot true: )
i. e. sides of quad. all touch same ©.

Note—From preceding, and iii. 22, we see that if the opposite A% of a quad.
are supplementary, and also the sum of one pair of opposite sides = the sum
of the other pair, the quad has its comers on one circle, and its sides touch
another @ : or (see Defs. of iv) it circumscribes one O, and is inscribed in
another,
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THEOREM (11)— The bisectors of the angles formed by producing the opposite
sides of a cyclic quadrilateral to meet, are at right angles.

Let ABDC be a cyclic quad. ; X
the intersection of AB, CD, Y of
DB, CA.

Let XPOQ, YROS be the bisec-
tors of the A® at X and Y, where
P, Q, R, S are on O round quad.

Consider the arcs intercepted by
the lines.

By Theor. (7) AQ — BP = CQ — DP;
- AQ + DP = CQ + BP.
Similarly AR + DS = CS + BR.
Adding, we get, QAR + PDS = QCS + PBR.

each sum = semi-circumf.

N N

By Theor. (6) QOR = QOS:
i.e. POQ, ROS are L.

THEOREM (12)—(Brahmegupta’s) If the diagonals of a cyclic quadrilateral
are at right angles, the perpendicular from their intersection on any side, being
produced, bisects the opposite side.

(04
D‘ ‘K Let ABCD be a cyclic quad. such that
‘-

its diagonals AC, BD are L at O.
Let NO, L to AB, be produced to meet
CDin M.

N A N A A
Then COM = AON = compt. BON = OBN = OCM;
MC = MO, and similarly = MD.
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THEOREM (13)—T%e foot of an altitude of a triangle is half way between
" the orthocentre and the point in which that altitude produced meets the circum-
circle.

o
Let alt. aX of A a8y meet circum-O in K.
Join BK; and draw alt. 8Y cutting aX in
O, the orthocentre.
v
K

N\ N
Then KBy = Ka4, in same segt.
N\
= compt. ayX,
A
= YBy.
Also, in As 8XO, 8XK, we have
A N
BXO = BXK,;
and X common; )
OX = KX.

Cor. aX . X0 = aX . XK = 8X . Xq.

THEOREM (14)—The join of any corner of a triangle to its orthocentre is
double the distance of its circum-centre from the side opposite that corner.

o
B Let C be the circum-centre, O the ortho-
(o} centre of any A aBY.
Produce yC to meet circum-O in B; and

D y join Ba, BB.
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L
i A

\

ﬁY

Then . -y?B is right, and C mid pt. of By,
BBis| to CD,and = 2 CD.
Also BB, aO are both L to By, and .-. ||.
Similarly, Ba, 8O are both L to a¥, and .-. |.
' s BBOaisa [l
.. a0 =B =12CD.
And similarly for the other joins.

THEOREM (1§)— The bisectors of the internal and external vertical angles of
a triangle meet the circum-circle in points such that—
(a) they are the mid points of the arcs into which the base dwzde.r the circum-

Jference ;

(B) their join is the diameter which bisects the base ;
() the feet of the perpendiculars from them om the sides are distant from the
corners of the triangle by half the sum or half the difference of the sides.

Let © round A ABC meet the bisector
of BQC in X; and the bisector of B;\\Q,
ext. to B/RC, inY.

Join XY, XB, XC, YB, YC.

A A
Then since BAX = CAX,

.. arc BX = arc CX.

Again -, YBCA is a cyclic quad., and CA produced to Q.
N N N\ A
YBC = YAQ = YAB = YCB, in same segt.

arc YAC = arc YB.

(a) X, Y are mid pts. of arcs cut off by BC.

Let XY cut BC in D.

Then in As BDX, CDX, we have
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D/B\X = Dex, for they are on equal arcs,
DQB = DQC, for same reason,
and DX common ;
BD = CD;
and A®at D are right,
<. (B) XY is diam. bisecting BC. -
Lastly draw XN L to AB, and XM L to AC produced.
Then.* CABX is a cyclic quad., and AC produced to M,

N /\
ABX = XCM.
And in A% XBN, XCM, we have also
A\ A
XNB = XMC,
and XB = XC, being on equal arcs;
BN = CM.
Also in A% ANX, AMX, we have
N A
ANX = AMX,
N N
NAX = MAX,
and AX common ;
AN = AM.
Hence AB — AN = AM (or AN) — AC;
AN =} (AB + AC) = AM.
And AC + CM (or BN) = AB - BN;
BN = } (AB - AC) = CM.
Similarly if YP, YQ are corresponding .L# from Y, it could be proved that
BP = } (AB + AC) = CQ,
and AP = } (AB — AC) = AQ;
(y) is true.

Cor, (1).
A N N A A N\ Ay N
BXN (or CXM) = compt. XBN = ABY (or ACY) = AXY = } (ABC ~ ACB).
Cor. (2).
N N A A N A\ N N
YBD (or YCD) = compt. XBD = BXD (or CXD) = BAY = } (ABC + ACR®).
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THEOREM (16)—(Stmson’s) If from any point on the civcumference of the
circle through the three corners of a triangle, perpendiculars ave dropped on its
sides, produced when necessary, the feet of those perpendiculars are collinear ;
and conversely, if the feet of the perpendiculars from a point on the sides of a
triangle are collinear, the point is concyclic with the corners of the triangle.

B
Let P be any pt. on circumf. of © through
the corners of A ABC; PL, PM, PN Ls
on sides opposite A, B, C respectively.
c Join PA, PC, LM, MN.
N
P

N A
Then PMN = PAN, “: PMAN is cyclic,
N
= BCP, - PABC is cyclic,
A
= suppt. LMP, *- PCLM is cyclic.
L, M, N are collinear.
Next let L, M, N be collinear.
7AY A N A
Then CPL = CML = AMN = APN;
A\ A A
CPA = NPL = suppt. B;
C, P, A, B are concyclic.

Note—The line LMN, in preceding Theorem, is called 8imson's Lin~
(sometimes also the pedal line) for the triangle ABC, with respect to the
point P.

Cor. (1). If PL, PM, PN are obliques, making equal A* (measured the
same way round) with the sides; it may be shown similarly that L, M, N are
collinear,

Cor. (2). If four A® are formed by four intersecting lines, the intersection
of OS about any two of them, is such that the feet of _L % from it on the four
lines are collinear.
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THEOREM (17)—1f, in the preceding Theorem, PL, PM, PN, are produced
to meet the circumference in X, Y, Z, respectively, then AX, BY, CZ are
parallel to Simson’s Line.

A A
For AXP = ACP, in same segt.
/\
= PLM, .- PMLC is cyclic.
AX is || to LMN.
Simrly. for BY, CZ.

THEOREM (18)—Simson’s Line bisects the join of the orthocentre and that
point on the circumference of the civcum-circle with respect to which the Line
is comstructed.

Let P be any pt. on O round
e A aBvy; L, M, N the respective
feet of L from P on 87, ya,aB,

N so that LMN is Simson’s Line.
Let PL meet O again in V;

\ and produce LP to U, so that
) PU = VL; join U, aO, LO,
where O is the orthocentre ; from
C, the centre of the ©, draw CD
KD 3 L toBv; and join P to S, the pt.
of intersection of aO and LMN.

’

Then the L from C on PV bisects PV;
UL = 2CD = a0;
ULOais a [.
Also, aV being || to LMN, aVLS is a [].
aS = VL = PU;
<. aUPSisa[J;
PS is || to Ua, and .". also to LO;
PLOS is a [;
PO is bisected by LS.
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Cor. If aB+y is equilat. C and O coincide; and then Simson’s Line bisects
the radius of the circum-© drawn to P.

Def. If the feet of the altitudeg of a triangle are joined, the new triangle,
formed by the joins, is called the pedal triangle with respect to the original
triangle.

THEOREM (19)—Zack pair of sides of the pedal triangle makes equal angles
with that altitude of the original triangle which is concurrent with them.

A Let ABC be any A ; X, Y, Z the feet of
Y the altitudes drawn respectively from the
vertices A, B, C: then XYZ is the pedal
A of ABC.
~ Let O be the orthocentre.
B8 X hd

N A
Then X, B, Z, O are concyclic, *.» OZB and OXB are each right.

N\, N

OXZ = OBzZ.
N\ N

Similarly OXY = OCY.

A A N
But OBZ and OCY are each the compt. of BAC;

A N
OXZ = OXY.
And similarly for A®at Y and Z.

Cor. (1). O is the in-centre of & XYZ.

Cor. (2). The sides of A ABC are the external bisectors of A® of A XYZ.
A, B, C are the ex-centres of A XYZ,

Cor. (3). A XYZ is also the pedal A of the As OAB, OBC, OCA—the

respective ortho-centres of these A® being C, A, B.

Note—In order to find the circum-centre of the pedal triangle it will be
necessary to investigate some of the properties of its circum-circle. This circle
is one of the most (perhaps #4e most) curious and fertile of all the circles
associated with the original triangle. We shall find that the circum-centre of
the pedal triangle is half way between the orthocentre and circum-centre of
the original triangle.
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THEOREM (20)—(Poncelet’s) With respect to any triangle—

1°, the circle which circumscribes its pedal triangle, goes through the mid
points of the joins of its orthocentre and corners, and the mid points of its sides;

29, the centre of this civcle is collinear with its orthocentre, its civcum-centre,
and its centroid ; and bisects the join of the two former ;

39, the radius of this circle is half the radius of its circum-circle.

LetaBybea A ; X, Y, Z the feet of its altitudes drawn from a, B, 7 respec-
tively ; O its orthocentre.
Let © round XYZ cut aO, B 0,701 m P, Q, R respectively : join ZQ.

Since OZﬂ and OXB are each right ;
OB is diam. of © through Z and X.

A A\ A
Also 2Q0 = ZXY = 2 ZXO;
Q is centre of © whose diam. is OB ;
Q is mid pt. of OB ;
Similarly R is mid pt. of Oy; and P is mid pt. of Oa.
Next let © round XYZ cut sides again, opposite a, B, ¥ respectively, in
D, E, F: join QD.
N A
Then QDB = QYX, since QDXY is cyclic,
= O{V\X, since OY ¥ X cyclic ;
QD is || to O¥.
And since Qis mid pt. of OB,
D is mid pt. of By;
Similarly E is mid pt. of ya; and F is mid pt. of a8
i.e. 19, the nine pts. X, Y, Z, P, Q, R, D, E, F are concylic.
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Again, the circum-centre C is the intersection of L at D, E to By, ¥
the centre of the © round XYZ is the intersection of the L bisectors of if
DX, EY.

But each of these last lines bisects CO [i. Addenda (15)]; . . their
meeting must be N, the mid pt. of CO.

[+
A ; Next let G be the centroid of aBY,
\ Ga = 2GD.
¢ G 0\ Join CG; and produce it to meet a:

B —x—r

Take A the mid pt. of Ga, and B the mid pt. of O'a ; and join AE
Then AB is || to GO’, and = § GO’;
in As DCG, aBA, we have
DG = Aag,
N N
CDG := altern. AaB,
A N N\
and CGD = AGO’ = ¢AB;
CG = AB = ] GO".
Similarly if CG meet BY in O”, we should get
CG = § GO".
But C and G are fixed pts;
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O’ and O” must be the same pt.
i.e. must be O, the orthocentre ;
i.e. 2°, O, N, G, C are collinear;
Lastly : since N is mid pt. of CO,
and Q is mid pt. of 8O;
NQ = } C8:
i.e. 3° rad. O round XYZ = } rad. circum. O.

Cor. CG = 2 GN.

Def., This circle is called the Nine-point circle.

Note (1)—We shall use the contraction N. P, for the words nine-point.

Note (2)—1t is easily seen that—the N.P. © oanB-y is also the N.P. ©
Of each of the A®* OaB, OB+, Oya.

Note (3)—A simple way of treating the N.P. O is to start with the nine
Ppoints D, E, F, X,Y,Z,P,Q,R. Then it is easily seen that PFDR, PQDE,
are rectangles, having a common diagonal PD ; and thence, immediately, that
the nine points are on the @ ; that the intersection of the three diagonals is its
centre ; and that this centre is the mid point of CO.

Def. If any and every point on a line, or group of lines (straight or curved)
and no other point, satisfies an assigned condition, that line, or group of lines,
is called the Locus of the point satisfying that condition.*

FROM GEOMETRICAL RESULTS ALREADY GIVEN, THE LOCUS OF A POINT
UNDER ANY ONE OF THE FOLLOWING CONDITIONS IS AT ONCE OBVIOUS.

(a) Condition— distance from a fixed point constant.

Locus—the circle whose centre is the fixed point, and radius the constant
distance.

(8) Condition— distance from a fixed straight line constant.

Locus—two straight lines parallel to the fixed line, on opposite sides of
i, and at distances from it, each of which is equal to the constant distance.

(y) Condition—distance from a fixed circle constant.

Locus— two circles concentric with fixed circle, and whose radii are.the
fum and difference of the constant distance and radius of fixed circle : unless
the constant distance is greater than the fixed radius, when the second part of
the Locus has no existence.

. Syﬂat})‘us, p-19.
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(8) Condition—equidistance from two fixed points.

Locus—the straight line bisecting, and perpendicular to, the join of the
fixed points.

(€) Condition—equidistance from two fixed lines.

Locus—(1) when lines are parallel, the line lying halfway between the
fixed lines ;

(2) when lines intersect, the two bisectors of the angles between
the fixed lines.
(§) Condition—point to be the vertex of a triangle of constant vertical angle,
and on one side of a fixed base.

Locus—the arc of the segment of a circle, whose chord is the fixed base,
and whose angle is equal to the constant vertical angle.

(n) Condition—sum of squares of its distances from two fixed points constant.

Locus—a circle whose centre is the mid point of the join of the two
fixed points.

(0) Condition—difference of squares of its distanges from two fixed points
constant.

Locus—the straight line perpendicular to the join of the fixed points,
through that point in the join, dividing it into parts, the difference of the squares
on which is equal to the constant difference.

(t) Condition—that point is the vertex of a triangle on one side of a fixed
base, and of constant area.

Locus—the line parallel to the fixed base, at a distance from it such that
the rectangle under this distance and the fixed base is double of the constant area.

(<) Condition —the sum of the squares on its distances from the three corners
of a fixed triangle constant.

Locus—a circle whose centre is the centroid of .the triangle.

(A) Condition—the sum of the squares on its distances from any number of
fixed points constant.

Locus—a circle whose centre is the mean centre of the points, for a
system of equal multiples.

(#) Condition—with the notation of Zheorem (20) p. 113, = (a . AP?)
constant.

Locus—P is on a circle, centre M.

(v) Condition—the feet of perpendiculars from point on the sides of a
triangle collinear.

Locus—the circum-circle of the triangle.

(¢) Condition—the orthocentre and circum-circle of a triangle fixed.

Locus—the mid points of the sides, and the corners of its pedal triangle,
have a common Locus, viz. the N. P. circle.

RS ST
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7o find the Locus of the common vertex of any number of triangles, each
of whose bases is fixed in magnitude and position, and the sum of whose areas

is constant.

C 1°, take the case of 2 A® PAB,
PCD, on fixed bases AB, CD, and
E such that A PAB + A PCD is
D, constant.
Let AB, CD produced meet in O.
v In OA take X, and in OC take,
so-that OX = AB, OY = CD.

Join PX, PY, PO, XY.

OB 1A

Then A PXO + A PYO = A PAB + A PCD:
i.e. A PXY + A XOY is const.
But A XOY is fixed in every respect.
A PXY is of const. area, and on a fixed base XY.
Locus of P is a || to XY.

When P is on that part of the line ousside A/O\C, it is necessary to consider
onne of the A# subtractive, and the other addztive ; so that their sum is what has
been defined (p. 110) as an algebraic sum.

If AB, CD are |, the preceding investigation will need modification ; and it
will be found that the Locus may be indeferminate (cf. p. 297) or even smpossible.

2°, take a third A PEF, and suppose that

A PAB + A PCD + A PEF is const.
Then, by what precedes, we have
A PXY + A PEF const.
But this is the case previously investigated.
And the process may clearly be extended to any number of A®.
Hence the required Locus is a st. line.

Cor. If any number of lines are given in position, the Locus of a point, the
sam of whose distances from the lines is constant, reduces at once to the pre-
ceding, by taking equal segments on the lines, joining their extremities to the
point, and using i. Addenda (29).

N2



EXERCISES ON BOOK iii.

NOTE—Of the following Exercises, 1-106 are Theorems to be proved ; and
depend mainly on the principles of Book iii: the remainder are Examples of
Loci.

1. If two circles touch (externally or internally) any line through their point
of contact cuts off similar segments.

2. If two equal circles cut, and through one of the points of section any line
is drawn, terminated by the circles, the joins of its extremities with the other

point of section are equal.

3. If on a side AB, of a triangle ABC, as diameter, a circle is described, and
a diameter XY is drawn parallel to BC; then XB, YB bisect the angle ABC
internally and externally.

4. If the radius of one circle is the diameter of another, then any line drawn
from the point of contact of the circles to meet the outer, is bisected by the
inner.

5. If a parallelogram circumscribes a circle its four sides must be equal ; and
if a parallelogram is inscribed in a circle its four angles must be right.

NoTE—See Defs. of Bosk iv.

6. When two circles intersect, their common chord bisects their common
tangent.

7. If any two chords of a circle cut at right angles, the sum of the squares on
their segments is equal to the square on the diameter.

NOTE—Drop L8 from the centre on the chds., and use ii. 9.

8. If X, Y are the feet of perpendiculars from A, B on opposite sides of
triangle ABC, and BZ is perpendicular to XY (produced if necessary), then
angle ABY is equal to angle XBZ.

9. P is a point on the circumference of a circle (centre C), the tangent at P
meets a radius CA in T, and PN is perpendicular to CT ; then AP bisects the
angle TPN. .

10. If two circles touch externally, and a line is drawn cutting both, and the
four points of section joined to the point of contact; then the angle between the
extreme joins is supplementary to the angle between the intermediate joins.

11. If two circles intersect, and through a point of section two lines are
drawn cutting the circles again in four points, and the pair of points on each
circle are joined ; then the joins produced cut at a constant angle.
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13. If from the point of contact of two equal circles a chord is drawn in each
circle, so that they are at right angles, then the join of their other extremities
is equal and parallel to the join of the centres.

13. The biseciors of an angle, and of the opposite external angle of a cyclic
quadrilateral, meet on the circumference of its circum-circle,

14. Two equal circles cut in A, B ; if BP, BQ are chords of the circles, each
of which is equal to BA ; then PA, QA touch the circles.

15. If a chord of a circle is bisected by another chord, and this again by
another, and so on; the points of bisection continually get nearer the centre.

16. If any number of triangles on the same base, and on the same side of it,
have equal vertical angles, the bisectors of these angles are concurrent.

17. If two circles cut, and from any point P on one of them, lines are drawn
through the points of section to meet the other in X, Y; then XY is parallel to
the tangent at P.

18. If two circles cut, and through any point in their common chord, or its
production, two chords are drawn, one in each circle; then the extremities of
these chords are concyclic.

19. If from a point P on a circle, any chord PA, and the tangent PT are
drawn; and if TXY is any parallel to PA which meets the circle in X, Y; then
triangles PTX, AXP are equiangular to each other.

20. If AB, CD are parallel diameters of two circles, and AC cuts the circles
again in P, Q; then the tangents at P, Q are parallel.

21. If the mid points of adjacent sides of a cyclic quadrilateral are joined,
the circles round the four triangles thus formed are equal, and touch the circle
round the quadrilateral,

NOTE—If \®in segts. on equal chds. are equal, the segts are parts of equal ©°.

32, If the diagonals of a quadrilateral are at right angles, then the feet of
perpendiculars from the intersection of the diagonals on the sides are concyclic.

23. If AB is a fixed chord of a circle, and PQ any other chord bisected by
AB, then the tangents at P, Q meet on a fixed circle.

NOTE—/¢ will be found that the tangents mect on the © through A, B and
the centre of the original O.

24. The three circles which go through two corners of a triangle and its
“orthocentre, are each equal to the circum-circle.

NOTE—See note on Exercise 31.

25. If from the extremities of a diameter of a circle perpendiculars are
dropped on any chord, their feet are equidistant from the centre.

NoTE—Drop 8 L from the centre on the chd. and use i, Addenda (3%).
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26. If two circles have external contact at O ; and AOB, COD are any lines
through O—A, C being on one circumference, and B, D on the other—then
AC, BD are parallel.

27. If a cyclic quadrilateral has its diagonals at right angles, the sum of the
squares on a pair of opposite sides is equal to the square on the diameter of the
circle round it.

NOTE—See Excrcise 7. ,

28. If AB, CD are chords of a circle (centre O) cutting at right angles in X—then

AB? + CD* + 40X* = 80A*. |

NoTE— Use ii. Addenda (12) and preceding Exercise.

29. In a cyclic quadrilateral whose diagonals are at right angles, the distance
of the centre of the circum-circle from a side is half the opposite side.

NoTE— Use Brahmegupta's Theorem, p. 168.

30. In a cyclic quadrilateral whose diagonals are at right angles, the feet of
the perpendiculars from the intersection of the diagonals on the sides, and the
mid points of the sides, are eight concyclic points. )

31. Two circles cut at A, B; a chord CAD is drawn terminated by the
circles ; CE, DE are tangents at C, D: then B, C, D, E are concyclic.

32. AB, AC are chords of a circle; X, Y the respective mid points of those
arcs they cut off which lie outside angle BAC: then XY cuts off equal parts
from AB, AC.

33. Any number of circles touch at a common point, and any line is drawn

from that point to cut the circles; in each circle the radius is drawn to the
point (not the common point) where it is cut by the line: then these radii are
all parallel. '

34. The perpendiculars at the mid points of the sides of a cyclic quadri-
lateral are concurrent.

35. If two circles intersect, any two parallels through the points of section,
terminated by the circles, are equal. )

36. X, Y are the feet of the perpendiculars from A, B on opposite sides of
triangle ABC ; M is the mid point of AB : then angle MXY and angle MYX
arc each equal to angle C.

NoTe—Drop L from M on XY.

37. If the tangents from one point to any number of intersecting circles are
equal, all the common chords of the circles are concurrent in that point.

38. In any triangle ABC, if X, Y, Z are the feet of the altitudes from A, B,C
respectively ; and O is the orthocentre ; then

AO .OX = BO .QY = CO .0z.
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39. From any point P, in a diameter AB of a circle, PQ, PR are drawn, on

the same side of AB, so that A/F\’Q = BeR; then triangles APQ, RPB are
equiangular to each other.

40. A variable circle goes through the comer O of a fixed angle, and meets
its containing lines in X, Y; if OX + OY is coustant, then the circle goes
through a fixed point.

NOTE—See iii, Addenda (15) (7).

4I. Two circles cut in A, B; if from any point P on the circumference of
one (whose centre is O) PAX, PBY are drawn to meet the other in X, Y ; then
XY, PO are at right angles.

42. AB is the diameter of a semi-circle; P, Q are any points on its arc; if
AP, BQ meet in X, and AQ, BP in Y; then—

1°, XY is perpendicular to AB;

29, the tangents at P, Q meet in the mid point of XY.

NOTE—See i. Addenda (25).

43. If the common tangents of two intersecting circles are met by their com-
mon chord produced in X, Y; then

XY? = (a common targ.)? + (common chd.)?

NoTE—Apply Cor. ii. 4 (a) to XY?2

44. If two circles are in contact, and there is drawn any pair of parallel
diameters, and the ends of these are joined —transversely when contact is ex-

. ternal, but directly when internal—then the joins go through the point of contact.
| 45. Two circles (centres A, B) cut in C; through C are drawn PCX, QCY
i equally inclined to the line of centres, so that P, Q are on circumference, centre
} A and X, Y on circumference centre B ; then PX = QY.

" NoTE—ZFrom A, Bdrop L3on PX, QY ; and from B drop L# on 13 Sfrom A.

46. From any point on the circumference of one of two intersecting circles
lines are drawn through both the common points of the circles; if the points
in which these lines meet the other circumference are joined, the join is in-
variable in length.

47. AX, AY are two fixed lines of indefinite length; AB a terminated line
bisecting angle XAY ; if any circle is drawn to have AB a chord, and X, Y are
the points where it cuts the other two lines, then AX + AY is constant.

Note—Drop BM, BN L* on AX, AY ; and prove that XM = YN,

48. If two circles have internal contact, and a chord of the outer is a tangent
to the lesser, then the segments of the chord, made by its point of contact,
subtend equal angles at the point of contact of the circles.
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49. The perpendicular from the mid point of a side of a triangle on the
opposite side of its pedal triangle, bisects that side.

NOTE—Se¢e iii. Addenda (19). )

50. If an angle is of fixed magnitude, and each of the lines which form it
passes through a fixed point, then its bisector will go through one of two fixed
points.

51. The exterior common tangents to two circles, having external contact,
also touch the circle on the join of their centres as diameter.

52. If three circles (centres A, B, C) are so placed that the two with centtes
A, B, have internal contact at P; the two with centres A, C have exterhal
contact at Q ; and the two with centres B, C, have internal contact at R; then
the angle ACB is twice the angle QPR.

NOTE—Produce PQ to meet BR.

53. If two equal circles are so placed that the tangent to either from the

centre of the other is equal to a diameter; then they have a common tangent,
which is equal to a radius.
" 54. If one circle touch another internally, and a tangent is drawn at any
point of the inner; then the part of the outer cut off by this tangent is bisected
by the production of the join of the point of contact of the circles to the point
of contact of the tangent.

55. If a circle circumscribes a triangle, and each of its segments, outside the
triangle, is supposed turned about the side which is its chord, as a hinge, until
it is again in the plane of the paper; then these three segments will go through
one point.

56. ACB is the diameter of a circle (centre C) and PCQ is any sector on a
constant arc PQ; if AP, BQ cut in O, then the angle O is constant.

NoTE— Use iii. Addenda (6), (7). .

57. If four circles are described, all outside, or all inside, any quadrilateral,
so that each of them touches three of its sides (produced when necessary), then
their centres are concyclic.

NOTE—T%e centre of eack civcle is the intersection of the bisectors of the
angles formed by the three sides it touckes.

58. If from a fixed point, outside a fixed circle, any two lines APQ, ARS
are drawn, making equal angles with the diameter through A, and cutting the
circle in P, Q and R, S respectively; then if O is the intersection of PS, QR,
O is a fixed point.

NOTE— Zake centre C, and show that P, O, C, Q are concyclic.

59. AB is a fixed chord of a circle, and O a fixed point in AB ; XOY is any
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other chord ; if C, the mid point of AB, is joined to M, the mid point of XY,
then the angle CMX is constant.

NOTE—TZake two positions of XY, and join the centre of the © to C, and the
two positions of M : this will give two cyclic guads.

60. On same side of AB as chord two segments are described, and P, Q are
any points on their arcs; if the bisectors of the angles PAQ, PBQ meet in R,
twice the angle at R is equal to the sum of the angles at P and Q.

61. If two triangles are equiangular to each other; then, of the sides con-
taining two equal angles, the rectangle under a non-corresponding pair {cf.
P- 193) is equal to the rectangle under the other pair.

NOTE—Place the A® so that the equal N\® are vertically opposite, and the
non-corresponding sides in the same line; and use iii. 35.

62. If on the sides of a triangle as chords circles are described, such that the
snm of the angles in their segments remote from the triangle is equal to two
right angles, these circles will have one point in common.

63. If from a fixed point P, outside a circle, centre C, tangents PA, PB are
drawn, and a third tangent at a variable point T, on the lesser arc AB,
meeting PA, PB in Q, R ; then for all positions of T—

19, the I;erimeter of A PQR is constant: 2°, the angle QCR is constant.

64. If in any triangle ABC, AX is drawn to meet BC in X, so that the
angle BAX is equal to the angle C; then BA* = BC . BX.

65. If in the diameter of a circle, and its production, points P, Q are taken,
on opposite sides of the centre C, so that CP. CQ = (radius)?; then any
circle through P, Q bisects the circumference of the original circle.

66. Three circles have external contact at P, Q, R; if PQ, PR are produced
to meet the circle through Q, R in X, Y, then XY is a diameter of that circle,
and is parallel to the line of centres of the other two circles.

67. If circles are described on the sides of a quadrilateral as diameters, the com-
mon chord of any adjacent two is parallel to the common chord of the other two.

68. If fixed parallel tangents to a circle are cut by a variable tangent, the
part of the variable tangent intercepted between the fixed tangents subtends a
right angle at the centre.

69. Two perpendicular radii of a circle, when produced, are cut by a tangent;
if tangents are drawn from the points of section they are parallel.

7o. If from any point on the circumference of a circle, a perpendicular is
drawn to a fixed diameter, and the angle between this perpendicular and the
radius to the point bisected; then the bisector will always go through one of
two fixed points.
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71. The radius of one circle is the diameter of another; if through the centre
of the lesser a chord of the larger is drawn perpendicular to the common
diameter ; and through a point where this chord cuts the lesser, another chord
of the larger is drawn perpendicular to the first chord; then the segments of
the chords are equal, each to each.

73. If the sides of a quadrilateral touch a circle, so that an opposite pair are
parallel; then the line through the centre, parallel to the parallel pair, and
terminated by the other pair, is one-fourth the perimeter of the quadrilateral.

NoTE—See i. Addenda (13), (14), and iii. Addenda (10).

73. From a fixed point T, outside a circle, tangents TA, TB are drawn; if
any point P is taken in the greater arc AB, then the sum of the angles TAP,
TBP is constant. .

74. If any number of circles touch a fixed line at a fixed point, the tangents at
the points where they are cut by a parallel to the fixed line all touch a fixed circle.

NOTE—7ake one ©; and prove that L from the fixed pt. on the fixed |,
and on the tangs. at the pts. where it cuts the O, are equal.

75. If a triangle is turned about one corner (considered as vertex) until one
of the sides meeting at the vertex is in the same line as the other previously
was ; then the join of the vertex with the intersection of the two positions of
the base produced, bisects the angle between these positions.

NoTe—If & ABC is turned into position AB'C, so that BAC' is a st. linc ;
and if BC, C'B’ meet in X ; then ACXC' is a cyclic quad.

76. From each of the three points of contact of the in-circle perpendiculars
are dropped on the joins of the other two: if the feet of these perpendiculars
are joined, the latter joins are parallel to the sides of the original triangle.

77. If two finite lines AB, CD (when produced) meet in O, then the point at
which AB, CD subtend equal angles is the intersection of the circles through
A,O,D and C, O, B.

78. A variable circle goes through two fixed points A, B, and cuts a fixed
circle in variable points P, Q: if AP, AQ meet the fixed circle again in p, q
respectively, then pq goes through a fixed point.

NOTE—Let pqQ meet AB 702 O : join PQ. Then it can be shown that O is
concyclic with B, Q, 4 ; and .. AB . AO const.

79. The circumferences which have for chords the sides of a cyclic quadri-
lateral, intersect again in four concyclic points.

8o. If each corner of one quadrilateral is on a side of another, so that each
side of the inner is cqually inclined to the pair of conterminous sides of the
outer which it meets; then the inner is eyclic.
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81. On the sides of a triangle segments of circles are described Zrnternally,
and such that the angle in each segment is the supplement of that angle of the
triangle opposite the side which is its chord : then the circles—

1°, pass through one point ; 2°, are equal ; 3° have their chords of intersec-
tion respectively perpendictlar to the opposite sides of the triangle.

83. The difference of the squares on the tangents from any point to two
concentric circles, is equal to the square on the tangent from any point on the
outer circle to the inner.

83. If a quadrilateral, in a fixed circle, has one diagonal AB fixed in length
and position, and the other diagonal fixed in length only; then the intersections
of its pairs of opposite sides lie on fixed circles through A, B.

84. The centre C of one circle is on the circumference of another circle, and
the circles cut in A, B; from a point P, on the circumference through C,
PXB, PAY are drawn to meet the other in X, Y ; then AX is parallel to BY.

NoTE—/oin XY ; and notice that tangs. at A, B to © (centre C) meet on
the other O.

85. A point P is taken in a line AB, and a point Q in a line AC; if PM,
MX are perpendiculars on AC, AB, and QN, NY on AB, AC, then PQ, XY
are parallel. ’

86. A finite line is divided into two parts, and semi-circles are described on
the line, and on each of its parts, all on the same side of the line; from the
point common to the two inner semi-circles a perpendicular is drawn to the

line, and the point where this meets the outer is joined to the extremities of the
line, cutting the two inner; then, if the points of section are joined, the join is
a common tangent.

87. If all the sides of a cyclic quadrilateral touch a circle, the joins of the
opposite points of contact are at right angles.

88. If a line makes equal angles with one pair of opposite sides of a cyclic
quadrilateral, it makes equal angles with the other pair,

NoOTF—Use iii. Addenda (6) (7).

89. AB is the diameter of a circle; AP, AQ are any chords meeting the
tangent at B in X, Y, respectively : then angle XPY is equal to angle XQY.

Note—/oin PQ, PB.

go. In a cyclic polygon, of an even number of sides, the sum of its alternate
angles and of two right angles, is equal to as many right angles as there arc
sides.

NOTE—/oin a corner of pol. with the 3rd corner from it on each side, and
with each alternate corner afterwards ; and use iii. 22.
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91. If any point in the diameter of a circle is joined to the extremities of any
parallel chord, then the sum of the squares on the joins is equal to the sum of
the squares on the segments of the diameter.

92. If two circles cut in A, B ; and any points P, Q are taken on one circle,
from which PAX, PX’'B and QBY, QY’A are drawn, meeting the other circle
in X, X" and Y, Y’ respectively; then XY is parallel to X’ Y.

NoTeE—/oin XX, XY', YY', YX'; and use iii. Addenda (5) and iii. 21.

93. P is any point within a circle; AB the chord bisected in P; TQ, TR
tangents whose chord of contact goes through P; then, if AB cuts the tangents
in X, Y, PX is equal to PY.

NoTE—ZIf Q, R are the pts. of contact, QR is the chord of contact.

94. Ais a fixed point on the circumference of a circle, BC any chord; if
BP, CP make angles with AB, AC respectively equal to those which BC
makes with them, then P lies on the diameter through A.

95. If OFAE is a parallelogram, and BOC any line cutting AF, AE in

B, C, then
BA .AF + CA. AE = AO? + BO.OC.

NoTE—Let AO meet © round ABC in D: draw FX, EY, meeting AO in

X, Y, so that AI/=\X = Al/D\B. and A/E\Y = ASC: then prove AX = OY ; and
wuse iii. Addenda (5) and iii. 36. Cor. (a).

96. If A, B, C, D and a, b, ¢, d are two sets of four points, so placed that
any two of the first set together with the corresponding two of the second set
are concyclic ; then if the first set are concyclic, so are the second set.

97. Any four lines are drawn from a point O, so that the two outside angles
formed are equal, and are cut by two lines AXBC, aXbe (corresponding letters
lying on the same line) then, if angles OAX, OXb are each right, so is OBe.

98. A circle A is inscribed in an isosceles triangle, and a circle B touches its
sides at the extremities of the base—then tangents to A, at the points where the
circles cut, will meet on circumference of B.

99. If the centre X of one circle is on the circumference of another circle Y ;
and from any point A, on circumference of Y, a tangent is drawn to X, meeting
Y in B; from B another tangent to X, meeting Y in C; and from C another
tangent to X, meeting Y in D ; then DA is also a tangent to X,

100. The circles circumscribing the four triangles, formed by four intersecting
lines, go through one point; which is concyclic with their centres.

NoTe—Let XAB, XDC, YCB, YDA ¢ the lines, forming quad. ABCD ;
let O round BCX, ABY cut in O : then O can be shown concyclic with A,D, X
and with C, D, Y.
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101. From A, one of the points of intersection of two circles, two lines AXY,
APQ are drawn at right angles; if X, Q are on one circle, and Y, P on the
other, then

PQ? + XY? = 4 (sq. on join of their centres).

NoTe—Use ii. Addenda (13).

103, If the circle through B, C and the orthocentre of a triangle ABC,
meets the median from A (produced) in X, then AX is twice that median.

103. If the sides and angles of a triangle ABC, are given, and its position
wvwries, subject only to the condition that AB, AC each go through a fixed
point; then BC always touches a fixed circle.

NOTE—Ld P b¢ the fixed pt. in AB, and Q in AC; on PQ describe a segt.

wnlg. an A and dmw PO 20 cut off segt. contg. an B O is cent. of the
required ©.

io4. If four circles are drawn, each passing through three out of four fixed
points ; then one of the angles between the tangents at the intersection of one
pair of circles is equal to one of the angles between the tangents at the inter-
section of the other pair.

105. If two Simson’s Lines are drawn with respect to points at the ends of
a diameter, then—

19, the lines are at right angles ;
2°, they intersect on the N. P, circle,

Nore—1f PCQ #s diam., PM, PL, QX, QY L# 0% sides aB, ay: then 1°,
cmes from considering N® of eyclic quads. PMal., QXaY ; and 2°, comes
from the facts that N is mid pt. CO, and that PO, QO are bisected by the
two Simson’s Lines: cf. iii. Addenda (18) and (320).

106. If ABC is a triangle, and P any point, the N. P. circles of the triangles
PAB, PBC, PCA, intersect in a point X, on the N. P. circle of ABC.

If P is on the circum-circle of ABC, then—

1°, the Simson’s Lines of the triangles PAB, PBC, PCA, ABC, rela.
tively to C, A, B, P, respectively, are concurrent in X ; and

2°, the centroids of the same triangles are concyclic. (Prof. Bordage:
Educational Times: Reprint; Vol. XLV.)

NOTE—The first part of the Theorem may be put thus—

The four triangles determined by any four points, taken three and three
together, are such that their N. P. circles have a common point.

Take the N. P. O as circumscribing the A formed by the joins of mid
b5 and use the comverse of iii. 32.
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ExaMmprLES OF Locr.

NOTE—77 eack of the ]bllom'n;g the Locus is to be determined as completely
as possible : if the Locus is a straight line, its position with regard to given
points or lines—and if a circle, its centre and radius—are to be found.

107. Four rods are pivoted together, so that the pivots are the corners of a
rhombus, and the framework is capable of motion in one plane; if one rod is
fixed, and the others are moved about, then the locus of the intersection of the
diagonal lines joining the pivots is a circle.

108. The ends of a rod of given length slide on fixed straight intersecting
wires; if perpendiculars to the wires at, or from, the ends of the rod are
drawn, the loci of their intersection are two circles concentric at the intersec-
tion of the wires.

109. The locus of the mid point of all lines drawn from a fixed point to
meet a fixed circle, is a circle.

NOTE—This is a particular case of a useful Theorem given hereafter: vi.
Addenda (11).

110, If in a fixed circle a triangle is inscribed, so as to have its orthoemtre
at a fixed point ; then the locus of the mid points of its sides is a circle.

NOTE—Produce join of orthocent. and one mid. pt. a dist. equal to itself ;
show that the extremity of this lies on the ©; and then use the preceding
Exercise.

111. If the extremities of a diameter of a circle are joined transversely to
the extremities of a chord of constant length, the locus of the intersection of
the joins is a circle.

112, If a chord of a given circle subtends a right angle at a given point
(within or without the circle) the locus of its mid point is a circle, whose
centre is the mid point of the join of the centre of the given cnrcle to the fixed
point.

NoTE— Use Locus (n) p. 178.

113. If a quadrilateral circumscribes a circle, the join of the mid points of
its diagonals goes through the centre of the circle.

NOTE—7his is a particular case of Newton'’s Principia, Lib. 1, Lemma 25,
Cor. (3); and may be eastly done by using Locus on p. 179.

114. Given the base and vertical angle of a triangle, find the Locus of its—

1°, in-centre : 2°, ortho-centre: 3°, centroid : 4°, ex-centres: 5° N.P. centre.

NOTE—5° can be made to depend on Ex. 109 above.



BOOK iii. 191

115. Two variable circles, each touching the same given line at a given
point (different for each circle) also touch each other: find the Locus of the
point of contact of the circles.

116. Two opposite corners of a given square move on two lines at right
angles: find the Loci of the other corners.

117. Given the base of a triangle in magnitude and position; and given
also, 1°, the sum of the other two sides, or 29, their difference; find the Loci of
the feet of perpendiculars from the ends of the base on the bisector of the
external vertical angle for the sum, and vertical angle for the difference.

118. Given an angle of a triangle, in position and magnitude, and given also
the sum of the sides which contain it ; find the Locus of its circum-centre.

NOTE— Use iii. Addenda (15).

119. Given a circle, and a fixed point within it; find the Locus of the in-
tersection of tangents at the extremities of all chords through the point.

120, Given two fixed circles, 19, intersecting, 29, not intersecting; find, in
each case, the Locus of the points from which tangents to the circles are equal.

121. Given two fixed points, find the Locus of a variable point whose dis-
tance from one of the points is twice its distance from the other.

NOTE— 7%is is a particular case of an important Locus, given on p. 294.

122, AB is a fixed chord of a fixed circle, AP a variable chord of the same
drcle; find the Locus of the mid point of BP.

123. Through a point P within a rectangle ABCD, parallels are drawn to
the sides ; and P moves so that the difference of the rectangles PA, PC is con-
stant; find the Locus of P.

124. The vertex of an isosceles triangle (given in all but position) moves
along the circumference of a fixed circle (whose radius is equal to one of the
equal sides) and one of the extremities of the base moves along a fixed diameter
of the circle; find the Locus of the other extremity

125. A line of given length moves with its extremities on two fixed inter-
secting lines ; find the Locus of the orthocentre of the triangle thus formed.

126. A point, inside or outside a circle, is joined to two fixed points on its
circumference ; if the joins intercept a constant arc, find the Locus of the point.

127, ABiis a fixed line, O a fixed point, and MN = fixed length ; if a variable
point P moves so that (PQ being the perpendicular from it on AB)

PO? = PQ . MN,
find the Locus of P.

Note—Draw OX L to AB, and groduce XO to C, so that OC = § MN :
then it can be shown that CP is constant, and .. that C is the centre of the ©
whick i Loows of P. Cf; p. 364.
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Proposition 1.

PROBLEM—/% a given circle to draw (when possible) a
chord equal to a given straight line.

~P

Since no chd. of a © can be
greater than its diam., the prob. will
not be possible unless the given st.
line is not greatér than the diam.

Take any pt. C on the circumf. of given O.
With centre C, and given line as radius, describe a O.
Let P be one of the pts. in which the ©O# cut.
Join CP.

Then CP = given line, and is a chd. of given O.

NOTE—A line drawn (as above) from a given point, to meet a given circle
(or line) and be of a given length, is said to be inflected from the point to the
circle (or line).
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Def. When all the corners of one rectilineal figure are on the

sides of another rectilineal figure, the
first figure is said to be inscribed in
the second; and the second figure is
said to be circumscribed about the
first.

Dyf. When all the corners of a rectilineal figure are on the

1Y

I circumference of a circle, the rectilineal
figure is said to be inscribed in the
circle; and the circle is said to be
circumsecribed about the rectilineal
figure.

Def. When each side of a rectilineal figure touches a circle,

the rectilineal figure is said to be cir-
cumscribed about the circle; and
the circle is said to be inseribed
in the rectilineal figure.

Def. When a rectilineal figure is equiangular and equilateral it
is called regular.

Def. If the angles of a rectilineal figure (taken successively) are
equal respectively to those of another (also taken successively) then
the figures are said to be equiangular to each other; each
angle of the one is said to correspond to the angle equal to it in
the other; and the sides joining the vertices of corresponding
angles are called corresponding sides.

o
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Proposition 2.

PROBLEM— /1 a given circle to inscribe a triangle equi-
angulay to a given triangle.

A

Let ABC be the
given A.

At any pt. P, on
the circumf. of given

O, draw a tang.
TPS.

Draw chds. PQ, PR of this O, so that
A LA A A
SPQ=C and TPR=B.

Join QR.
A A
Then TPR = PQR, in altern. segt. ;
POR = B.

A A
Similarly PRQ = C;
A A
also remg. QPR = remg. A:
i,e. A PQR is equiang. to A ABC;

and it is inscribed in given O.

Proposition 3.

PROBLEM—About a given circle to circumscribe a triangle
equiangular to a given triangle.
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Let ABC be the given A ; O the centre of the given O.
Produce BA to M, and AB to N.

Draw any radius OZ of given O ; and radii OX, OY,

A A A N
so that ZOY = CAM and ZOX = CBN.
Draw tangs. to the O at Y, Z; and join YZ.
Then the sum of A® made by YZ, on side remote from O, with
tangs.at Y, Z, < two rt. A%
these tangs. will meet on that side—say in P.
Similarly let tangs. at Z, X, meet in Q;
and let tangs. at X, Y, meet in R.
Then, since all A® of a quad. make up four rt. AS,

A A

and OYP and OZP are each right;
A A
P+ YOZ = twort. AS,

A A
= BAC + CAM.

A A

But YOZ = CAM;
A A

P = BAC.
A A

Similarly Q = ABC;
A A

and R = ACB:

i.e. A PQR is equiang. to A ABC;

and it is circumscribed about given O.
02



196 EUCLID

Proposition 4.
PROBLEM—770 inscribe a circle in a given triangle.

Prove the 1st part of i. Addenda (24) viz. that
AU =1V = IW.

Then O with | as centre, and any one of these as radius, goes
through U, V, W; and touches sides of AatU, VvV, W,

A® at those pts. are each right :
i.e. that O is inscribed in the A aBy.

Proposition 5.
PROBLEM— 70 circumscribe a circle about a given triangle.

Prove the 1st part of i. Addenda (23) viz. that
Ca=CB8= CY.
Then O with C as centre, and any one of these as radius,
circumscribes the A aBy.

Proposition 6.

PROBLEM— 70 #nscribe a square in a given circle.

\ Let O be centre of given O.
B Take any diam. AOB ; and draw

the diam. COD L to it.
Join AC, CB, BD, DA.

AR
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Then At at O, being right, are equal.
the arcs they subtend are equal.
. also the chds. AC, CB, BD, DA, of these arcs are equal.
fig. ACBD is equilat.
And its A® are right,

each of them is an A in a semi O.

-+ fig. ACBD is a square;

and it is inscribed in given O©.

Proposition 7.

PROBLEM— 70 circumscribe a square about a given circle.

: < Q
Let O be centre of the given O.
A 5 B Take any diam. AOB; and
/ draw the diam. COD L to it.
S R

at

Draw tangs. at A, C, B, D; and let P be intersec. of tangs.
Aand C, Q of tangs. at C and B, R of tangs. at B and D,

and S of tangs. at D and A; so that PQRS is a circumscribing
quadrilateral.

Then the lines PCQ, AOB, SDR are .L to COD.
And the lines PAS, COD, QBR are .L to AOB.
all the quads. are rects.
And each of the sides of PQRS = a diam. of the O.
PQRS is a square.
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Proposition 8.

PROBLEM— 70 inscribe a circle in a given square.

A P B

Let ABCD be given sq.
/ \ Bisect AB in P, and BC in Q.
s Draw PR, QS || to sides of sq.,
0/ and meeting opposite sides in R, S;
and let O be their pt. of intersect.
D % c Then all the quads. are rects.

And OP, OQ, OR, OS are each opposite a half side of sq.
OP =0Q = OR = OS.
a O with O as centre, and any one of these lines as radius,.
will go through P, Q, R, S.
And this O will be inscribed in given sq.
Asat P, Q, R, S are right.

Proposition 9.
PROBLEM— 70 circumscribe a civcle about a given square-

B Let ABCD be given sq.

Draw its diags. AC, BD, intersecting
in O.

Then, since the diags. of a [ bisect eaclm
other, and the diags. of a sq. are equal,

OA =0B = OC = OD.

~. O with O as centre, and any one of these as radius, will go
through A, B, C, D:
i.e. that O circumscribes given sq.
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Proposition 10.

PROBLEM— 70 describe an isosceles triangle having each
angle at the base double of the vertical angle.

Take any st. line AB, and divide
it in P, so that

rect. under AB, BP = sq. on AP.

With A as centre, and AB as
radius describe a ©; and in it place
chd. BC equal to AP.

Join AC, PC; and about A

APC describe a O.
B C

Then - sq. on BC = sq. on AP,
= rect. under AB, BP;
BC touches the © which APB cuts.
And - BC is a tang. and CP a chd. of same O

A A
BCP = CAP, in altern. segt.
A A A

BPC, which = CAP + PCA,
alsd = BeP + PeA;
ie. = Aé\B,

_also = ABC, =+ AC = AB.
CP = CB = PA.

A A
PAC = PCA.
A A
BPC = 2 PAC:
. AN A ~N
i.e. A ABC has ABC and ACB each double of BAC.
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Proposition 11.

PROBLEM—70 inscribe a regular pentagon in a given
circle.

Let O be the centre of the
given O.
Take any radius OQ; and
divide it in P, so that .
rect. under OQ, QP = sq. on OP.

Draw chds. QA, QB, of O,
P so that each of them = OP.

) A Join OA, OB.

Then the construction has given two As OQA, OQB, such
that each of them has its A at O half of each of its remaining A&
Now, since the three A®of a A together make up two rt. A,

A
.. A/bQ and BOQ each = one-fifth of two rt. As;

A
AOB = one-fifth of four rt. As;

i.e. = one-fifth of all A# made by any num-
ber of lines meeting in O ;

if we draw successively the radii OC, OD, OE,
so that BOC = COD = DOE = AOB,

then fifth remg. E6A = either of them.
five arcs AB, BC, CD, DE, EA are equal.
chds. of these arcs are equal.
pentagon ABCDE is equilat.
Also it is equiang.,
for each of its A® stands on an arc which is treble of arc AB:
i.e. it is regular.
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Proposition 12.

PROBLEM—T70 circumscribe a regular pentagon about a
given circle.

c
Let PQRST be a regular

R pentagon inscribed in givenO.

Let tangents to O at P and

B Q,at QandR,at Rand S, at
) S and T, at T and P, meet
respectively in A, B, C, D, E,

forming a circumscribing pen-

tagon ABCDE.
P A

Since AP, AQ are tangs. and .PQ achd. of O;
A A
APQ and AQP each = A in altern. segt. cut off by PQ.

Similarly BaR and BQQ each = A in altern. segt. cut off by QR.
But since PQ = QR;
A in segt. cut off by PQ = A in segt. cut off by QR.
A A A A
APQ = AQP = BQR = BRQ.
And as also PQ = QR;
A APQ = A BQR.

And similarly each of them = A CRS = A DST = A ETP.
AN A A A
A=B=C=D=E.

pentagon ABCDE is equiang.
And it is also equilat. ;
PA = AQ =QB = BR = & = EP,
and .. AB = BC = CD = DE = EA:
i.e. it is regular.
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Proposition 13.

PROBLEM—70 inscribe a circle in a given regular

pentagon.
D

Let ABCDE be the
E given regular pentagon.

A
Let bisectors of EAB

and A,B\C meet in O.
Join OE, OD, OC.

A P B

Then in AsEAO, BAO, we have
AE = AB,
AO common,
A A
and EAO = BAO;
A A
AEO = ABO,
= half Aé\C,
= half A/E\D, since pent. is regular.
A
EO bisects AED.
A
Similarly it could be shown that OD bisects EDC,
and that OC bisects De B.

Now draw OP, OQ, OR, OS, OT,
1 to AB, BC, CD, DE, EA respectively.

i Y R
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Then in As OAT, OAP, we have

A A
OAT = OAP,
A A
OTA = OPA,
and AO common ;
OT = OP.

And similarly each of them = OQ = OR = OS.
O described with centre O, and radius OP, will go through
P,QR,ST;
and will ouck sides of pentagon at these pts.;
its radii make rt. A® with sides at those pts.:
i.e. this O will be inscribed in pentagon.

EXERCISES ON iv. 10.

If CP meets large © in Q, and CA meets it in R; and if S is the second

point where @* cut, and BC, AS meet in T; then, making the necessary joins—

(1) AACS=AABC=AQPA:

(2) A®SQR, TAB are each equiangular to A ABC:

(3) CPSTisa [J:

(4) If | is in-centre of A ABC, Bl = BP.

(5) Circum-centre of A BPC is on arc CP.

(6) (Radius of circum-© of A CPB)?

= (diameter of smaller ®)2 — (radius of larger ©)2.

(7) CP is a side of regular pentagon in smaller O:

(8) BC, BQ, AB are respectively equal to sides of regular decagon,
Ppentagon, and hexagon (see Prop. 15) in larger ©. -
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Vini 1

Proposition 14.

PROBLEM—T70 circumscribe a circle about a regular
penitagon.
D
< Let ABCDE be a regular pent- !

agon.

Let bisectors of E»QB and AQC ’
meet in O.

Join OC, OD, OE.

Then in As EAO, BAO, we have
AE = AB,

AO common,
A A
and EAO = BAO;
A A
AEO = ABO,
A
= half ABC,
A
= half AED, ‘. pent. is regular.
OE bisects AgD. A
A
Similarly OD bisects EDC, and OC bisects DeB.
A A A
Again, since OAB = half EAB = half ABC;
A
OAB = OBA.
OA = OB.
Similarly each of them = OC = OD = OE.
O with O as centre and any one of them as radius will go

through A, B, C, D, E:
i.e. this O will circumscribe the pentagon.
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"y

Note—The construction and proof of the two preceding propositions wil
apply equally well, if for a regular pentagon there be substituted any othe
regular polygon : see Theorem (1) of 4ddenda to this Book.

Proposition 15.

PROBLEM— 70 inscribe a regular hexagon in a given circle

Let O be centre of given O.
Take any radius OA; and draw
the chd. AB, equal to OA.

E Jom OB.

Then A OAB is equilat.

AGB = one-third of two rt. A8,
= one-sixth of four rt. AS,
= one-sixth of all the A® which can
be placed round O.
1f radii OC oD, OE OF are drawn so that

AOB BOC COD DOE—EOF

each of them = remg. AOF
and pts A, B, C, D, E, F divide whole circumf. into six equa!

hexagon ABCDEF is equilat.
Also it is equiang.,
for each of its A® stands on an arc which is four times arc AB.
it is regular;
and it is inscribed in given O,
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Proposition 16.

PROBLEM— 70 inscribe a regular quindecagon in a given
circle.

A

Let AP be a side of an equilat.
A\, inscribed in the © ; and AR
a side of a regular inscribed pent-
agon.

FW
Then of such fifteen equal parts as the circumf. can be divided
into, beginning at A,
AP, being one-third of the whole, must contain five, and AR,
being one-fifth of the whole, must contain three.
PR must contain two such parts.
Bisect PR in Q.
arcs PQ, QR are each one-fifteenth of whole circumf.
if chds. PQ, QR be drawn, and chds. equal to them placed
round the O, an equilat. quindecagon will be inscribed in the O.
Also this quindec. will be equiang. for each of its A® will stand
on an arc which is thirteen-fifteenths of the circumf.

it will be regular.

Note—A regular hexagon, or quindecagon, can be circumscribed about a
circle in the same manner as (in Prop. 12) a regular pentagon was circum-
scribed—viz. by drawing tangents at the corners of the corresponding inscribed
figure : see Theorem (2) of 4ddenda to this Book.
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THE FOLLOWING ARE THE MOST OBVIOUS COROLLARIES TO THE PROPs,
IN Boox iv.

iv. 4. (a) Four circles can be drawn to touch each of three lines, unless the
lines are concurrent, or parallel, when no circle touches them all. For the
remaining three, see i. Addenda (27).

(B) If two lines are parallel and a third cuts them, then two circles
will touch the three lines.

(¥) An infinite number of circles can be drawn to touch two lines.
The Locus of the centres of these circles when the lines—

19, are parallel, is the line lying half way between them ;

2°, intersect, is the pair of bisectors of the angles between them.

iv. 10. The vertical angle of the triangle described by this Prop. is two-
fifths of a right angle; and by means of it a right angle can be divided into
five equal parts.

iv. 11. (a) Each diagonal of a regular pentagon is parallel to the side which
is not conterminous with it.

(B) All the diagonals of a regular pentagon form, by their intersec-
tion, a regular pentagon.

() Every equilateral cyclic polygon is equiangular ; but nof always
conversely: cf. p. 210.

iv. 15. Each side of a regular cyclic hexagon is equal to the radius of
its circumscribing circle ; and its area is six times that of an equilateral triangle
on that radius.

iv. 6, 11, 15, 16. By bisecting the arcs between each adjacent pair of corners
of the polygons inscribed by these Props. and joining each point of bisection to
the corners adjacent to it, regular polygons of double the number of sides, in
each case, are inscribed in the circles, The same process may be extended : so
that this Book gives the modes of inscribing in, or circumscribing about a
circle, regular polygons of

3, 6, 12, 24, &c,,
4, 8, 16, 32, &c,
5, 10, 20, 4o, &c.,
15, 30, 60, 120, &c.

sides.
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SoME IMMEDIATE DEVELOPMENTS OF BOOK iv.—NOT SO OBVIOUS
AS TO BE PROPERLY CALLED COROLLARIES.

THEOREM (1)—Any regular polygon may have—
(a) a circle described about it ;
(B) a concentric circle inscribed in it.

A

Let AB, BC, CD, DE be 4 consecu-
tive sides of a regr. pol.

N N
Bisect BCD and CDE by CO, DO;
and join BO.

Then in A®* BCO, DCO, we have
BC = CD,

CO common, }
N N
and BCO = DCO;
A BCO = ADCO.
OB = OD.

N N .
But since OCD = ODC, each being half an A of pol.
OC = OD = OB.

N N
Also OBC = ODC = }an A of pol.
.., as above, all lines from O to corners of pol. are equal.

. (a) a © with centre O, and any one of these lines as radius, will circum-
scribe the pol.

Next, draw OP, OQ respecty. L to CB, CD.
Then in As CPO, CQO, we have

A N
PCO = QCO,

N A
CPO = CQO,
and CO common;

OP = OQ.

Similarly all 1% from O on sides of pol. axe equal.
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(B) a O, with O as centre and any one of these L® as radius, will go
through the feet of all the L®%; and will touch sides of pol. at those feet,
+. the A® there are right.

.. that © will be inscribed in pol.
and it is concentric with the former ©.

THEOREM (2)—If a regular polygon is inscribed in a circle, and tangents to
the circle are drawn at its corners, they will form a regular polygon, of the
same number of sides, circumscribed about the circle.

P T
Let A, B, C, D, be 4 consecutive
corners of a regr. pol. inscribed in
A D
a 0.
At these pts. draw tangs. PAQ,
Q S QBR, RCS, SDT.
(%
R

Then since BC is a secant, and RB, RC tangs. at B C,
RBC and RCB each = A in altern. segt. cut off by BC.

Similarly SCD and SDC each = A in altern. segt. cut off by'CD.
But since CB = CD,
A‘® in these segts. cut off by them are equal.

Ay N A A
RBC = RCB = SCD = SDC.
.. A RBC = A SCD.
DS = SC = CR = RB;
VANEEPAY
and R = 8.
Similarly all the tangs. from pts. P, Q, R, S, T, are equal.
And all AS at same pts. are equal.
.. outer pol. is equiang.
And also equilat. since each of its sides is double one of the equal tangs.
Also all its sides touch O, by construction.
.* it is a regr. circumscribed pol,
P
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THEOREM (3)—Euvery equiangular cyclic polyg)m has its alternate sides
equal ; and if the number of its sides is odd the sides are all equal ; but if even,
not necessarily so.

Let A, B, C, D, &c., be consecutive cor-
ners of an equiang. cyclic pol.
D Join AC, BD.

) A A
Then since ABC = BCD,
arc ABC = arc BCD.
arc AB = arc CD.
. AB = CD.
Similarly CD = next altern. side.
And so on round the pol.
Again, it could be shown similarly that
BC = next altern. side,
= next beyond again.
And so on round the pol.

If the pol. have an odd number of sides,
the series of altern. equals beginning with AB,
and the series of altern. equals beginning with BC,
will have one side in common ;
and then pol. is equilat.

But, if pol. have an even number of sides, the two sets of series will not
necessarily be equal.

THEOREM (4)—If the sides respectively opposite to the corners A, B, C of a
triangle, are denoted by a, b, ¢, and if 8 denote the perimeter of the

£

triangle ; then eack of the langents from A to the circle exscribed to BC, is
equal 10 8; each of the tangents from B to the same civcle is equal to 8 — ¢;
eack of the tangents from A to the inscribed civcle is equal to 8 — 8 ; and
semilar expressions hold for the other similar tangents. -
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Let sides a, b, ¢ respectively touch
the in-O at P, Q, R; and the ex-O at
XY, 2.

Then
AY + AZ = AC + CX + AB + BX,
= AC + AB + BC.
AY =8 = AZ,
BZ =8—c¢ = BX,
CY =8—-b=CX
Again AR + BP + CP = s8;

s AR =8-—a = AQ.
Similarly CP =8 - ¢ = BX,
&ec.

Cor.PX =CX~CP =(8~b)~(8—¢) =c~b.

THEOREM (5)—If ¥ is equal to the radius of the in-circle, and v, X3, ¥y are
respectively equal to the radii of the ex-circles relatively to a, b, ©, then the area
of the triangle ABC is equal to any of the rectangles 18, r, (8—a), I, (8—D),
r,(8—¢).

A Let | be centre of in-®; and E, of
ex-O relatively to BC,
Then area ABC
= area BIC + area CIA + area AlB,
=}ra + §rb + jre,

= I8.
Again, area ABC
area AE,B + area AE,C — area BE,C,
jre + irnb-4ina,
r, (8 —a).

Similarly
r,(8-b) =r,(s-c)

P2
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SOME USEFUL THEOREMS, MAINLY DEPENDING ON BOOK iv.

THEOREM (6)—If the in-centre and three ex-centres are joined, the six joins
are bisected by the circum-circle.

Let | be in-centre of A ABC,
and E,, E,, E,, the ex-centres of
Os touching BC, CA, AB re-
spectively.

Then AlE, and E, AE, being

int. and ext. bisectors of B;\\C,
cut circum-O© at X, Y so that
XY is diam. bisecting BC at
. AS

E,

But if P, Q are pts. of contact of ©* (centres E, E,) with BC produced,
E,P,E,Qare L to BC.

And BQ =8 —a = CP.
. .. XY bisects PQ.
And being || to E,P, E,Q, it also bisects E,E,.
Similarly circum-O bisects E,E, and E,E,.
Again, if R, S are pts. of contact of ©% (centres E,, |) with BC,
BR =8-c¢ =CS,
.. XY bisects RS.
And being || to IS, E,R, it also bisects IE,.
Similarly circum-® bisects IE, and IE,.

Cor. (1). The circum-® of ABC is the N.P. ® of E,E,E,.
Cor. (2). The in-centre of ABC is the ortho-centre of E,E,;E,; and ABC is
the pedal A of E,E,E,.

A A A A A
Cor. (3). Since XIB = § (BAC + ABC) = XBI, and IBE, is rt.
oo Xl = XB = XE,.
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.

THEOREM (7)—If R is the radius of the circum-circle, then
N+rh+h—-r=4R.

For if XY (last fig.) cuts BC in N,
since Y is mid pt. of E, E,,
and E,P, YN, E;Q are .L to PQ,
o 3YN=r4+r;.
Similarly 2XN =r, —r.
4R (which = 3YN +2XN) =1, + r, + 1, — 1.

Cor. (1. TXN) =} (r, +r,+ 1, —3r) =2R —r.
Cor. (3). If Q is the circum-centre,
Z@N) =3R-Z(XN) =R + .

Note—When B/RC is obtuse, X and N lie on opposite sides of &, and
then R = XN — @ N. 'The formula 2 (2 N) = R + r, will include all cases,
if we make the convention that QN is to be considered negasive when Q and X
are on the same side of BC.

THEOREM (8)—1If A, B, C, &c. are the corners of a regular polygon, and O
the common centre of its in- and circum-circles, then Q is the mean centre of the
points when eack of the multiples is equal to unity.

19, if the pol. has an evez number of sides.

Every pt. P has another pt. Q, at the op-
posite end of the diam. POQ.

And if any line is drawn thro. O, and .L* PM, QN dropped on it, PM, QN
are clearly equal in length, and opposite in direction.
for all such points
3 (PM) =o.
O is their mean centre.
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29, if pol. has an odd number of sides.
Then for any pt. P all the other pts. are

N O P situated in pairs, as Q, R, on-opposite sides
of, and equidistant from diam. PO.

So that if QR cuts PO in N,
QNR is bisected by, and L to PO.
X (QN) = o, for that line.
mean centre is in PO,

Similarly for every diam. thro. a comer of the pol.
O is the mean centre of the corners.

THEOREM (9)—1f O is the centre, and OR the radius of the civcle circum-
scribing a regular polygon ABCD &c. of n sides ; then for every point P
X (AP%) = n (OR? + OP?%);
and X (AB? = n?. OR2

For O is the mean centre of the comers of the pol. when each of the
mults. = 1.
.., by ii. Addenda (20), Cor.,
3 (AP?) = 2 (AO% + n.OP2
But OA = OB = OC = &c. = OR.
3 (AP?) = n.OR? + n.OP2,
Next, in the particular case when P is on @, OP = OR.
And then = (AP = 2n.OR?
Now suppose P to coincide successively with A, B, C, D, &c.
Then AA? + AB? + AC? + AD? + &c. = 2n . OR},
BA? + BB? + BC? + BD? 4+ &c. = 2n . OR?,
CA? + CB? + CC? + CD? + &c. = 2n.OR;?,
&c.
Adding, and recollecting that AA = o, BB = o, &c., we get
23(AB? =n.2n.0R?
or £(AB? = n?. OR%*

* Townsend’s Modern Geometry,wol.i. p.132.
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THEOREM (10)—1If P s any point on the circum-civcle of a regular polygon
ABCD &c. of 0 sides; L any line through O the centre, and Pa, PB, &c.,
the respective. perpendiculars on OA, OB, &c.; and AL, BL, &c., the per-
diculars from A, B, &c., on L; then—R being the radius—

2(Pat) = 2. R = 3(0a";
and 3(AL) = 7. R? = 3(OLY).
) \
A
(7}
‘With OP as diam. describe a O,
o c then a, B, v, &c. will all lie on
this O.
M

1°, if n is odd, there will be n distinct pts. a, 8, ¥, &c.
N N
And, since aO 8, 80y, &c., each = %th of 4 rt. A%
pol. aB+y &c. is regr.
oP. n ;
= (Pa?) zn( =5 R

29, if n is even, then for each pt. A there will be another pt. (say M) at
opposite end of diam. thro. A, so that the .L® from P on OA and OM coincide ;

i.e. a and u are one pt.
a B+ &c. will form a regr. pol. of 1—: sides.

And sum of sgs. of L* from P on a// radii drawn to A, B, C, &c. = twice
sum of sgs. of .L® from P on sides of pol. aBy &c.

o) ()

-2, R?, as before.
2
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And, by precisely similar reasoning,
2(0a) = 7. R
Again, since for any two pts. on a O,
L from 1st on diam. through 2nd = L from 2nd on diam. through 1st.

each L from n pts. A, B, C, &c. on diam. thro. any other pt. P = cor-
responding L from P on diam. thro. A, B, C, &c.

3 (ALY = 3 (Pa?) = %.R’.

Similarly 3 (OLY) = X (Oa%) = ’;‘.R'.

THEOREM (11)—1f O és the common centre of the in- and circum-circles of a
regular polygon ABCD &c. of n sides ; and if P is any point, and L any
straight line ; then, if Pa, PB, &c. are the perpendiculars from: P on AB,
BC, &c., and AL, BL, &c. the perpendiculars from A, B, C, &c. on L,

2 (Pa?) = n? + § OP?),

and Z(AL?) = n (OL? 3+ § R?),
where T = radius of in-circle,
and R = » circum-circle.
L N
L @
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Lemma. = (Pa) = nr.
For Pa.AB + P8 .BC + &c.
= twice area pol.
=r.AB + r.BC + &c.
AB 3 (Pa) = nr. AB,
whence Lemma is true.
Let a, 8, 7/, &c. be feet of L* from O on Pa, P8, P4y, &c. respectively.
Then a', 8, 7/, &c. lie on © whose diam. is OP.
And 2 (Pa’) = ¥ (Pa—-r) = 3(Pa) - nr =o.
Now Pa = r + Pd,
. Pa? =1* + Pa’? + ar Pd),
I(Pa“) =nr? + X(Pa’?) + ar 3 (Pd),
=anr'+ - 2op:,
Next let diam. thro. O, || to L., cut AL, BL, CL, &c. in &, b, ¢, &c. respec-

tively.
Then AL = Aa + OL,

. AL? = Aa’ + OL? + 20L. Aa,
I (AL == (Aa?) + n.OL? + 20L. = (Aa).
But = (Aa) = X(AL)-n.OL,
= 0, " O is mean centre of A, B, C, &c.

Z(ALY) = TR+ n.OL"

Cor. If P is on the circumf. of the in-O, and L is a tang. to the same, then—
19, if L% are dropped on sides of a regr. pol. of n sides, from any pt. on its
in-O,
sum of sqs. on these 1® = § n (rad. ©)%
20, if 1L ® are dropped from corners of a regr. pol. of n sides on any tang. to
its circum-0O,
) sum of sgs. on these 1* = § n (rad. ©)%.

Note—Hence, if a point is subject only to the condition that the sum of the
squares on its distances from the corners or sides of a regular polygon is con-
stant, its Jocus is one of a series of circles, concentric with the in- and circum-
circles of the polygon—the particular value of the constant determining the
particular circle which is the locus.



EXERCISES ON BOOK iv.

NOTE —7%e following are Theorems to be proved; and depmd mainly on
the principles of Book iv.

1. If the in- and circum-centres of a triangle coincide, the triangle is equi-
lateral. )

2. If the join of the in- and circum-centres goes through a corner of the
triangle, it is isosceles.

3. If one square is inscribed in another, the difference of their areas is ‘equal
to twice the rectangle under the segments of a side of the outer made by a
corner of the inner.

4. The join of the centres of the in- and circum-circles of a triangle subtends
at any corner an angle which is half the difference of the angles at the other
comers.

NOTE—If | is in-centre, S circum-centre, of & ABC ; then

N N N N N N N
ABC ~ ACB = SBA ~ SCA = SAB~ SAC = 2SAl
a useful result, which should be known.

5. The circles, each of which touches two sides of a regular pentagon at the
extremities of a third, all go through the common centre of the in- and circum-
circles of the pentagon.

6. If ABCDE is any pentagon inscribed in a circle, and AC, BD, CE, DA,
EB are joined ; then

N A N A N\
ABE + BCA + CDB + DEC + EAD = 2r1t. A",

7. If two equilateral triangles circumscribe a circle, their intersections will
form a hexagon which is always equilateral, but zof always equiangular.

8. If two sides of a triangle, whose perimeter is constant, are given in posi-
tion, then the third side always touches a fixed circle.

NoTE— Use iv. Addenda (4).

9. The square on a side of an equilateral triangle inscribed in a circle is
three times the square on a side of a regular hexagon inscribed in the same
circle.

10. The area of a regular hexagon inscribed in a circle is three-fourths the
regular hexagon circumscribed about the circle.

11. If two diagonals of a regular pentagon intersect, the larger segment of
cach is equal to a side of the pentagon.
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12. The difference between a side and diagonal of a regular pentagon is equal
to a side of another regular pentagon, whose diagonal is a side of the first.

13. A regular octagon is equal to the rectangle under a side of the square
inscribed in, and a side of the square circumscribed about the circle which
circumscribes the octagon.

14. If the radius of a circle is cut in medsal section, the greater segment is
equal to a side of a regular decagon inscribed in the circle.

15. AB, BC, CD are three adjacent sides of a regular polygon; if AB, DC
are produced to meet in X, then A, X; C are concyclic with the centre of the
circle round the polygon.

16. The square on the diameter of the circum-circle of a regular pentagon is
equal to the square on one of its sides together with the square on the diameter
of the in-circle.

17. If any hexagon is inscribed in a circle, the sum of either set of its alter-
nate angles is equal to four right angles.

18. If the extremities of a side of a regular pentagon, inscribed in a circle
(radius r) are joined to the mid point of the minor arc subtended by either side
adjacent to it ; then— ‘

1°, the difference of the joins = T ;

2°, the sum of the squares on the joins = 3r?;

39, the rectangle under the joins = r%

NOTE—1n the fig. of iv. 10 produce CP to meet © in Q: then QB s side of
inscribed regular pentagon, and C is the mid pt. of an adjacent arc, so that
BC, QC are the ‘joins.

19. The mid points of the sides of a square are joined, forming an inscribed
square ; and again the mid points of this new square, forming another inscribed
square ; and this process is continued : then the limit of the sum of all the
inscribed squares is the area of the original square.

NoOTE—Recollect that—Limit of § + 3 + 3 + &c. ad. infin = 1.

20. The area of each of the triangles made by joining the extremities of
adjoining sides of a regular pentagon is less than one-third, but greater than
one-fourth of the area of the pentagon.

21. ABCDE is a regular pentagon, and AC, BD cut in O; then

AC.CO = BC*.

22. If a ribbon is folded into a flat five-sided knot, the knot forms a regular
pentagon.

NOTE—T%e edges of the ribbon give 4 diags., and these are || to sides, and
Jorm 3 isos. DY, eack of whose base \® = ext. N\ of pent. Use Cor.W\.26,(&).
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33. Two triangles PQR, XYZ are so inscribed in a circle that PX, QY, RZ
are concurrent in O; #£ O is the in-centre of one triangle then O is also the
orthocentre of the other; and conversely.

24. If R, r are the respective radii of the circum-circle, and in-circle, of a
regular polygon; and R’, ¥’ corresponding quantities for the regular polygon
of same perimeter, but double the number of sides; then—

R + r =2r,and Rr = R"%

NoTE—If AB is a side of first pol.; M mid pt. of arc AB ; X, Y mid pts.
of AM, BM ; tkhen XY is a side of second pol.

35. If two circles cut orthogonally, and the distance between their centres is
twice the radius of one of them ; then their common chord is a side of a regular
hexagon inscribed in one of them, and of an equilateral triangle in the other.

NoTE— Circles are said to cut orthogonally, wken the tangent to one, at a
common point, is a normal o the other.

26. 1If ABCP and A’B'C’P" are concentric circles; and ABC, A'B’C’ equi-
lateral triangles in them ; then—

AP* + BP? + CP'2 = A'P? + B'P? + C'P3

NOTE— Use ii. Addenda (16) Cor. .

27. If the in-circle of a triangle ABC, touches BC in D, then the in-circles
of triangles ABD, ACD will touch each other.

NoTE—Use iv. Addenda (4).

28. If circles are inscribed in the two triangles into which a triangle is
divided by an altitude, and analogous circles are drawn in relation to the two
other altitudes ; then—

sum of diams. 6 ©% + sum sides of original A = 2 sum of altitudes.

NOTE— Consider one pair of the A3, and use iv. Addenda (4). Do NOT draw
the ©¢,

29. The square on a side of a regular pentagon in a circle is equal to the
square on a side of a regular hexagon in same circle, together with the square
on a side of a regular decagon in the circle.

Note—In fig. iv. 10, produce CP to Q: then BC is a side of the decagon,
BQ of the pentagon, and AB of the hexagon: also QP = QA ; and result
Jollows from ii. Addenda (g).

30. AB, CD are perpendicular diameters of a circle (centre O), OB is bisected
in X, and Y taken in XA so that XY is equal to XC: then CY is equal to a
side of the inscribed pentagon.

NOTE—By ii. 11, show that AO . AY = OY3: then, by iv. 10, YO = side
of decagon in the © ; and result comes from last Exercise.
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None have been hitherto given in the sets of Exercises, because beginners in
Geometry invariably find the solution of Problems altogether hopeless. The
reason of this seems to be that the solution of a Problem—to which the solver
has no previous clue—is, so far as he himself is concerned, original work ;
whereas the demonstration of a Theorem is merely a retracing of steps to some
extent indicated.

There are three ways of achieving the solution of a Problem—

19, by a felicitous guess, which can rarely be made, excepting in very simple
cases. -

29, when the dafa are such that, one of them being omitted, the others give
a Locus; then the intersection of the Loci will give the solution.

For example—given base, vertical angle, and area of a tnangle, to construct it.

Onmitting the area, we get Locus ({) p. 178.

Onmitting the vertical angle, we get Locus (¢) p. 178.

The intersection of these Loci gives two triangles which satisfy the daza.

3° by what is called the analysis of the Problem—a process which will be
most readily understood by seeing a teacher employ it. The essertials of the
method consist in assuming the Problem solved, and then endeavouring to find .
some connection between the guesita and the daza: henee a clue may often be
found to the putting together (syntkesis as it is called) of the figure.

As an example, take ii. 11. We may imagine the construction found out
thus—

Assume X such a pt. in thie given line AB that AX? = AB . BX:

i.e. that sq. AXGF, on AX, = rect. XBCH, in which BC = BA.

Then it would readily occur to one that, if rect. AH was completed, AC
would be sq. on AB.

So that, adding AH to the (assumed) equals, we should get

AB? = DF.FG = DF. FA.

Here might be imagined a pause in the process of discovery; until, in a
lucky moment, the idea of applying ii. 6 to DF (considered as DA produced)
would suggest adding sq. on half AD to each side; after which the solution
would become obvious.



222 PROBLEMS.

NOTE— T%e following are solvable by Book i.

1. Construct an isosceles triangle so that each side is double the base.

3. Construct an isosceles triangle when the lengthsof its base and of its equal
sides are given. .

3. Construct a square when its diagonal is given.

4. Construct a triangle with an angle equal to a given angle, and with two
sides (one of which is opposite that angle) of given lengths.

When is the solution of the Problem impossible ; and when ambiguous ?
5. Given the base and area of a triangle, find the position of its vertex.
6. In the base of a triangle find the point from which parallels to the sides,
" terminated by them, are equal.

7. Construct a parallelogram when the lengths of one side and of the two
diagonals are given.

8. Given two points and a line, describe a circle which shall pass through
the points and have its centre on the line. :

9. In a given triangle place a line, so as to be of given length, parallel to a
given direction, and terminated by the sides of the triangle.

10. OA, OB are lines fixed in direction; and Pis a given point in OA :
find X, in OA, so that XP may be equal to the distance of X from OB,

11. Given two squares; describe another square, so that its corners may be
on the sides of one of them, and its area equal to that of the other.

When is the solution of the Problem impossible?

13. Trisect a right angle.

13. Divide a given line into any given number of equal parts.

14. Find a construction to trisect a given line, which will also solve the
Problem—To divide an equilateral triangle into nine partsof equal area (p. 85).

15. From a given point draw three lines, of given lengths, so that their
extremities may be in one line, and one of them equidistant from the others.

NOTE—Describe @ A, so that the given point may be ome of its corners;
that two of its sides may be two of the given lengths; and that the third side
may be double the third length.

16. Given a line XY and two points A, B; find a point P in XY such that
PA, PB will make equal angles with XY.

NoTE—Draw AN L to XY, and produce to N, so that A'N = AN : then
A'B will cut XY in P. )

17. Given two intersecting lines, and a point between them; it is required
to draw a line through the point, and terminated by the lines, so that the
point may be its mid point.



PROBLEMS. 223

18. Inscribe a parallelogram in a given triangle, so that its diagonals may
intersect at a given point within the triangle.

19. AOB is a given angle, and P a given point either within or without it;
through P draw a line to cut OA in X, and OB in Y, so that PX may be m
times PY ; where m is a given whole number.

20. Given two lines, which are not parallel, find, without producing them
to meet, the line which would bisect the angle between them.

NOTE—Draw any two lines across the given lines, and use the property
of i. Addenda (24).

21. Draw a line of given length, parallel to a given direction, and ter-
minated by the circumferences of two given circles.

22. Draw from a corner of a triangle a line to cut off from the triangle a
given area.

23. Bisect a triangle by a line through a given point in one of its sides.

NOTE—For this and the next two Probs., see p. 85.

24. Find a construction that will quadrisect any quadrilateral.

25. Construct an equilateral triangle, so that its corners may be at given
distances from a given point.

26. Bisect a quadrilateral by a line through one of its corners.

NOTE—See p. 80, Exercise 44.

27. Construct a triangle, when given—

1°, a median and two sides;
29, a side and two medians.
28. Construct a triangle, when given its base, an angle at the base, and—
19, the sum of its other two sides ;
2% o dt_ﬂ: ” ”

29. Construct a triangle, when given an altitude, an angle at the base, and
the sum of its three sides.

30. Bisect a rectangle by two lines parallel to two of its adjacent sides, and
equidistant from them.

NoTeE—If ABCD is the rect., draw || from the in-centre of & ABC.

31. Given two circles and a point; draw a line, terminated by the circles, so
that the point may be its mid point.

Find the conditions under which a solution is possible.

32. Find a construction to alter the shape of a rectilineal figure so that its
area may remain the same, but that the new figure may have one side less than
the old one.

33 Inscribe a square in a given semi-circle,
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NOTE—Te solutions of the following depend mainly on Book ii.

1. Produce a given line AB to X, so that the rectangle under AX + AB and
AX — AB may be equal to a given square.

2. Divide a given line into two parts, so that the difference of the squares
on them may be equal to a given square.

3. Divide a given line into two parts, so that the sum of the squares on them
may be equal to a given square.

4. Produce a given line, so that the difference of the squares on the whole
line produced and on the part produced may be equal to a given square.

5. Produce a given line, so that the sum of the squares on the whole line
produced and on the part produced may be equal to a given square.

6. Divide a given line into two parts, so that the square on one of them
may be double the square on the other.

7. Produce a given line, so that the square on the whole line produced may
be double the square on the part produced.

8. Divide a given line, 1°, internally, 2°, externally, so that the sum of the
squares on the original line and on one segment may be treble the square on
the other segment.

NOTE— Te pts. of internal and external medial section solve this Prob., and
the following.

9. Divide a given line, 19, internally, 2°, externally, so that the square on
the iine made up of the original line and one segment may be quintuple the
square on the other segment.

10. Produce AB to X, so that AX . BX = AB2

11. Produce AB to X, so that AB? + BX? = 2 AX. BX.

12, Produce AB to X, so that AX3, 1°, = 3 AB?; and, 29, = 5 AB®,

13. Divide AB in X, so that AB* + BX? = 2 AX®,

NOTE— The analysis of the Prob. will lead to this construction: produce
given line AB to Y so that AY? = 3AB?; take X, in AB, so that AX = BY.

14. Divide a given line into two parts, so that the rectangle under them
may be equal to the square on their difference.

NOTE—/7 the fig. of ii. 14, if FY is L and equal to FB, and YO cuts © in
X, then XE divides given line BF as regd.

15. Produce a given line so that the rectangle under the whole line pro-
duced and the original line may be equal to a given square.

16. ABC is an isosceles triangle: find P, in the base BC, so that, if the
perpendicular to BC at P meets AB in X, then—

PA’ + PX? = AB?
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NOTE—The following require the aid of Book iii.

1. Through one given point draw the line which passes at a given distance
from another given point.

2. Find a point outside a given circle from which if tangents are drawn they
will contain a given angle.

3. Through two given points describe a circle bisecting the circumference of
a given circle.

4- Draw a line to touch a given circle, and make a given angle with a given
line.

5. In the production of a diameter of a circle find the point from which a
tangent is equal to a diameter.

6. Describe two circles, of given radii, so as to touch a given line and each
other.

7. Given two intersecting circles, draw through one of their points of section
a line so as to be terminated by the circumferences and bisected at the point.

8. Draw PXYQ across two con-centric circles, so that (P, Q being on the
outer; and X, Y on the inner) 19, PQ = 2XY; and, 2°, PQ = 3 XY.

9. If A is a given point, and C the centre of a given circle; find P in CA
so that PA is equal to the tangent from P.

10. Through a point within a circle draw a chord so that the rectangle
under the whole chord and one part is equal to a given square.

What are the limits to the side of this square ?

11. Two circles have internal contact at P: draw PXY to meet them in
X, Y, so that XY may be of given length.

12. AB is a fixed chord, and AX a variable chord of the same circle: find
the Locus of the intersection of the diagonals of the parallelogram of which AB,
AX are adjacent sides; find also when the diagonal from A has its greatest
length.

13. Any line is drawn across a triangle ABC, and meets the sides (produced
if necessary) opposite A, B, C, in X, Y, Z respectively: find the Locus of the
other point of section of the circumcircles of triangles CXY, AYZ.

14. Through a given point P, within a given angle AOB, draw a line to
meet OA, OB, in X, Y, so that the rectangle under XP, PY may be equal to a
given square.

15. Draw a circle to cut three given non-intersecting circles orthogonally.

NOTE—Draw an ext. common tang. (cf. p. 236, 4) to one pair of O° and
0 another pair of O%: the L* to the respective lines of centyes, bisecting these

* common tangs. intersect in the centre of the orthogonal O,

Q
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NOTE—Here follow some Problems solvable by the methods of Books i-iv.

1. Inscribe an equilateral triangle in a square, so that a corner may be—
19, at mid point of a side;
29, coincident with a corner;
3°, at any given point on a side.
NOTE—Cases 1° and 3° present no difficulty : for 3°, let ABCD &¢ sq.; P
given pt. in CD, nearer to C than D: let L to PD, at its mid pt. meet trisector

N
of A, nearest AD, in X: then PX produced is side of A,
3. Describe a square, when—
19, its area = sum of areas of two given squares ;

2° ” = d# ” ”
39, the sum of a side and diagonal is given ;
4° dl_ﬂ: » »

3. Draw a line parallel to one side of a triangle (considered as base) and
terminated by the other two, so that its length may be equal to the—
1°, sum of the segments cut off between it and the base;
29, d‘_f » » »
4. Draw all the common tangents to two given non-intersecting circles.
NOTE—With centre of larger O, and vadius whick is 1°, the diff., 29, the
sum of the given radii, describe another © ; and draw a tang. to it from the
centre of the smaller ©.
5. Find the Loci of a// the points of intersection of common tangents to two
circles, whose centres are fixed, but radii variable.
6. A and B are given circles, on same side of a given line XY: find a point
in XY such that tangents from it to A and B will make equal angles with XY.
NOTE—Four suck pts. can generally be found.
7. Construct a triangle, when given its base, vertical angle, and—
19, sum of the other two sides ;
2° dl_ﬁ: ” »
8. Construct a triangle, when given its base, difference of base angles, and—
1°, sum of the other two sides;
29, diff. » 2
9. Construct a triangle, when given the lengths of its three medians.
NoOTE—TIn the fig. of i. Addenda (30) the sides of & GBH are cach § of a
median.
10. Examine what Problems could be solved by taking the Loci on pp. 177
178, two and two together.
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11. Find two lines, when given any two of the following—
(a) their sum:
(8) their difference :
(y) the rectangle under them:
(8) the sum of the squares on them :
(€) the difference of the squares on them.

NOTE—Thke difficult case is when (v) and (€) ave taken logether: its con-
sideration should be deferred until Book vi kas been read.

x2. Given two lines, it is required to produce one of them so that the rect-
angle under the whole line thus produced, and the other given line, may be
equal to the square on the produced part.

NoTE—AB Uline to be produced; BC other line, placed so that ABC is «
line. On AC place semi-O ; and let BP, 1 to ABC, meet it in P. _Join P to
M, the mid pt. of BC. Produce BC to X, so that MX = MP. Then BX is
the reqd. production of AB.

13. Divide a line; 19, internally; 2°, externally; so that the rectangle undes
the segments may be equal to a given area.

14. Produce a given line both ways, so that the rectangles under the segments
into which the whole produced line is divided at the extremities of the given
line may be equal to given areas.

15. Describe a circle to bisect the circumferences of three given circles.

NOTE—Apply the last Exercise to the joins of the three given centres.

16. To divide a given line into two parts, so that the square on one of them
may be equal to the rectangle under the other and another given line.

NoOTE—Place the given lines AB, AC so that BAC is ome line: on same
side of AC, BC place semi-Os: let tang. at A to one, meet the other in P: let
join of P with cent. of lesser © meet it in Q: tang. at Q cuts AB in the re-
quired pt.

17. To divide a given line into two parts, so that the rectangle under the
whole line and one part may be m times the square on the other.

NOTE—Produce the given line so that the produced part = Ly of itself ;
and construct as in the last Prob. m

18. Construct a triangle when given the lengths of the bisector of an angle,
and of the median and altitude concurrent with that bisector.

NOTE—/n fig. of \. Addenda (26) let C be civcum-centre ; then CD, aA meet

. N
on circum-Q ; whence aA bisects CaX.
19. Construct a triangle when given the lengths of the bisector of an angle,
of the altitude concurrent with it, and of the radius of the circum-cixc\e.

Q3
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30. Construct a triangle when given two of its angles, and its perimeter.

a1, Through a common point of two intersecting circles draw a double chord
of given length.

22. Given two triangles, circumscribe a triangle about the lesser of them so
as to be identically equal to the greater. °

NOTE—Use the preceding Problem.

23. Given three parallel lines, construct an equilateral triangle with its
corners on them.

24. Construct a triangle when given an angle, the altitude from the vertex
of that angle, and the radius of the in-circle.

25. From a given point draw a line to form with a given angle a triangle of
given perimeter.

NoTE—See iv. Addenda (4).

26, Through a given point in a diameter of a circle draw a chord so that of
the two arcs intercepted between the chord and diameter one may be three
times the other.

27. From a point of intersection of two circles draw a line to cut them, so
that the rectangle under the parts of it, which are chords of the circles, may be
given.

28. Construct a triangle, when given the rectangle under the sides of an
angle, the median to the opposite side, and the difference of the other angles.

NOTE—See iii. Addenda (15); i. Addenda (10), (11); iii. £x. 61; and use
the preceding Problem.

29. Construct a triangle, when given an angle, the altitude drawn from the
corner of it, and—

19, the sum of the sides containing it ;
2°, the dl:ﬂ.' ”» »

30. Construct a triangle, when given its base, difference of base angles, and
that the Locus of its vertex is—

19 a line parallel to the base;
29, a line cutting the base.

31. Inscribe in a given circle a polygon of n sides, so that one side may go
through a given point, and the other sides may be parallel to given directions.

NOTE—Consider separately the cases when 1. is odd, and when evem. Dyraw
lines || to the given directions, beginning at any pt. on the @.
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BOOK v.

An abridgment of Euclid’s Fifth Book—mainly based on
De Morgan's Connexion of Number and Magnitude.

By the word mumber, in what follows, we merely convey the notion of times
or repetitions, considered independently of the things counted or repeated.

By the word magnitude is meant a thing presented to us simply as that
which is made up of parts, not differing from the whole in anything but in
being less; so that, if we consider separately a part and the whole, we have
only two inferences—

The part is less than the whole,
The whole is greater than the part.

We shall use capital letters, as A, B, C, &c., to represent magnitudes—not
as in algebra, the number of units which the magnitudes contain, but the
magnitudes themselves—so that if it be, for example, weight of which we are
speaking, A is not a number of pounds, but the weight itself.

Concerning magnitudes we shall only assume that magnitudes of the same
kind may be added together, or that the same magnitude may be repeated any
number of times; and that a lesser magnitude may be taken from another of
the same kind.

We shall use small letters as m, n, p, &c., to denote integer numbers as
just defined ; and any one of them placed before a capital will denote repetition
of the magnitude represented by that capital : thus as 3 A denotes A repeated
thrice, so m A denotes A repeated m times.

Def. When a greater magnitude contains a lesser magnitude a
definite number of times exactly, the greater magnitude is called a
multiple of the lesser; and the lesser is called a sub-multiple of the
greater.

If the greater magnitude is denoted by A, and the lesser by B, then the
relation expressed in this definition will be denoted thus—
A=m B,
which is to be considered merely as an equivalent for these words—
¢ A is a multiple of B,
So we might have B = nC, C = p D, &c., with similar significations.
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Def. A sub-multiple is sometimes said /o measure, or be a measure
of its multiple.

Hence the word commensurable, which means Aaving a common measure;
so also incommensurable means not kaving a common measure.

. We shall assume that the following properties of multiples are
evident— :

1. A>,=,or< B
accordingasm A >, =,or < mB.
And conversely.

. mA +mB=m(A + B).
3 mA - mB=m(A - B),

A being greater than B.
mA + nA =(m + n) A
.mA —nA=(m—n)A,

m being greater than n.
6 m.nA=mn.A=nm.A=n.mA.

N

LIS

From the mutual relationship of two magnitudes of the same kind, there
arises a Zertium quid, which represents their relative, as distinguished from
their absolute greatness, and which is called the »atio of the magnitudes.

We cannot define exactly what the word ratio, in its most general sense,
means; but we can compare two ratios, and determine whether one ratio is
greater than, equal to, or less than another. This relationship of equality, or
inequality, between ratios is the subject of Euclid’s Fifth Book.

That two magnitudes may have a ratio they must be of the same 2ind: as
far as plane geometry is concerned this means that they must be both lines, or
both angles, or both areas. This necessary and sufficient condition is expressed
by Euclid in the words—¢ magnitudes are said to have a ratio to each other
which can, being multiplied, exceed the one the other.’ In other words they
must be such that, if either of them is repeated offen enough. the sum of its
repetitions will exceed the other. We cannot therefore have the ratio of a line
to an area, for we cannot make a line exceed an area, however often we repeat
the line.

“The ratio of one magnitude (A) to another of the same kind (B), may be
estimated by examining how the multiples of A are distributed among the
multiples of B, when both are arranged in order of magnitude, and the series
of multiples continued onwards without limit.
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Now as the multiplication of a magnitude, being simply its repetition an
assigned number of times, is always possible, the preceding mode of estimation
must be always possible. This is the geometrical mode set forth in Euclid’s
Fifth Book.

If the ratio of A to B is given, we are not given A and B themselves, but
only the answer to this question, for a// values of m—

Between what multiples of B lies m A ?
To put it more fully—If we form the two scales of multiples
A, 2A, 3A, &c., continued indefinitely ;
B, 2B, 3B, &c., also continued indefinitely; )
we know the ratio of A to B if we know the multiples nBand (n + 1) B
between which m A lies, for any value of m.

If it should happen that any one of the multiples of B (say n B) is exactly
equal to m A, then the quantities A and B are said to be commensurable. In
that case their treatment falls within the province of arithmetic.

Since when m A = nB,
n
A=—B,
m

we say—* That relation in virtue of which A is a fraction of B—a fraction
being defined as the ratio of two numbers—is called the ratio of A to B, when
they are commensurable.

But if it should 7o¢ happen that there are any two terms in the scales,
which are equal, so that we only know that m A lies between n B and
(n + 1) B, then the quantities A and B are said to be incommensurable; and
the arithmetical mode of treatment fails entirely.

Since when m A lies between n B and (n + 1) B,

A lies between = B and (= + L) B,
m m m

and that, as we make m larger, we diminish % , we say—* That relation in

virtue of which A can be expressed as lying between two fractions of B, which
fractions can be brought as near together as we please, is called the ratio of A
to B, when they are incommensurable.

In the case of commensurables when two ratios are equal to the same frac-
tion, the four magnitudes constituting them are said to be proportionals.

A _ n C
Thus if B o~ D’

then A has to B a ratio which is equal to the ratio of C to D; and A, B, C, D
are cailed aréthmetic proportionals.

But in the case of incommensurables the above test fails, because there is no

..n .
common fraction m to which the ratios can be equated ; and we have to ex-

- amine how the two pairs of scales cf multiples of the magnitudes are conneced.
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The test given by Euclid is this —

Def. Let there be four magnitudes, of which the first and second
are of the same kind, and the third and fourth are of the same
kind : let any equimultiples be taken of the first and third ; and let
any equimultiples be taken of the second and fourth. Then, if it
is found that a/ways the multiple of the first is greater than, equal
to, or less than the multiple of the second, according as the multiple
of the third is greater than, equal to, or less than the multiple of the
fourth—under those conditions, tke first is said fo have the same
ratio /o the second that the thixd has to the fourth ; and the four
magnitudes are called proportionals.

And, conversely, if four magnitudes are proportionals, and any
equimultiples are taken of the first and third, and also any equi-
multiples of the second and fourth ; then the multiple of the first
must be greater than, equal to, or less than the multiple of the
second according as the multiple of the third is greater than, equa.l
to, or less than the multiple of the fourth.

The foregoing definition has been otherwise expressed thus—*Quantity-ratios
are equal if every fraction is either equal to both, greater than both, or less
than both—a fraction being defined to be the ratio of two numbers.’ (Clifford.)

Which may again be abbreviated into this—Quantity-ratios are equal when
no fraction lies between them.

Euclid’s definition, expressed in the notation already indicated, is the same
as this—

The ratio of A to B is equal to that of P to Q

when m A >, =, or < n B according as
mP > =0 <L nQr
whatever numbers m and n may be.

It is an immediate consequence that the ratio of A to B is equal to that of

P to Q, when—

if m A is between n B and (n + 1) B, or is equal ton B,
then also m P is between n Q and (n + 1) Q, or is equal to n Q;
where m is any number whatever, and n is determined by the hypothesis.

Or again the definition may be expressed thus—

The ratio of A to B is equal to the ratio of P to Q when the multiples of A
are distributed among the multiples of B in the same manner as the multiples
of P are among the multiples of Q.
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Note that A and B must be magnitudes of the same kind—areas for instance
—also P and Q must be of the same kind, but not necessarily the same as the
former two—lines for instance.

Note also that to say

mA >nB when, and only when mC >nD,
implies also that
mC >nD when,and only when mA >nB.

And similarly for the other inequality.

The proportionality of four magnitudes A, B, C, D will be indicated by the
following notation —

A:B=C:D,

which is to be read thus—* zke ratio of A to B is equal 1o (o7, is the same as)
the ratio of C to D.

Similarly A : B > C : D is to be read—* tke ratio of A to B is greater than
the ratio of C 1o D.

And A : B < C : D is to be read—* ke 7atio of A to B is less than the ratio
of Cto D!

Def. When two magnitudes have a ratio to each other, each of
them is called a #rm of the ratio.

Def. If A : B = C : D, then the terms A and C are called the
anlecedents of the ratios; and the terms B and D are called the con-
sequents of the ratios : the terms A and D are called the extremes of
the proportion; and the terms B and C are called the means of
the proportion.

Def. The antecedents are said to be Aomologous, because they
occupy the same relative position in the ratios ; so also the conse-
quents are said to be komologous. ’

From the definition of the equality of ratios it follows that—

19, equal magnitudes have the same ratio to the same magnitude:
for the scales of multiples of the terms of the first ratio are identical
with those of the terms of the second ratio.

20, if two ratios are equal, as the antecedent of the first is greater
than, equal to, or less than its consequent, so is the antecedent of.
the other greater than, equal to, or less than its consequent: for
this is contained in the definition, if the multiples taken are unit
multiples, that is are the magnitudes themselves.

Def. When of any one set of the multiples of four magnitudes,
taken as in the preceding definition, the multiple of the first is grearex
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than that of the second, but the multiple of the third is not greater
than that of the fourth; then the first is said to have to the second a
grealer ratio than the third has to the fourth; and the third is said
to have to the fourth a Jess 7atio than the first has to the second.

Or, in other words, the ratio of A to B is greater than that of P to Q, when
whole numbers m and n can be found, such that, while m A is greater than
n B, m P is not greater than n Q; or that while mAis equal ton B, mP is
less than n Q.

From this definition it follows that—
1°, A+ M:B>A:B,
and B: A+ M<B: A
For let M be multiplied until it exceeds B,
suppose mM =B + K,
m(A+M)=mA +B + K
Let mA lie between nB and (n + 1) B,
m (A + M) lies between nB+ B+ Kand (n + 1) B + B + K,
and .. is beyond (n + 1) B; ’
ie. when m(A+ M)> @ + 1) B,
mA<L(n + 1)B;
A+M:B>A:B,
also B:A + M<B: A

2°, magnitudes which have the same ratio to the same magnitude are equal.
Let A, B, C be three magnitudes of the same kind, such that

A:C=B:C.
Then, by 1°, if A > B, it would follow that
A:C>B:C,
which is not true.
Also, if A < B, it would follow that
A:C<B:C,
which is not true.
It remains .. that A = B.
Def. The ratio A: B is termed a rafio of equality, of greater
wnequalily, or of less inequality, according as A=, >, or < B.
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Conceming commensurables and incommensurables it is to be noticed that—

1°, incommensurability is the »«/e, and commensurability the exception ;

29, though we cannot find an arithmetic fraction which is equal to the ratio
of two incommensurable magnitudes, yet we can find a fraction which ap-
proximates to that ratio as nearly as we please ; and hence that, as we may, by
any alteration however minute, convert the latter kind of magnitudes into the
former, so to any results which we can prove for commensurables, we may
expect a series of collateral and similar results for incommensurables.

Now if the letters all denote commensurable magnitudes, the following pro-
positions admit of easy proof—see Algebra, chapter on Proportion—

1. If A:B=X:Y,

and C:D =X:Y,

then A:B = C:D.

2. mA:mB=A:B
3. If A:B=C:D,

then B:A=D:C. invertendo.
4 If A:B=C:D,

and the four magnitudes are of the same kind,
then A:C =B:D. alternando.
5. If A:B=C:D,
then A+ B:B=C+D:D componendo.
6.  If A:B=C:D,
then A~B:B=C~D:D. dividendo.
‘Cor.to5and 6. A + B:A~B=C +D:C~D
7. If A:B=C:D=E:F,
then A:B=A+C +E:B + D+ F. addendo.
8. If A:B=X:Y,
and B:C=Y:2Z
Orif A:B=Y:2
and B:C = X:Y,
then, in both cases,
A:C=X:2.  exaquali.
Note—The Latin word, written after each proposition, is the name by which
it is usually quoted.
We now proceed to show that all these propositions can be deduced from
Euclid’s definition, for the cases of all quantities, whether commensurable or
incommensurable.  And as we shall find that all the propositions of the arith-

metic theory of proportion flow from this definition, the appropnateness of the
definitjon will appear.
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THEOREM 1—Ratios that are equal to the same ratio are
equal to eack other.

Let A, B, C, D, X, Y be magnitudes such that
A:B=X:Y,
and C:D=X:Y.
Take m and n any numbers whatever.
Then mA > nB when, and only when m X > n Y,

and mC >nD ” o mX >nY;
+~. mA>nB » » mC > nD.
Similarly mA < nB " » mC < nD,
and mA =nB v » mC =nD.
But these are the conditions that
A:B=C:D,

which is .-, true.

THEOREM 2— T/e ratio of equimultiples of two magni-
tudes is equal to that of the magnitudes themselves.

Let A and B be two magnitudes of the same kind; and let
m, n, p, g be any numbers whatever.
Then
PA >,=,0or < gB,accordingasm.pA >, =,or <m.qB;
ie.

PA >,=,0r < gB, accordingasp.mA, >, =,0or < q.mB.
But this is the criterion that
A:B=mA:mB,
which is ... true.

Cor. 1. It is an immediate consequence of this
that if A:B=C:D,
then mA:mB =nC:nD.
Cor. 2. It can also be shown, as in the theorem,
that mA: nB=mC:nD.
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Def. The ratios A : B and B : A are called reciprocal ratios.

Aote—If reciprocal ratios are equal the terms of either are equal.

THEOREM 3—If two ratios are equal their reciprocal
ratios are equal. (Invertendo.)

Let A, B, C, D be the terms of two ratios such that
A:B=C:D.
Take m and n any numbers whatever.
Then mA > nB when, and only when mC > n D,

s nB<mA ., ’ nD <mC.
Similarly nB > mA ' ” nD >mC.
And nB=mA » » nD =mC.
But these are the conditions that
B:A=D:C,

which is ... true.

THEOREM 4;If' Sour magnitudes of the same kind are
proportionals, they are also proportionals when taken aller-
nately. (Alternando.)

Let A, B, C, D be four magnitudes of the same kind, such that
A:B=C:D.
Lemma1. A:C >or< B:CasA > or < B,
and C:A<or>C:BasA >or<B.
For if A >B, we can by multiplying the difference between A
and B often enough, make it greater than the finite magnitude C.

i.e. m can be found so that m B is less than m A by a quantity
greater than C, ‘

and ... if m A lies between nC and (n + 1) C,or = nC,
m B will be less than n C.
But this is the criterion that
A:C>B:C..
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Next, if A < B, then B > A,
and B:C > A:C,
ie A:C<B:C.
Again, if A > B, then, as before,
nC >mB,butnC $ mA;
C:B>C:A,
o C:A<C:B
If A < B,then B > A, and
C:B < C:A,
C:A>C:B.
Lemmaz2. A > or < CasB > or < D.
For, by Lemma 1,if A > C,
A:B>C:B,
C:D>C:B,
B > D.
Similarly if A < C, B < D.
Now by Theorem 2. Cor. 1,
mA:mB=nC:nD.
And, by Lemma 2, mA >, =,or < nC,
accordingas mB >, =,or < nD.
But this is the criterion that
A:C=B:D,

which is .. true.

THEOREM 5—If two ratios are equal, the sum of the
antecedent and consequent of the first has to its consequent
the same ratio as the sum of the antecedent and consequent
of the second has to its consequent. (Componendo.)

Let A, B, C, D be the terms of two ratios such that
A:B=C:D.
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19, let the magnitudes be incommensurable.
Take m any number whatever.
Let m A lie between n B and (n + 1) B,
so that
mA 4+ mB lies between mB + nBandmB + (n + 1) B,
i.e. so that

m (A + B)liesbetween (m + n)Band (m + n + 1) B. (1

Then, from the condition of proportionality, we must have, cor-
responding to the preceding,

m C lying between n D and (n + 1) D,
or

m (C + D) lying between (m + n) D and (m + n + 1)D. (2)

But the simultaneous truth of (1) and (2) for all values of m, is
the criterion that

A+B:B=C+D:D,
which is .. true for incommensurables.
29, for commensurables, f m A = nB,soalsom C = nD,
and ..
m(A + B)=(m + n)B whenm (C + D)= (m + n) D,
theorem is true for commensurables also.

THEOREM 6—If two ratios are equal, the difference be-
tween the antecedent and the consequent of the first has to
ils consequent the same ratio as the difference between the
antecedent and consequent of the second has to its consequent.
(Dividendo.)

Proof precisely similar to that given for Componendo—recollecting
to subtract the multiple of the lesser of the two A and B.

Cor. to componendo and drvidendo.
If A:B=C:D,
then A+ B:A~B=C + D:C~Y0.
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THEOREM 7—If any number of ratios are equal, all the
magnitudes being of the same kind, as one of the antecedents
is 2o its consequent, so is the sum of all the antecedents to the
sum of all the consequents. (Addendo.)

Let A, B, C, D, E, F be the terms of three ratios, such that
A:B=C:D=E:F,
where the magnitudes are all of the same kind.
Then, if m and n are any numbers whatever,
mA >, =,or<nB,
accordg. as mC >, =,or< nD,
also accordg. as mE >,=,or< nF;
", alsoaccordg.as m(A + C + E) >,=,or<n(B + D + F).
But this is the criterion that
A:B=A+C+E:B+D+F,
which is .. true.
And process can obviously be extended to any number of ratios.

THEOREM 8—/f there is a set of magnitudes all of the
same kind, and also another set all of the same kind; such
that the first is to the second of the first set as the first to the
second of the other set; and the second to the third of the
Jirst set as the second to the third of the other ; and so on
2o the last magnitude ; then the first is to the last of the first
set as the first to the last of the other set. (Ex equali.)

10, let the sets consist of three magnitudes each, viz.: A, B, C
and X, Y, Z,
' so that A:B=X:Y,2_

and B:C=NX-Z.
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Lemma. A > or < C according as X > or < Z.
Forif A > C then A:B > C:B, (Zheor. 4. Lem.1.)
woalso > Z:Y.
X:¥Y>2Z:Y,
X>2Z
Similarlyif A < C then X < Z.
Now mA:mB =mX:mY, (Zkeor. 2. Cor. 1.)
and mB:nC=mY:nZ, (Zkeor. 2. Cor. 2.)
where m and n are any numbers whatever.
., by the Lemma, m A >, =, or < nC,
accordg. as m X >, =,or < nZ.
But this is the criterion that
A:C=X:2,
which is .. true.
29, let there be also given, in addition to 19, that
C:D=2Z:V.
Then combining result of 1¢ with this, we have
A:D=X:V.

And, similarly, theorem may be extended to any number of ratios.

Cor. If A:B=Y:2
and B:C = X: Y,}
thenalso A:C = X:Z.
For let Q be a fourth proportional to Y, Z, X, so that

Y:Z2=X:Q
oy alternando, Y : X =2Z:Q.
o, tnvertendo, X:Y = Q:Z.

s A:B=X:Q,
and B:C=Q:2Z,

A:C=X:2

w
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Def. When any number of magnitudes A, B, C, D, E, &c., are so
related that

A:B=B:C=C:D=D:E = &c,
then the magnitudes are said to be in confinued proportion; B
is said to be a mean proportional between A and C; B and
C are said to be fwo mean proportionals between A and D;
B, C, D are said to be fhree mean proportionals between A
and E; and so on.
Also A is said to have to C the duplicale ratio of that which A

has to B ; A is said to have to D the #riplicate ratio of that which -
A has to B; and so on.

THEOREM 9—If two ratios are equal, their duplicates
are also equal ; and conversely.

Let A, B, C, D, X, Y be magnitudes such that

A:B =B:X,
and C:D=D:Y.
10 if A:B=C:D,
then B: X =D:Y.
exequali A: X =C:Y.
i.e. the duplicate of A : B = the duplicate of C : D.
20, if A: X =C:Y,
assumethat A:B=C:P=P:Q
C:Q=A:X=C:Y
~ Q=Y.
& C:P=P:Y
But D:C=Y:D
exequali D:P=P:D
~ P=D.
A:B=C:D.
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Note—From Theorem 8 and its Corollary, it follows that, of a set of ratios

of magnitudes of the same kind, the ratio

first antecedent : last consequent,
is independent of the other antecedents and consequents, or their order; pro-
wided only that each magnitude which occurs anywhere as antecedent also
occurs somewhere else as consequent.

Hence, under suck conditions, it produces the same effect to alter a mag-
nitude successively in any number of ratios, as to alter it at once in the ratio
first antecedent to last consequent. Reference to this very important principle
will be facilitated by the following definition.

Def. When there are any number of magnitudes of the same
kind, the first is said to have to the last & ratio which is com-
pounded of the ratio of the first to the second, of the ratio of the
second to the third, and so on up to the ratio of the last but one to
the last.

Thus if A,- B, C, &c., X, Y, Z represent the magnitudes, then the ratio
A : Z is said to be compounded of the ratios

A:B, B:C, &c X:Y, Y:2
We shall denote this, for brevity, by the notation
A:Z=(A:B)(B:C) (C:D) &c. (X:Y) (Y:2).
Furthermore,if A:B =a:8,
and C:D =8:9,
then, in accordance with the foregoing definition and notation, (A : B) (C : D)
will be properly interpreted to mean the ratio which is compounded of ratios,
of the form a: B and B v, that are the same with the ratios A:B and C: D.
Similarly for the rest of the magnitudes.
This may be briefly expressed as follows—
(A:B) (C:D) (E:F) &. (W:X) (Y:2Z)
= the ratio which is compounded of the ratios
A:B, C:D, E:F, &c, W:X, Y:Z

Note (1)—By this definition of compound ratio, we see that Theorem 8 and
its Cor. can be both included in this brief enunciation—7wo ratios whick are
compounded of two sets of equal ratios are themselves equal.

. Note (2)—The ratio which is compounded of reciprocal ratios is a ratio of
equality, that is unity.
For (A:B) (B:A)=A:A,

Note (3)—Duplicate ratio is the ratio compounded of two equal reXiow:

triplicate ratio is the ratio compoundcg c;f three equal ratios; and so on.

.
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When four magnitudes are of the same kind, the principle alternando can be
used; and, in that case, ex @guali and componendo can be much more easily
proved than when the second pair of magnitudes are of a different kind from

the first pair.
Thuslet A:B = X:Y,

and B:C=Y:2Z;
where a// the magnitudes are of the same kind.
Then alternando A:X = B:Y,
= C: Z, similarly.
A:C=X:2Z;
which is ex equali.
Again, let A, B, C, D be four magnitudes of the same £ind, such that
A:B=C:D,
alternando A:C = B:D.
addendo A + B:C + D=A:C,
=B:D,
alternando A + B:B=C + D:D;
which is componendo.

It has been stated, in Book v, that pairs of magnitudes of the same kind
exist, which are incapable of being measured by any (the same) unit : or, it
other words, that there is no unit of measurement which is contained in each of
such a pair an exact number of times.

We proceed to demonstrate this in two particular cases.

LEMMA—If a magnitude X measures eack of two magnitudes A and B, then
X also measures the difference of A and B.
For let A contain X m times,

and B »s n ,

sothat A=m.X
and B=mn.X

s A~B=(m~n)X

A ~ B contains X m ~ n times:
i.e. X measures A ~ B,
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THEOREM (1)— The segments of a line divided in medial section (ii. 11) are
incommensurable.
It was shown Cor. to ii. 11 (p. 99) that if a line AB is divided in medial
. section in X (AX being
A Y X Z -] the greater segt.) and if
Y is taken in AX, so
that AY = BX, then AX is divided in medial section in Y, and also BY in X.
Simrly. if Z is taken in BX, so that BZ = XY, then BX and YZ are each
divided in medial section.
Also the following facts are evident—
AX > BX, but < 2z BX.
YZ < } AB.
AX — BX = YX.
BX — YX = ZX.
‘Whence, 12, BX does not measure AX ;
and, 29, if there is any finite line M which measures AX and BX, then
(by the Lemma) M measures YX and ZX, the parts of a line divided in medial

section, and which < } AB.
i.e. M measures ZX, which < } AB.
And, after D repetitions of this process, we should get that M measures a line

which < —I; . AB; i.e. that a finite line measures a line which can be made

as small as we please. But this is absurd.
M has no existence :
i.e. AX, BX are incommensurable.

NOTE— — = +B—)E_I+§ I+ x_z=&c
Bz BZ
s LT g

And the successive convergents to this continued fraction are
HPbHH DL %, &c.

So that the ratio (greater segt.: lesser segt.) is more and more nearly ap-
proximated to by taking the ratio of each successive term of the following
series to the one that precedes it—

1,1, 2, 3, 5 8 13, 21, 34, 55, 89, &c,
where it will be found that each term is the sum of the two terms preceding.
Thus, if 89 represents the whole line,
then 89 x 34 = 3036,
and 55 = 3025.

I
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THEOREM (2)—4 side and a diagonal of a square are incommensurable.
A Y V4

Let ABCD be a sq.
Take X in diag. DB so that
DX = AB.

Draw XY, L to DB, to meet
ABinY.

Take Z in YB so that
YZ = BX.

Then the following geometric facts are either obvious, or easily proved—
BX = XY = YA.
BY is diag. of sq. on BX.
DB > AB, but < 32 AB.
BX < § AB.
BD - AB = BX.
AB - BX = BY.
Whence, 1°, AB does not measure BD ;
and, 29, if there is any finite line M which measures AB and BD, then
(by the Lemma) M measures BX and BY, the side and diag. of a sq. whose
side < § AB.
Simrly. M measures BZ, which < 3 BX, i.e. which < } AB.
And, after p repetitions of the process, we should get that M measures a line

which < ;‘; .AB; i.e. that a finite line measures a line which can be made

as small as we please. But this is absurd.
M has no existence :
i.e. AB, BD are incommensurable.

BX 1
NOTE— — = +ﬁ I+B—A=l+ +BZ-&°‘
AY YZ
1
=1+ — — &c
2+ 3+

The successive convergents to which are

Hdh b i 4 &
The ratio (diagonal : side) is in fact what is denoted by the symbol 4/2.
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Note—Although any treatment of the ratios of Geometric Magnitudes (which
vary continuously) based on their representation by Arithmetic Numbers (which
vary discontinuously) is entirely fallacious—still (as in the two preceding cases)
by making the unit of measurement smal/ enough, we can find numbers whose
ratio will represent any proposed geometric ratio, 20 any assigned degree of
accuracy.

The following method * of considering Proportion is simple, and may be
found an instructive aid towards gaining a clearer view of the subject.

Def. When two variable quantities are so related to each other that they
vanish together, and that equal increments of the one always involve equal
increments of the other, they are said to be progortional.

" For example—suppose the

A altitude of a A ABC to be

fixed, but the base BC to
vary.

As the base shrinks to no-
thing the A also shrinks to
nothing ; and, as the base in-
8 & & G Ce creases, any two equal incre-

ments C,C, and C,C, of the
base, involve equal increments AC,C, and AC,C, of the A : hence the A and
the base are said to be proportional to each other.

If we select any two values of the base, and the two corresponding values of
the area of the A, they are said to form a proportion ; and the first base is
said to have to the second base t%e same ratio as the first area has to the second
area, (Cf. vi. 1.)

The two bases and the two areas are called #%e four terms of the proportion.
A proportion always consists of four terms, and the first term has to the second
the same ratio as the third has to the fourth.

This method might be substituted for. Euclid’s treatment of Proportion,
without any loss of exactitude, and with considerable gain in simplicity. The
Student should (as an Exercise) apply it to vi. 33.

* Communicated to the Editor by Professor Everett, F.R.S., of Queen’s
College, Belfast.
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Proposition 1.

THEOREM—If two triangles have the same altitude, then
the ratio which one triangle has to the other is equal to the
ratio whick the base of the first has to the base of the second.

A

N M B CD E-P Q R

Let ABC, ADE be As which have the same altitude—viz. the
L from A on their common line of base BCDE.
In the production of CB set off any number of parts,

BM, MN, each of which = BC.
In the production of DE set off any number of parts,
EP, PQ, QR, each of which = DE.
Join A to each of the pts. M, N, P, Q, R.
Then '+ CB = BM = MN;
A ACB = A ABM = A AMN;
. A ANC and line NC are equimults. of A ABC and base BC.
Similarly
A ARD and line RD are equimults. of A ADE and base DE.
And A ANC >, =,0or < A ARD,
accordingas NC >, =, or < RD.
But this is the criterion that
A ABC: A ADE = BC : DE,

which is ... true,
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Proposition 2.

THEOREMS—(a) A straight line parallel to one side of a
triangle cuts the other two sides (or these produced) propor-
tionally ; so that the segments terminated at the point of con-
currence of the latter two sides are homologous :

(B) the converse of this is also true.

A P

c
B B

(a) Let PQ, || to BC, one of the sides of A ABC, cut sides
AB, AC in P, Q respecty. Join BQ, CP.

Then A PQB = A PQC;
they are on same base, and between same |J¢.
A PQB: A PQA = A PQC: A PQA.
But A PQB: A PQA = BP: PA;
And A PQC: A PQA =CQ:QA.
. -BP: PA = CQ: QA.
(8) Next let PQ cut AB, AC so that
BP: PA = CQ: QA.
Then A PQB:A PQA = BP:PA;
and A PQC: A PQA =CQ:QA.
A PQB: A PQA = A PQC: A PQA.
A PQB = A PQC.

But they are on same base PQ.
PQis || to BC.
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Proposition 8.

THEOREMS—(a) If the vertical angle of a triangle is
bisected, internally or externally, by a straight line which
also cuts the base, then the base is divided internally or ex-
ternally in the vatio of the sides of the triangle ; so that each
segment and its conterminous side arve homologous :

(B) the converse of this is also true.

D
Q) @ A

B X C B Cc X

(a) Let ABC bea A ; and let AX bisect
B»QC in fig. (1),
A A
or CAE, external to BAC, in fig. (2).
Draw CD || to AX, meeting BA, or BA produced, in D.
Then ABC = B;QX in fig. (1), or = EQX in fig. (2),
= CAX in both figs.
= ACD.
AD = AC.
And .- AXis| to CD;
BA: AD = BX : XC;
BA: AC = BX: XC.
(8) Next let AX meet BC, fig. (1), or BC produced, fig. (2),
so that BA: AC = BX : XC.
Constructing as before, we have

BA: AD = BX: XC.
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BA: AC = BA: AD.
AC = AD.

ACD = ADC,
= BAX in fig. (1), or EAX in fig. (2).

Bu ACD = CAX.
CAX = BAX in fig. (1 ), or EAX in fig. (2):
i.e. AX bisects BAC or CAE external to BAC.

Proposition 4.

THEOREM—If two triangles are equiangular to eackh other, -
the sides which contain any one of the angles of the one, are
proportional to the sides whick contain that angle whick is
equal to it in the other; and those sides which are opposite
equal angles are homologous terms in the ratios.

E

Let ABC, DEF be

E As which have As®at

D A,B,Cand atD,E,F,

A X B respectively equal.

A A
.~ A = D, we can place A DEF on A ABC,
so that D may be on A, PE on AB, and DF on AC.
Then E will take a position X in AB, or AB produced;
and F will take a position Y in AC, or AC produced.

N\ ay Y
And + AXY =E = B;

XY is || to BC.
AB: AC = AX: AY,
= DE : DF.

Similarly for sides about other pairs of equal N®.
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Proposition 5.

THEOREM—If the sides of two triangles about eack of two

“of their angles are proportional, the triangles ave equiangular

to each other ; and those angles whick are opposite to the
hkomologous sides are equal.

A

F Let ABC, DEF
E: be As such that

X

AB :BC = DE: EF,
and BC:CA = EF:FD;
. ex equali AB:CA = DE : FD.
At pts. E, F, in st. line EF, draw EX, FX so that
A N A A
FEX =B, and EFX =C;
A A
walso X = A.
Then, As XEF, ABC being equiang. to each other, gives
XE:EF = AB: BC,
= DE: EF.
XE = DE.
Similarly XF = DF.
And EF is common to As XEF, DEF.
A XEF = A DEF.
A N N
DEF = XEF = ABC,
A A N
DFE = XFE = ACB,
AA
and D = A.
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Def. Rectilineal figures which have, 19, their angles (taken suc-
cessively) equal, each to each; and, 2°, the sides about the equal
angles proportional, in such a manner that the pairs of sides (cor-
respondingly situated with respect to the equal angles) are homo-
logous terms in the ratios, are called similar.

Note (1)—The foregoing definition is convertible into the following useful
form—Rectilineal figures are said to be similar, when, 1°, their angles (taken
successively ) are equal, eack to eack ; and, 2°, the ratio of any side of the one to
the side of the other (correspondingly situated with respect to the equal angles)
is a constant ratio. ‘

Note (3)—Of these two necessary and sufficient conditions of similarity, it
follows, from Props. 4 and 5, that if a triangle has one it must have the other;
so that either is sufficient to ensure the similarity of triangles.

Note (3)—It will be found hereafter [vi. 4ddenda (11), (12), (3)] that if
from a fixed point S a variable line SPQ is drawn; then (SP:SQ being
constant) if the Locus of P is a line, circle, or rectilineal figure, the corres-
ponding Locus of Q is a line, circle, or similar rectilineal figure—particular
cases of the general Theorem—Jf from a fixed point S, a variable line SPQ
is drawn, and the ratio of SP to SQ is constant ; then the Loci of P and Q
are similar figures.

Def. The point S is called a centre of similarity of the figures.

Note (4)—The construction of Exercise 77, p. 186, gives a solution of this
Problem— Given two finite lines, find a point whick is the common vertex of
similar triangles having them for bases.

Now if A, B, C, D, &c., are a number of points in a diagram; and
a, b, ¢, d, &c., the corresponding points on another diagram, representing the
same configuration on a different scale—so that ABCD &c., and abed &c.,
are similar figures—then if the point S is found, at which any corresponding
pair of lines AB, ab, subtend similar triangles, every pair of joins of cor-
responding points subtend S in similar triangles. For the join of every pair
of points on the one diagram is to the join of the corresponding points on the
other diagram in the ratio of the scales of the diagrams. Hence any triangle
as ABC is similar to the corresponding triangle abe.

A A N N N N
. CAS = CAB + SAB = cab + Sab = caS.
Also AC:ac = AB:ab = AS:aS.
AC:AS = ac:aS.
. A CSA is simr. to A ¢Sa, by vi. 6.
And similarly for all the points.

This point S is the centre of similarity of the two diagrams.
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Proposition 6.

THEOREM—If two triangles have one angle of the ome
equal to one angle of the other, and the sides about these
angles proportional, the triangles are similar; and those
angles whick are opposite to the homologous sides are equal.

A
Let ABC, DEF be
X Y F A\ such that
C,
AA
A =D,
and AB:AC = DE:DF.}

Let A DEF be so placed on A ABC that
the equal As are coincident,

and the homologous sides in the same direction. ,
E will take a position X on AB, or AB produced; j
and F will take a position Y on AC, or AC produced. '

Then AB: AC = DE: DF,

= AX:AY.

XY is || to BC.

A A A
ABC-= AXY = DEF,

A A A
and ACB = AYX = DFE.
A= ABC, DEF are equiang. to each other,
and .. simr,
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Proposition 7.

THEOREM—If two triangles have one angle of the one
equal to one angle of the other, and the sides about one other
angle in eack proportional, so that the sides opposite the equal
angles are homologous, the triangles have their third angles
either equal or supplementary; and in the former case the
triangles are similar.

D
A ‘
Let ABC, DEF
be As such that
E X '

AA

B =E,
and AB:AC = DE: DF.}

A A
If BAC = EDF, the As are equiang. to each other,
and ... are simr.

If not, assume that E6F > BQC.
A A
Draw DX, so that EDX = BAC, and X is in EF.

A DEX is equiang. to A ABC.
DE: DX = AB: AC,

= DE : DF.
DX = DF.
A A
DXF = DFX.

A A A
But DXF is suppt. of DXE, or of ACB.
A A
DFE is suppt. of ACB :

A A
i.e. C is either equal or supplementary to F,
and in former case /s are simr.
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Note—1t is easily seen that the AS are simr., in the preceding Prop., under
any one of the following conditions—
19, if the A®given equal are right or obtuse; for then remg. A® must be
both acute,
and .. cannot be supplementary.

2, if the A® opposite to the other two homologous sides are of same species;
for then they cannot be supplementary.

39, if the side opposite the given A in each A is not less than the other side
which with it form one of the equal ratios;

for then given A® must be not less than third As;
third A® must both be acute,
and ... cannot be supplementary.
Cf. i. Addenda (9).

Proposition 8.

THEOREMS—/7 a right-angled triangle, if a perpendzcular
is drawn from the vight angle on the hypotenuse—

(a) the triangles on cach side of it are similar to the whole
and to each other :

(B) the perpendicular is a mean proportional between the
segments of the hypotenuse :

(y) eack of the sides is a mean proportional between the
hypotenuse and its segment adjacent to that side.

C

Let ABC be a A, having 6 right.
Draw CN 1 to AB.

A N B

Then (a) in As ACB, ANC we have

A
and A-<commen;

- ———

/‘
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/s are equiang. to each other.
Similarly A ABC is equiang. to A CBN.

the three A® ABC, ACN, CBN are equiang. to each
other,
and .. are simr. As,

(8) from similarity of As ANC, CNB, we have
- AN:CN =CN:BN.

(v) from similarity of As ACB, ANC, we have
AB: AC = AC: AN,

and from similarity of As ACB, CNB, we have
AB:BC = BC: BN.

Proposition 9.

PROBLEM—From a given straight line to cut off any as-
signed submultiple.

A Let AB be the given st. line.
/ From A draw any st. line AX, making
P—X any A with AB; and produce AX to
Y so that AY may be the same mult.
. of AX that AB is of its. assigned sub-
BS mult.

Join BY ; and draw XP || to BY to meet AB in P.
Then since PX is || to BY,
AP : AB = AX:AY.
AP is the same sub-mult. of AB that AX is of AY;
i.e. AP is the assigr;ed sub-mult. of AB.
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Propositibn 10.

PROBLEM— 70 divide a given straight line into parts pro- '
portional to the parts of a given divided straight line.

A
Place AB, the given st. line
which is to be divided, and AC,
the given divided line, so as to
form an A.

Join BC.

First suppose AC divided into three parts in X, Y.
Draw XP, YQ || to BC and meeting AB in P, Q.
Draw XDE, || to AB, meeting QY in D, and BC in E.
Then figs. PD, QE are s,

XD = PQ, and DE = QB.

Now -+ DYis|to EC;

CY:YX = ED: DX,

= BQ:QP.

And -+ PXis| to QY;

YX: XA = QP: PA.

also, ex equali, CY : XA = BQ: PA.
AB is divided in P and Q into parts respecty. propl. to those

into which AC is divided in X and Y.

Next, if CY were divided again in Z, we could, by preceding,
divide PB into parts propl. to XY, YZ, ZC.

Similarly the process might be extended to any number of parts.
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Proposition 11.

PROBLEM—T7v find a third proportional to two given
straight lines.

A Place the given lines AB, AC so
as to form an A. )

Produce AB to D so that
BD = AC.

Join BC; and draw DP|| to BC,
P and meeting AC produced in P.

Then -+ BCis| to DP;

- AB:BD = AC:CP;
iiee. AB:AC = AC:CP.

CP is a third propl. to AB, AC.

Proposition 12.

PROBLEM—T70 find a fourth proportional to three given
straight lines.

A Place the given lines so that the

first two of them AB, BC may be in
a st. line, and the third AD may
B make any A with the first AB.
P Join BD; and draw CP || to BD,
and meeting AD produced in P.

Then, since BD is || to CP,
AB:BC = AD: DP;
i.e. DP is a fourth propl. to AB, BC, AD.
sz
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Proposition 13.

-

PROBLEM— 7 find a mean proportional between two given
straight lines.

Place the given lines AB, BC in the
same st. line ABC.
On AC as diam. describe a semi-Q; |
, - and let BP, 1 to AC, meet this semi-
A B C Oin P. Join AP, CP.

A
Then APC, being in a semi-O, is right.
PB, being drawn from P L to AC, is a mean propl
between AB, BC. :

Def. Two sides, forming an angle of one rectilineal figure, are
said to be reciprocally proportional to two sides, forming an
angle of another rectilineal figure, when a side of first is to a side
of second as remaining side of second is to remaining side of first.

Note—In more general terms, two magnitudes A, B, are said to be recipro-
cally proportional to two other magnitudes X, Y, when—
A:X=Y:B.

Proposition 14.

THEOREMS—(a) Parallelograms of equal area whick have
one angle of the one equal to one awngle of the other, have
ety sides about the equal angles veciprocally proportional :
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(B) and conversely, if two parallelograms have an angle
of the one equal to an angle of the other, and the sides about
the equal angles reciprocally proportional, the parallelograms
have the same area.

D (0] :
Let 0* ABCD, BEFG be of
. equal area, and such that
ABC = EBG ‘
A — .

Place them so that AB, BG are
in a st. line; and CJ® on opposite
sides of ABG. Then EB, BC
will also be in a st. line.

Complete 0 CBGX.

Then AB:BG = O AC:BX,
= O BF : O BX,
= BE: BC.

(a) is true.
Again, constructing as before, and assuming that
AB:BG = BE: BC;
wehave JAC:O0BX = AB: BG,

= BE: BC,
= O BF: O BX
O AC = O BF.
(B) is true.

Note—A second converse to (a) can be got by assuming the parallelograms of
equal area, and with the sides about a pair of angles reciprocally proportional:
then it can be proved [vi. Addenda (4)] that these angles are equal.
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Proposition 15.

- THEOREMS—(a) Z7iangles of equal area whick have one
angle of the one equal to one angle of the other, have their
sides about the equal angles reciprocally proportional :

(B) and conversely, if two triangles have an angle of the
one equal to an angle of the other, and the sides about the
equal angles reciprocally proportional, the triangles have the

same area.

B
Let As ABC, ADE be of equal ares,

D A A
and such that BAC = DAE.
Place them so that BA, AE may be
_ in a st. line, and A s on opposite sides of
BAE. Then CA, AD will also be in.
a st. line. Join BD.
E

Then CA: AD = A CAB: A ABD,
= A DAE: A ABD,
= EA: AB.

(a) is true.
Again, constructing as before, and assuming that
CA: AD = EA: AB;
we have A CAB: A ADB = CA: AD,
= EA: AB,
= A EAD: A ADB.
A CAB = A EAD;
(8) is true.

Note—As in Prop. 14, a second converse holds.
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Proposition 18.

THEOREMS—(a) If four straight lines are proportional,
the rectangle contained by the extremes is equal lo the rect-
angle contained by the means :

(B) the converse of this is also true.

Let A, B, X, Y be four
Y X st. lines such that

B

Place them so that A and Y are conterminous and .L,

and that B and X are conterminous and L.
Complete the rects. of which A, Y and B, X are adjacent sides.

Then these rects. are of equai area ;
they are equiang. 8. having their sides about equal A
reciprocally propl.
Next, constructing as before, and assuming that
rect. under A, Y = rect. under B, X;

then, since these rects..are equiang. [J¢ of equal area,
.. their sides about their equal A® are reciprocally propl.

A:B=X:Y;

Proposition 17.

THEOREMS—(a) If three straight lines are proportional
the rectangle contained by the extremes is equal to the square
on the mean :

(B) the converse of this is also true.
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Let A, X, B be three st. lines
B Y such that

X = X - l
X A:X=X:B.

A

Place them so that A and B are conterminous and 1,
and draw Y L to, at an end of, and equal to X.
Complete rects. ; and prove exactly as in preceding proposition.

Def. Two similar rectilineal figures are said to be similarly
situated with respect to a pair of their sides; or two sides of two
similar rectilineal figures are said to be similarly situated with
respect to the figures, when these sides are homologous.

Proposition 18.

PROBLEM—O7 a given straight line to describe a recti-
lineal figure similar to a given rectilineal figure, and so that
the given line and an assigned side of the given figure may
be similarly situated with respect to the two figures.

D
E

A B

Let AB be the given line; PQ the assigned side of given fig.
19, let given fig. be A PQR.
Draw AC, BC, so that
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A A A A
BAC = QPR, and ABC = PQR.
Then A ABC is equiang., and ... simr. to A PQR.
20, let given fig. be quad. PQSR.
Join RQ dividing the quad. into two As PQR, RQS.
On AB make A ABC simr.to A PQR, | so that Asat BandC
and }may be respecty. equal
on BC make A BCDsimr.to A QRS, ) to A®sat Q and R.
Then AGD = AGB + BED,
PRQ + QRSs,
PRS.
A A
Similarly ABD = PQS;
fig. ABDC is equiang. to fig. PQSR.
Also AC:CB = PR: RQ,
and CB:CD = RQ:RS.
ex equali AC:CD = PR:RS.
Similarly AB: BD = PQ: QS.
And sides about ﬁ and 6 are propl,

as also are sides about 6 and § .
figs. ABDC, PQSR have sides propl. which are about As
hat are respecty. equal.
fig. ABDC is simr. to fig. PQSR.
39, let fig. be pentagon PQTSR.
Then we can describe quad. ABDC simr. to quad. PQSR;
and also A BDE simr. to A QST.
And, as in 29, it can be shown that
fig. ABEDC is simr. to fig. PQTSR.
And same process can be extended to a fig. of any number of
ides.
Also in each case AB and PQ are similarly situated with re-
pect to given figs.
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Proposition 19.

THEOREM—Similar triangles are to eack other in th
duplicate ratio of their homologous sides.

C
Y R

B
A

Let ABC, PQR be similar As, having As at A, B, C respecty.
equal to Asat P, Q, R; so that sides AB, PQ are homologous.
Place A PQR on A ABC, so that

P may be on A, PQ on AB, and PR on AC:

AnOA
this can be done, *c P = A.

Then Q will take a position X, in AB, or AB produced;
and R will take a position Y, in AC, or AC produced.
Join CX.
Then A ABC: A PQR,
= A ABC: A AXY,
= (A ABC : A AXC)(A AXC: A AXY),
= (AB : AX)(AC : AY),
= (AB: AX)(AB : AX), - XY, BC are |,
= dupl. of AB: AX,
= dupl. of AB : PQ.
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EXERCISES.

1. If AD is a median of triangle ABC ; and DX, DY, the bisectors of angles
at D, meet AB, AC respectively in X, Y; then XY is parallel to BC.

2. If the distances of two fixed points from a variable line, are in a fixed
ratio, the line must go through a fixed point.

3. ABC is a triangle ; a parallel to BC is terminated by the sides AB, AC
in X, Y respectively; if BY, CX are joined, and cut in O, then—

1°, A AXO = A AYO; 32°, AO produced bisects BC.

4. Tangents at the ends of a diameter AB of a circle, meet the tangent at
any point P in X, Y ; if AY, BX cut in Q, then PQ is perpendicular to AB.

5. The rectangle under two lines is a mean proportional between the squares
on them.

6. If the bisectors of an opposite pair of angles of a quadrilateral meet on
one diagonal, then will the bisectors of the other pair meet on the other
diagonal.

7. OA, OB are fixed lines; if any points P, Q are taken in OA, OB respec-
tively; and PR, QS are drawn perpendicular to OB, OA; and RX, SY per-
pendicular to OA, OB ; then XY is parallel to PQ.

8. If two triangles are on opposite sides of the same base, their areas are
proportional to the segments of the join of their vertices, made by the base.

9. In a triangle ABC, if M is the mid point of BC; and AD, the bisector of
angle A, meets BC in D; then—

MB:MD = AB + AC: AB ~ AC.

NOTE—See i. Addenda (26) for relative positions of AD, AM.

10. P is any point in the side AB of a triangle ABC ; BQ, parallel to CP,
meets AC produced in Q; X, Y are points in AB, AC respectively, such that
AX is a mean proportional between AB, AP, and AY is a mean proportional -
between AC, AQ; show that area AXY is equal to area ABC.

NoTeE— Use vi. 15.

11. A line is drawn from the corner A of a parallelogram ABCD, cutting
BD in P, CD in Q, and BC produced in R : show that—

PQ: PR = PD?: PB%

NoTeE—/vin BQ; and use vi. 1 and 19.

12. From the intersection of the diagonals of a cyclic quadrilateral perpen-
diculars are dropped on a pair of opposite sides: prove that these perpen-
diculars are in the same ratio as the sides to which they are draxwm.
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Proposition 20.

THEOREMS—(a) Similar polygons may be divided into
the same number of similar triangles:

(B) the corresponding pairs of triangles in (a) have to each
other the same ratio that the polygons have :

(y) similar polygons are to eack other in the duplicate

ratio of their homologous sides :
(3) similar polygons are to eack other as the squares on

their homologous sides :
(€) similar polygons are to eack other as any side of the

first is to the third proportional to that side and the homob-
gous side of the second.

A . B

Let PAQRST &c. and XBYZUV é&c., be simr. polys. having
those A ®equal which are respecty. in the order of the letters named
Join P and X with each other corner of its poly.
Then As PAQ, XBY, are simr. .’
AOA
A =B,
and sides about these A® are propl. }
A A
AQP = BYX.
A A
But whole AQR = whole BYZ;
A A
remg. PQR = remg. XXZ.
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Also since AQ: QP = BY : YX,
and QR: AQ =YZ:BY;
ex equali QR:QP =YZ:YX.
AsRQP, ZYX are simr.
And simrly. it could be shown that As SRP, UZX are simr.

And the same process could obviously be carried on for each
corresponding pair of /s round the entire of the polys.
(a) is true.
Again, A APQ: A BXY in dupl. ratio of PQ to XY;
and A PQR: A XYZ ”
A APQ: A BXY = A PQR: A XYZ
And similarly it could be shown that each corresponding pair of
A\ s in the polys. have the same ratio that each other corresponding
pair has.
And one of the antecedents : one of the consequents,
= sum of antecedents : sum of consequents ;
i.e. = poly. PAQ &c. : poly. XBY é&c.
(B) is true.
Again, any A,as APQ : corresponding A BXY in dupl. ratio
of homologous sides AQ, BY;
poly. PAQ &c. : poly. XBY &c.,in dupl. ratio of AQ : BY.
(y) is true.
Now if sgs. are described on two homologous sides of the polys.,
these sgs., being simr. polys., are in dupl. ratio of sides.
*. (8) polys. are as sgs. on their homologous sides.
Lastly, if to L, M, any two homologous sides of polys., a third
propl. N is taken,
then L:Nin dupl ratio of L. to M.
But poly. on L : poly. on M in dupl. ratio of L to M.
poly.on L:poly.on M = L:N.
(c) ~is true.
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Proposition 21.

THEOREM—Rectilineal figures whick are similar to th
same figure are similar to each other. '

Let rectilin. figs. A and B be each simr. to X.
Since A is simr. to X ;
A is equiang. to X. .
Similarly B is equiang. to X. '
<. A is equiang. to B.

Again, since ratios of pairs of sides about equal A®in A andB
are each equal to ratio of pair of sides about corresponding equal
Asin X,

ratio of sides about an A in A
= ratio of sides about equal A in B.

s A s simr. to B.

Note—Before reading the next Prop. the learner should refer to p. 243 for
the proof of the Theorem that—If four magnitudes are proportional, tht
duplicate ratio of the first to the second is equal to the duplicate ratio of th
third to the fourth ; and conversely. That Theorem may be considered as 3
Lemma to the Prop.
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Proposition 22.

THEOREMS—(a) If four straight lines are proportional,
wmd similar rectilineal figures ave similarly described on tie
irst and second, and also similar rectilineal figures are
imilarly described on the third and fourth ; then as the
tgure on the first is to the figure on the second, so is the
tgure on the third to the figure on the fourth :

(B) the converse of this is also true.

/AL

N (o]

Let AB, CD, LM, NO be four st. lines.
On AB, CD let simr. figs. P, Q be simrly. described,
and on LM, NO let simr. figs. X, Y be simrly. described.
(a) Suppose AB: CD = LM : NO.

Then P : Q = dupl. ratio of AB to CD,
= dupl. ratio of LM to NO,
=X:Y.

(8) Next suppose P: Q = X : Y.
Then dupl. ratio of ABto CD = P: Q,
= XY,
= dupl. ratio of LM to NO.
AB:CD = LM : NO.
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Proposition 283.

THEOREM—FEquiangular parallelograms have to ome
another the ratio whick is compounded of the ratios of their
sides.

Let ABCD, CEFG be

K G F equiang. [7%, in which
/ A A
/ J BCD = ECG.
' E Place them so that a pair
of the lines BC, CG forming
the equal A®are in a st. line;

A and the 7% on opposite sides
of that line.

the other pair DC, CE must be in a st. line.
Complete 0 DCGK.
Then O CA:OCF = (O CA:O0CK) (O CK: O CF)
= (BC: CG) (CD : CE),
i.e. = ratio which is compounded
of ratios of sides.

Note (1)—The converse of Prop. 23 will be found in the 4ddenda.

Note (2)—It is sometimes said that to compound ratios is the same as to
multiply them. This, as a general statement, is quite wrong. The term
“ multiply”’ is an arithmetic term, and though applicable to the ratios of com-
mensurable quantities, has no meaning in relation to the ratios of incommen-
surables.

J
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Proposition 24.

THEOREM—I7 a parallelogram any two parallelograms,
whick are about either of its diagonals, are similar to the
whole and to eackh other.

A X 8

/\/ 4 Let ABCD be a [J; and
Y 0 AXOY, CQOR [ about
/ N the diag. AOC.

Since AYO = ADC, by |s YO, DC,

and A6Y = AGD, »
A AYOQ is simr. to A ADC;
AY : YO = AD: DC.
And since opposite sides of 8 are equal,
also AY : AX = AD: AB,
and OX:0Y =CB:CD,
and AX: X0 = AB:BC,
But As of [78, about which these propls. respecty. lie, are equal ;

8 have Bl/\\D in common.
3 XY is simr. to J BD.
Similarly [ QR is simr. to 3 BD;
also 3 XY is simr. to I QR.
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Note—Prop. 25 will be found immediately after Prop. 26. The order has
been changed because Prop. 26, being the converse of Prop. 24, should natur-
ally follow it.

Proposition 28.

THEOREN
lelograms have a common angle they are about the same
diagonal.

D C
Let .* ABCD, AXOY
be simr. and simrly. situated
Y (@] A i
about the common BAD.
A P X B

Assume that diag. AQC cuts YO in Q.
Draw QP, || to AY, and meeting AB in P.
Then 78 BD, PY, being about same diag. AQC, are simr.
CB:CD = QP: QY.
But CB:CD = OX: 0Y,
= QP:OY.
OY = QY, a part of itself.

the assumption that diag. AC does not go thro. O has led to |
an absurdity ; and .. is not true:

i.e. AOC is a common diag. line.
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Proposition 25.

of given area, and similar to a given rectilineal figure.

? (oY
D P s

H

F PROBLEM — 70 describe a rectilineal figure whick shall be

R

Let ABCD be the given rectilin. fig., O the given area.
On BC describe rect. BCFE, which = fig. ABCD.
On CF describe rect. CFGH, which = fig. O.
Find QR a mean propl. between BC, CH,
sothat BC: QR = QR:CH;;
and .. BC : CH in dupl. ratio of BC to QR.

On QR describe a rectilin. fig. PQRS simr. to ABCD, and
so that QR, BC are homologous sides.

Then fig. ABCD : fig. O = rect. BF : rect. CG,
= BC : CH,
= dupl. ratio of BC to QR,
= fig. ABCD : fig. PQRS.
fig. PQRS = fig. O.
i.e. PQRS has been described so as to be similar to ABCD,
and of same area as O.
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Proposition 27.

THEOREM—OYF all the parallelograms applied to the same
straight line, and deficient by parallelograms similar and
similarly placed to that described upon the half line, that
parallelogram is the greatest whick is applied to the half lin,
and is similar o its defect.

Proposition 28.

PROBLEM—T70 a given straight line to apply a parallels-
gram equal to a given rectilineal figure, and deficient by a
Jigure similar to a given parallelogram; but the rectilineal
Jigure must not be greater than the parallelogram applied to
kalf the given line, whose defect is similar to the given
parallelogram.

Proposition 29.

PROBLEM—70 apply to a given straight line a parallelo-
gram equal to a given rectilincal figure, and exceeding by a
parallelogram similar to a given one.

It is not necessary to give reasons for the omission of the three preceding
Props., because that omission is justified by universal custom.

An equivalent of Prop. 27, in another form, will be found in Section I
Maxima and Minima (Theor. 5) of the General Addenda.

Proposition 30.

PROBLEM— 70 divide a given straight line so that the
whole line is to the greater segment as the greater segment is
70 the lesser segment.
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: Let AB be the given line,
A X B Divide it in X so that
rect. under AB, BX = sq. on AX.
AB: AX = AX: BX;
i.e. AB is divided in X as reqd.

Def. A straight line divided as in vi. 30 (i. e. as in ii. 11) is said
to be divided in extreme and mean ratio.

Proposition 31.

THEOREM—If similar rectilineal figures are similarily
described on the three sides of a right-angled triangle, the
JSigure on the hypotenuse is equal to the sum of the figures on
the other sides.

C A
X Let ABC be a A having C

right; and let X, Y, Z denote the
A areas of simr. rectilin. figs. simrly.
4 B described on sides opposite A, B,C

respecty.

Since simr. figs. are as sgs. on their homologous sides ;
X :Y = sq. on BC :sq. on AC.
~.y  componendo,
X 4+ Y:Y = sq. on BC + sq. on AC : sq. on AC,
= sq. on AB : sq. on AC,
=2Z:Y.
X+Y=2
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Proposition 32.

THEOREM—If two triangles have two sides of the one
proportional to two sides of the other, and are so placed at |
an angle that the homologous sides are parallel, the remain-
ing sides of the triangles are in a straight line.

This proposition is omitted as quite useless.

Without some further limitation to the given conditions, it is not even neces-
sarily true.

C
X For let AXB, BYC be At in which
AX :BX = BY : CY,
and let them be so placed at B that BY
is || to AX, and CY to BX.

A B C

Then it is clear that either of the positions of A BYC, given in fig., satisfies
the stated condns., but that only one of them gives the stated result.

Proposition 383.

TUEOREMS—I7 equal circles (or the same circle) the ratio |
of—
(a) any two angles at the centres ;
or (B) any two angles at the circumferences ;
or (y) any two sectors ;
is equal to the ratio of the respective arcs on whick they stand. |

W

: X,
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Let PQ, XY be any arcs of equal O# whose centres are respecty.
A and B.

Along circumf. of O, centre A, set off any number of arcs
QR, RS, each of which = PQ.
Along circumf. of O, centre B, set off any number of arcs
YU, UV, VW, each of which = XY.
Join A to each of the pts. R, S ; and B to each of pts. U, V, W.
Then (a) ° arc PQ = arc QR = arc RS,

A A A
~ PAQ = QAR = RAS.
A A
*. PAS and arc PS are equimults. of PAQ and arc PQ.
Similarly XQW and arc XW are equimults. of Xé\Y and arc XY.

A A
And PAS >, =, or < XBW,
according as arc PS >, =, or < arc XW.
But this is the criterion that

PAQ: XBY = arc PQ : arc XY,
which is .-, true,

Also (B) an exactly similar process will serve for A# which PQ,
XY subtend at circumfs.

Or the proportionality of A8 at the circumfs. to the arcs on which
they stand, may be deduced from that of the corresponding AS at
the centres by the consideration that they are equisubmults.—viz.
halves—of them.

Lastly (y) first prove, as a Lemma, iii. Addenda (8); and then
prove the proportionality of sectors APQ, BXY to their arcs,
exactly in the same way as (a) is done here.

Note—All the propositions of Euclid’s first four, and sixth, Books have been
enunciated in the preceding pages. Most of the more familiar intercalations of
his various Editors will be found in the Addenda to the different Books.
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COROLLARIES TO THE ProOPS, IN BOoOK vi.

Def.- The distance between an opposite pair of sides of a parallelogram
(measured by the length of a perpendicular dropped from any point #7 one on
the other) is called an altitude of the parallelogram, with respect to either of
those sides considered as base.

Note—Obviously a parallelogram has two altitudes.

vi. 1. (a) Parallelograms of the same altitude are in the same ratio as their
bases : this follows at once from the Prop. by considering that the parallelo-
grams are equimultiples (viz. doubles) of triangles of the same altitude; orit
can be proved by a precisely similar method to that used in the Prop.

(B) As in the Prop. it could be shown that triangles on equal bases
are as their altitudes.

(7) So also parallelograms on equal bases are as their altitudes.

(8) Triangles of equal altitude are as their bases.

(¢) Parallelograms of equal altitude are as their bases.

($) The Converses of the Prop., and of all the preceding Corollaries,
follow easily by reductio ad absurdum.

vi.4. (a) A line drawn across a triangle, parallel to a side, cuts off a
similar triangle.

(B) In equiangular triangles the altitudes drawn to homologous sides
are proportional to those sides.

(7) A line drawn from a corner of a triangle (considered as vertex) to
meet the base, divides every parallel to the base (terminated by the sides, or
sides produced) in the same ratio.

vi. 10, The external section of a line, in a given ratio, can be done in
exactly the same way.

vi. 13. By this Prop. 3, 7, 15, &c., means may be found between two
given lines : for after one mean is found, a mean can be found between it and
each of the given lines, thus getting 3 means; then, again, finding means be-
tween each successive two of these we get 7 means; and continuing this process
we can find 22— 1 means, where 1 is any positive integer.

Note—The Problem of finding 2 means between two given lines is insoluble
by the ungraduated ruler and compasses alone. On p. 284 will be found one
of the many ways of solving it by further mechanical aid,

vi. 16. The principle alternando follows at once from this Prop. in the
case of straight lines. 1f therefore it can be shown that the ratio of any two
magnitudes of the same kind can be represented by the ratio of two straight
lines, the principle (for all such magnitudes) is an immediate deduction from
this Prop.
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Now in the geometry of the Point, Line, and Circle, the only magnitudes
that can occur are—
(1) Lines (including straight lines, and arcs of circles).
(2) Angles.
(3) Areas (including rectilineal figures, circles, and sectors of circles).

But to any arc of a circle there is a straight line equivalent in length; and
though we cannot (by the use of the ruler and compasses) find this line, it
clearly has an existence, and might be hypothetically reasoned about. Hence
arcs of circles are proportional to straight lines.

Angles again are proportional to arcs of any (the same) circle.

Rectilineal figures can be reduced to rectangles, having a common altitude,
and therefore proportional to their bases.

Circles can be shown (Euclid xii. 2) to be proportional to the squares on
their radii; and therefore come under the conditions of rectilineal figures. -

Sectors of the same circle are proportional to their arcs; and sectors of
different circles are proportional to the circles they are parts of;; and therefore
to the squares on their radii.

So that (assuming xii. 2,and the above hypothetical construction) a/terrnando
follows from vi. 16 ; and then (as on p. 244) ex'@guali and componendo can be
deduced : in this way Book v. might be dispensed with.

Note—It is however to be carefully noted that Euclid does not permit the
use of hypothetical constructions; and therefore that to introduce such, is to
travel outside the limitations of geometrical reasoning which /¢ has laid
down—though not necessarily to be illogical.

vi. 20. The perimeters of similar rectilineal figures are proportional to
their homologous sides.
vi. 22. If four lines are proportional, the squares on them are propor-

tional; and, conversely, if four squares are proportional, their sides are pro-
portional. :

vi. 23. (a) Triangles which have an angle of the one equal, or supplemen-
tary, to an angle of the other, have to one another the ratio compounded of the
ratios of the sides about these angles.

(B) Equiangular parallelograms are in the same ratio as the rect-
angles under the sides forming a pair of equal angles.

(v) Triangles which have an angle of the one equal, or supplemen-
tary, to an angle of the other, are in the same ratio as the rectangles under the
sides forming these angles.

vi. 25. The shape of any given rectilineal figure may be changed (without
altering its area) to the shape of any other given rectilineal figure.

vi. 30. The greater segment will be itself divided 7 extreme and mean
ratio by setting off, from one end of it, a part equal to the lesser segment ; and
this process can be continued indefinitely. Cf. Cor.toil. 11, and v. Addenda (X,



282 ADDENDA

SOME IMMEDIATE DEVELOPMENTS OF THE PROPS. IN BOOK vi.—NOT
SO OBVIOUS AS TO BE PROPERLY CALLED COROLLARIES,

THEOREM (1)— T7iangles (or parallelograms) are to eack other in the ratio
compounded of the ratios of their bases and altitudes.

Let X, X’ be the areas of two A® (or two [Is);
a, &’ their respective altitudes ;
b, b’ their corresponding bases.
Then, if Y is the area of a A (or [J) of altitude &, and base b,
X:Y=Db:VD,
and Y:X =a:a.
X : X/, which = (X: Y) (Y : X",
also = (b: b) (a:a').

Cor. (1). If triangles (or parallelograms) have equal areas, any pair of their
altitudes are reciprocally proportional to the bases to which they are drawn.

Cor. (2). Triangles (or parallelograms) have the same ratio to each other as
rectangles under their respective altitudes and bases.

Cor. (3). Since in equiangular triangles, the altitudes are as the bases to
which they are drawn, vi. 19 is an immediate deduction from the above.

Cor. (4). Similarly vi. 23.is deducible from it.

THEOREM (2)—If two lines are cut by three parallels, the intercepts on the
one are in the same ratio as the corvesponding intercepts on the other.

Let the three [* AA’, BB, CC/,cut
other two lines in A, B, C and A', B
C’ respectively.

Join AB', A'B, BC', B'C.
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Then A ABB' = A A'BB’;
and A CBB = A C'BB'.
Now AB:BC = A ABB': A CBB/,
and .. = A ABB’: A C'BB/,
=AB:BC.

Note—This Theorem (which is here deduced from vi. 1) might have been
proved directly from the definition of proportion, in the same way as vi. 1.

THEOREM (3)—If two similar unequal rectilineal figures are so placed that
Zheir corresponding sides are parallel, then the joins of corresponding corners
are all concurrent.

A

Let AB, BC be two consecutive sides of one fig.
PQ, QR the corresponding sides of the other.
Suppose that AP, BQ meet in O ;
and that CR, BQ meet in O'.

Then BO:QO = AB: PQ,
= BC: QR, . figs. are simr.
= BO’: Q0.
O and O’ are the same pt.
i.e. AP, BQ, CR are concurrent.
Similarly a// corresponding joins are concurrent in O.

Def. The point so determined is called a centre of similarity of the
figures. Cf. p. 253.

Note—Figures like the above are said to be similarly situated wih tespest
to each other,
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Extension of vi. 13—Philo’s mode of finding two mean proportionals between
two lines, by the use of a graduated ruler.

A

Place the lines in positions AB, AC, at rt. A®.
Complete rect. ABPC ; and describe © round this rect.
Now place a graduated ruler, with its edge at P, and meeting AB, AC pro-
duced respectively in X, Y ; and the © in Q.
Turn the ruler about P, until PX = QY, and .. also QX = PY.
Then XA.XB = XP.XQ =YP.YQ = YA.YC.
And CP (or AB): CY = AX:AY = CY: BX.
Also CY:BX = AX: AY = BX:BP (orAC);
i.e. CY is a mean proportional between AB, BX ;
and BX » ” CY, AC.

Note—A line XPQY (drawn as in fig.) through any pt. P, within any angleA;
so that, AQ being perpendicular to XY, then QX, PY are equal, is called
Philo’s Liine: it possesses the property, the proof of which is difficult (see
Mulcahy’s Modern Geometry, p. 106), that XPY is the least line through P
terminated by the sides of the angle.

THEOREM (4)—( Another Converse to the first part of Vi. 14 or 15). Iftwo
parallelograms (or triangles) have equal areas, and the sides about a pair of
angles reciprocally proportional, then the angles contained by these sides are
either equal, or supplementary.

This may be proved by drawing the altitudes to an homologous pair of the
reciprocal sides ; and then using vi. Addenda (1) Cor. (1), and vi. 7.




BOOK vi.' 285

THEOREM (5)—( Converse of vi. 23 ). If parallelograms have to each other the
vatio whick is compounded of the ratios of their sides, then they are equiangular

‘0 eack other.

X R

Q E F

Let ABCD, EFGH be [ such that
[CJAC: COFH = (AB: FG) (BC : GH).

N N
Suppose B and G each }> art. A.

Produce AB to P, and CB to Q, so that BP = FG, and BQ = GH.
Complete [J QBPR.
Then, since [J* AC, PQ are equiang.,
OAC:CJPQ = (AB: BP) (BC: BQ),
= (AB: FG) (BC: GH),
= JAC: JHF.
OO PQ = OOHF.
And, since BQ = EF, [J* have same altitude,
.., if 1 HF is applied to [] PQ, so that EF coincides with BQ,
then HG must be in line with PR.
Assume that H, G are respectively at X, Y, which do #o# coincide with P, R.
Then BP = EH = BX;
A\ N\
BPX = BXP.
N A N
But BPX = PBQ = CBA, which } art. A.
And B)/(\P = E{’I\G, which 4 art. A, ° (,3\:’P art. A.
of BBX and Bg(\P, one part. A,and one { tt. A.
And they cannot each be right.
they are unequal.
But they were before proved equal.
the assumption that X, Y do #o¢ coincide with P, R has led to a con-

radiction ; and ... is not true.
N N N
HEF = PBQ = CBA:

i.e. AC, FH are equiang, to each other.
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THEOREM (6)—If the kypotenuse of a right-angled triangle is divided in
extreme and mean ratio by the altitude drawn to it ; then—

(@) the lesser side containing the right angle is equal to the alternate segment
of the hypotenuse ; and conversely : :

(B) the greater side containing the right angle is a mean proportional between
the hypotenuse and the remaining side ; and conversely.

' A
Let ABC be a A, having ACB right;
and let CN be L from C on AB.

AL N B

Then, by vi. 8 (y), and vi. 1%, .
AB . BN = BC?
and AB.AN = AC2
if (¢) we assume that AB.BN = AN?,
we have BC = AN;
or conversely, if BC = AN,
then AB.BN = AN2
And if (8) we assume that AB.BN = AN?,
then by (a) BC = AN,
and . AB.BC = AC?;
or conversely, if AB.BC = AC?,
then BC = AN,
and .. by (@) AB.BN = AN2

Cor. From the above, a right-angled triangle can be constructed on a gives
line as hypotenuse, and so that its sides are in continued proportion: for if AB
is the given line, then dividing it in N in extreme and mean ratio, and drawing
NC perpendicular to it to meet semi-circle on AB in C, gives ABC such 2
triangle.
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SoME  USEFUL THEOREMS MAINLY DEPENDING ON BOOK vi.

THEOREM (7)—The rectangle under two sides of a triangle is equal to the
square on the line bisecting the angle between them, and terminated by the
opposite side, together with the rectangle wnder the segments into whick the
third side is divided by that bisector.

In A ABC let AX, which bisects BAC,
meet BC in X.
Produce AX to meet the circum-® of
Cc A ABC in D; and join DC,

A N
Then since  ABX = ADC, in same segt.

N\ N\

and BAX = DAC;

A AXB is equiang. to A ACD.
BA: AX = DA: AC.
BA . AC = DA . AX,

= AX? + DX. AX,
= AX? + BX.XC.

All the foregoing holds for the
ext. bisector (see adjacent fig.)
excepting that, in the last two
lines AX? has to be subtracted,
so that we get

BA.AC = BX.XC — AX2

(o] X . .
\\_/ Also if AX is a tang. to the O,
it is || to BC, and Prop. has no

meaning.
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THEOREM (8)— The rectangle under two sides of a triangle is equal to the
rectangle under the altitude conterminous with them, and the diameter of the
circume-circle.

Let AD be diam. of © round A ABC;
and AN the altitude from A.

B c Join DC.

A A
Then since  ABC = ADC, in same segt.

N N
and ANB = ACD, each being right;
A ABN is equiang. to A ADC.
BA: AN = AD : AC.
BA.AC = AN . AD.

Cor. (1). The rectangles under any two sides of any triangles, inscribed in
the same or equal circles, are as the altitudes drawn to the third sides.

Cor, (2). If ABCD is a cyclic quadrilateral, whose diagonals cut in O, then—
AB.BC:CD.DA =BO:DO;
and AB.BC:BC.CD = BO: CO.

Note—The converses of all the above theorems easily follow.

THEOREM (9)— The rectangle under the diagonals of any guadrilateral i
less than the sum of the rectangles under its opposite sides—excepting in the
particular case of a cyclic quadrilateral, when the inequality becomes on
equality.
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Let ABCD be a quad. not
(o cyclic, so that A* BAC, BDC are
not equal.

Draw AE, BE, within the quad.,
so that

/\ N\ N A
BAE = BDC, and ABE = CBD.
A Join EC.

Then A®* AEB, DCB are simr. by construction.
AB: AE = DB: DC;
AB.CD=-DB.AE . . .. ... (@

N N\
Again, since ABD = EBC,
and AB:BD = EB: BC;
A’ ABD, EBC are simr.
AD:DB = EC:BC;
AD.BC=DB.EC . ... .. . ®
Adding results (a) and (8) we get
AB.CD + AD.BC = DB (AE + EC);
> DB .AC.

In the particular case when A, B, C, D are concyclic, E will lie in AC; so
that then

AE + EC = AC,
and the inequality becomes an equality.

Note (1)—The particular case is known as Ptolemy's Theovem : it is one of
the most useful properties of the circle. The Student should make out (which
he will find easy) an independent proof of this case.

Note (2)—Of course it follows from the preceding that, if

AB.CD + AD.BC = AC.BD,

then ABCD is a cyclic quadrilateral. This is the converse of Ptolemy's Theovem.
u
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THEOREM (10)—T"e diagonals of a cyclic qguadrilateral are proportional to
the sums of the rectangles under the sides meeting at their respective extremities.

19, let ABCD be any quad;
AP, CQ L* to diag. BD; and -
BR, DS L* to diag. AC.

Draw DY L to BR produced,
and AX L to CQ produced.

N N N
Then RCQ = RBQ, '+ RCBQ is cyclic.

. : N N
And as these are A® of A® ACX, DBY, in which also X and Y are each

right; .
A AXC is equiang. to A DYB.

AC : BD = CX: BY,
= AP + CQ:BR + DS.
2°, let ABCD be supposed cyclic, and 8 the diam. of its circum-O, then
AB.AD = AP. 5,
CB.CD = CQ.35
BA.BC = BR.3§5,
DA.DC = DS. 5; 3
.. AB.AD + CB.CD:BA.BC + DA.DC
={AP + CQ)3: (BR + DS)3,
= AC: BD.

Note—The converse of the above Theorem will readily follow. 1
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THEOREM (11)—If from a fixed point O a variable line is drawn, and in it
points P, Q are taken, so that the ratio of OP to OQ is constant ; then, if the
Locus of one of the points is a line, so also is the Locus of the other.

Q
Let Locus of P be a line.
Draw OC L to it; and QD || to PC,
to meet OC in D.

o Cl DI

Then OD : OC = OQ: OP, const,
And OC is const.
OD is const.
<. Locus of Q is fixed line QD.

THEOREM (12)—If from a fixed point O a variable line is drawn, and points
P, Q are taken in it, so that the ratio of OP to OQ is constant ; then, if the
Locus of one of the points is a circle, so also is the Locus of the other.

Let Locus of P be a O,
centre C.

Draw QD }! to CP, to meet
OC in D.

Then DQ:CP = 0OQ: OP, const.
And CP is const.
. DQis const.
. Locus of Q is fixed O, centre D, radius DQ.

Note—A useful particular case, when P is the mid point of OQ, has been
given already (p. 190, Exercise 109).
U2
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THEOREM (13)—T%e Locus of a point suck that the rectangle under its dis-
tances from the equal sides of an isosceles triangle is equal to the square on its
distance from the third side, is the circle which touches the equal sides at the

extremities of the third side.

A

Let ABC be an isos. A, in

which
AB = AC.

Let P be a 'pt. such that, if
L, M, N are the respective feet
of .L® from it on BC, CA, AB,

then PM.PN = PL2
Join LM, LN, PB, PC.

~Then PLCM and PLBN are cyclic quads,
N N\ N N
LPM = ACB = ABC = LPN.
And PM:PL = PL:PN.
As MPL, LPN are simr.

N A

MLP = LNP;

N\ N A N

PBC = LNP = MLP = MCP.
. O round BPC has BC a secant and AC a tang. at C.
Similarly it has AB a tang. at B.

it is a fixed O :

i.e. this © is Locus of P.

Note—The converse of this is easily proved in a similar manner.
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THEOREM (14)—7%ke Locus of a point such that the rectangle under its
distances. from an opposite pair of sides of a cyclic quadrilateral is equal to the
rectangle under its distances from the other opposite pair, is the circle which
circumscribes the quadrilateral. .

L

A Let ABCD be a cyclic quad. ;
PL, PM, PN, PO the respective
1% on AB, BC, CD, DA from a
pt. P, such that

B PL.PN = PM. PO.

Join LM, NO, PB, PD.

O

A N .
Then LPM = suppt. ABM, since LBMP is cyclic,
N
= ADC, since ABCD is cyclic,

N
= NPO, since NPOD is cyclic,
Also PL:PM = PO:PN;
A LPM is equiang. to A OPN.

A\ N\
LMP = ONP.
N N\
But LMP = LBP, - LBMP is cyclic.
N\ A\
And ONP = PDO, - PODN is cyclic.

N N\
ABP = PDA.
P is concyclic with ABD :
i.e. Locus of P is ® round ABCD.

Note—The converse of this is easily proved in a similar manner.
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THEOREM (15)—If A, B are fixed points, and P a variable point, such that
the ratio of PA to PB is one of constant inequality ; then, if AB is divided
internally in X, and externally in Y, in the same ratio, the civcle on XY as
diameter is the Locus of P.

P For, since AX : BX = AP : BP,
*. PXis int. bisector of A/F\’B.
And since AY : BY = AP : BP,
X . PY is ext. bisector of A/F;B.
. X/F\’Y is right.
. Pis on © diam. XY.

\
N

THEOREM (16)—If A, B, C, D are collinear points, and on AC, BD any
similar triangles AXC, BYD are described, so that the homologous sides AX,
BY are parallel, as also CX, DY ; and if O is the intersection of YX, DA, then
the rectangle under OA . OD is equal to the rectangle under OB . OC.

Y
X For OA:0B = OX: OY,
= OC : OD.
/ . OA.OD = OB, OC.
o A B C D

THEOREM (17)—If O, A, B, C, D, are points situated as in the last Theorem ;
then the circle whose centre is O, and the square on whose radius is equal
to cither of the equal rectangles, is the Locus of the point at which AB, CD
sublend equal angles. :

Let O, centre O, have
radius OP such that

OA.OD = OP? = 0B.OC.

=)
A
B\J
c D Describe ®* round BPC
)/ and APD.
SN \

(o]
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Then, by the above condn., OP touches both these O,
N A\ N
APB = OPB - OPA,
N\ A
= PCB — PDA,

N
= CPD.
i e. every pt. on O, radius OP, subtends equal A*at AB, CD.

Cor. When PB, PC coalesce, this Locus is the same as that in (15).

THEOREM (18)—( Chapple's) If R, ¥ are the respective radii of the circum-
circle and in-circle of a triangle, whose corresponding circles are C and |; then
Cl? = R? — 2Rr.

Let aBy be the A.
Let al meet the circum-O in A;
and AC meet same O in B.

C/l

A

Y
V . Join By, Av.
Draw IQ L to ay; and let CI .
B meet the © in X, Y.

A A
Then AB« = laQ, in same segt.

N N
And AyB = IQa, since each is right.
A AB4, 1aQ are simr.
la:1Q = AB: Av.
ButlQ = r, AB = 2R, and Ay = Al.

2Rr = Al.lqg,
=XI.1Y,
= (R + Cl) (R — CI,
=R CI:

iie. CI?=R? — 2RPr.

Note—In the same manner, if E, is the ex-centre of the ©® whose radius is r,
it can be proved that CE,;? = R* + 2 Rr,.
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THEOREM (19)—/f C and | are the centres of two circles, whose respectsve
radii are R, ¥, and which are so situated that C1* = R?* — 2Rr; and if
Jrom any point a, on the outer, tangents aB, ay are drawn to the inner, so that
B, v are concyclic with a ; then will By also be a tangent to the inner.

Let tang. from B to the inner
© meet ay in y': we have to
show thaty and 9’ are the same

pt.
Let N be pt. of cont. of aB;
and let al meet outer © in D.

Draw diam. DCA ; and join
AB, DB.

Then 3Rrx = R?— CI3,
R+ CIHR-=CD,
= al.ID.
IN:la =ID:DA.
N\ N
Again, since DAB = Dap, in same segt.
N N
and DBA = INg, each being right;
A DBA is equiang. to A INa.
IN:le = D8 : DA.
ID = DB.
N\ N
Dig = D&l
N N
Now DBy = Day,
N
= laB,
N\ N
= DIB — |Baq,
N\ N
= DBl — 18y,
/\ ’
= DBY.
v and 4’ are the same pt.*

.

* BESANT—Quarterly Journal of Mathematics, Vol. XiL.
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Note (1)—Hence the problem—70 describe a triangle whick shall be in-
scribed in circle (vadius R) and circumscribed about circle (radius r)—is
impossible, unless the square on the distance between the centres of the
circles = R? — 2 Rr; and, if that is the case, an infinite number of such
triangles can be described: in this latter case the Problem is said to be
indeterminate. :

Note (2)—The generalisation of this Theorem for any polygon is called
Poncelet's Theorem. A proof of it will be found in Zownsend's Modern
Geometry, Vol. 1, p. 268. It is not elementary enough to introduce here.

THEOREM (20)—If through any point O, within a triangle ABC, lines AX,
BY, CZ are drawn from A, B, C to meet the respectively opposite sides in
X,Y, Z; then '

A AOB: A AOC = BX: CX.

A For A AOB : A BOX = AO : OX,
A AOC : A COX.
A AOB: A AOC = A BOX: A COX,

B + = BX: CX.

Def. A rectilineal figure is said to be of given species, when its angles, and
the ratios of the sides forming them, are given.

THEOREM (21)—If a triangle of given species has one corner fixed, and
another corner always on a fixed line ; then the thivd corner will always be on
a fixed line.

Let ABC be a A of given species,
which turns round A, so that B is
P always on fixed line BP.
— Draw AP L to BP; and PQ,
N N
AQ, so that APQ = ABC,

A\ N
and PAQ = VBRC.
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Join CQ, and produce it both ways.
Then, by the construction, A* APQ, ABC are simr.
CA:AQ = BA: AP.

A N

But CAQ = BAP.

At CAQ, BAP are simr.

N I
CQA = BPA,art. A.
But Q is a fixed pt., and QA a fixed direction,
. CQ is a fixed direction:
i.e. C is always on a fixed line.

THEOREM (22)—If a triangle, of given species, has one corner fixed, and
another corner always on a fixed circle; then the third corner will always be
on a fixed circle,

Let ABC be a A of given
species, which turns round A,
so that B is always on O,
centre O.

Join OA; and draw OX, AX,

N N

so that AOX = ABC,
N\ N

and OAX = BAC.

Then, by the construction, A* AOX, ABC are simr.
AO: AB = AX : AC.

But O/A\B = X/RC.
A® OAB, XAC are simr.
AO:0B = AX : XC;
i.e. XC is a fourth propl. to three fixed lengths ;
and it is drawn from a fixed pt. X:
i.e. C is on fixed O, centre X, radius CX.
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Def. If the opposite pairs of sides of a quadrilateral (defined as on p. 51)
are produced to meet, and their points of intersection joined; then the join is -
called the third diagonal of the quadrilateral; and the figure thus formed is
called a complete quadrilateral.

Note—The term complete quadrilateral is sometimes used in the following
more extended sense—Let there be four indefinite lines, of which no three pass
through the same point: they will enclose a four-sided figure (the ordinary
quadrilateral) and will have six points of intersection, four of the adjacent sides
of the figure, and two others of opposite sides: these six points form three
pairs of opposite corners; and there will be three joins of these opposite
corners, intersecting in three points. Then the entire figure, consisting of seven
lines, intersecting in nine points, is called a complete quadrilateral ; and
the three joins of the pairs of opposite corners are called its diagonals.

THEOREM (23)— Zhe mid points of the three diagonals of a complete quadri-
lateral are in one line.

Y

In quad. ABCD, let AB,
DC meet in X; and BC, AD
inY; so that XY is the third

“diag.

Complete the [Js CYAP,
BYDAQ.

LetCP,DQ cut AX in R, S
respectively.

Join PQ, QX.

Then XB:BS = XC:CD = XR: RA.
XB:XR = BS: RA = BQ: RP.
P, Q, X are in one line.
mid pts. of YP, YQ, YX are in a || to PQX.
But mid pt. of YP is mid pt. of AC, -. they are diags. of [J CYAP.
And mid pt. of YQ is mid pt. of BD, -.* they are diags. of (] BYDQ.
i.e. the mid pts. of the three diags. AC, BD, XY are in one line.*

* Taken from Zaylor's Ancient and Modern Geometry of Conics (R. 153\
by permission of the Author.
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THEOREM (24)—( Newton— Principia, Book i. Lemma 23) If from tuwo
Jfixed points A, B, lines AX, BY are drawn in fixed directions, and so that AX
to BY is a fixed ratio; and if P is taken in XY so that PX to PY is a fixd
ratio ; then the Locus of P is a fixed line.

X

Let XA, YB meet in O.
Take D in BO, so that
AX:BY = AO: BD.
Take K in YO, so that
YK = OD.

Then since AX: AO = BY : BD;
OX:YD (or OK) = AX: BY;
species of A XOK is fixed.
Draw PL || to OY, to meet XK in L; and join OL.
Then, since OK : KX is fixed;
and KX : KL is also fixed ;
OK : KL is fixed.
species of A OKL is fixed.
OL is fixed in direction.
But LP is fixed in length and direction.
. Locus of P is a fixed line || to OL.



EXERCISES ON BOOK vi

NOTE— These Exercises are all Theorems to be proved ; and depend mainly
on the principles of Book vi.

1. If from a point outside a circle, a pair of tangents and a secant are drawn,
the quadrilateral formed by joining the points of section to the pomts of con-
tact, has the rectangles under its opposite sides equal.

2. If two circles touch, a common tangent is a mean proportional between
their diameters. . ‘

3. CAB, DAB are two triangles on same side of AB; if P is any point in
AB; and PX, PY parallels to AC, AD, meet BC, BD respectively in X, Y ;
then XY is parallel to CD.

4 The diagonals of a regular pentagon cut each other in extreme and mean
ratio.

5. If a radius of a circle is cut in extreme and mean ratio, the greater
segment is equal to a side of a regular inscribed decagon.

6. The following group of Theorems are all deducible from Plolemy's
Theorem—vi. Addenda (9) Note (1)—

(1) The distance of any point on the circum-circle of an equilateral triangle,
from the farthest corner, is equal to the sum of its distances from the other two
corners.

(2) If the diagonals of a cyclic quadrilateral cut at nght angles, then the
rectangles under the opposite sides are together double the area of the quadri-
lateral. '

(3) A, B are fixed points on the circumference of a circle; if P is a variable
point on the same circumference, and C the mid point. of the arc AB, then the
ratio PA + PB to PC is constant.

(4) ABCDE is a regular pentagon; if P is any point on the arc AE of its
circum-circle, then PA + PC + PE = PB + PD.

NOTE—Apply the Theorem to quads. PABC, PBCD, PBCE.

(5) A similar Theorem to (4) holds for a regular heptagon.

(6) A variable circle goes through the vertex A of a fixed angle, and cuts
its sides in X, Y ; if the circle also goes through a second fixed point B, then—
1. AX + m . AY =n.AB;

where 1, m, n are constants whose ratio is determinable.

(7) ABCD is a parallelogram; if a variable circle through A cuts AB, AC,
AD in X, Y, Z respectively, then—

AX.AB + AZ.AD = AY .AC.
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7. PR, QS are fixed lines; if OPQ, ORS are variable lines (cutting them)
but always parallel to fixed directions ; then the ratio of OP . OQ to OR . 0S8
is constant.

8. If from any point P tangents PA, PB are drawn to a circle, and AC is
drawn perpendicular to the diameter BD; then AC is bisected by PD.

9. If two regular polygons (of the same number of sides) are, one inscribed
in, and the other circumscribed about the same circle ; and if another polygon
(of double the number of sides) is inscribed in the circle ; then the area of the
latter polygon is a mean proportional between the areas of the two former.

NoTE—If C is cent. of © ; CA a radius, and AB a tang. whose length =}
side of outer pol. ; then, drawing DN L to CA, from D, where CB cuts O, the
pols. are propl. to A® CDN, CDA, CBA; and result follows by vi. 1, 4, 19.

10. ABC is a triangle; AX, BY, CZ are drawn to meet the opposite sides,
and to be equal; if from any point P, within the triangle, PL, PM, PN are
drawn to meet the sides, and be parallel to AX, BY, CZ; then—

PL + PM + PN = AX,
NoTE—A BPC : A ABC = PL : AX; and simr. results.

11. The converse of vi. 19 is true, if the triangles are assumed isosceles, and
the bases are taken as #%e pair of sides such that their duplicate ratio is equal
to the ratio of the areas of the triangles.

12. P is a point in AB, and Q in AC, of triangle ABC, such that BP, CQ
are equal; if PQ, BC, when produced, meet in R, then—

AC:AB = PR: QR.

13. If X is any point in the side BC (or BC produced) of a triangle ABC;

then—
radius © round ABX : radius © round ACX = AB : AC.

14. If P is any point in median AM, of triangle ABC; and BP, CP meet
AC, AB in X, Y; then XY is parallel to BC.

15. The last Exercise gives a means of drawing a parallel, through a given
point, to a given finite line, the position of whose mid point is given, by means
of a ruler only.

16. If C is the centre of a fixed circle, a tangent to which meets another
fixed circle (through C) in P, Q; then CP. CQ is constant.

17. On a level plain are to be seen two church spires: a person walking
on the plain, so as always to see the spires at equal angles of elevation, will
walk in a circle.
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18. If one triangle is so inscribed in another, that each pair of sides of the
inner make equal angles with that side of the outer at which they are conter-
minous; then the inner is the pedal triangle of the outer.

NOTE — Converse of iii. Addenda (19). Use Vi. 3, for external bisection.

19. From a corner A, of a triangle ABC, AX, AY are drawn to the opposite
side, so that the angles BAX, CAY are equal: prove that

BX.BY:CX.CY = AB?: AC™.

NOTE—If © round AXY meets AB, AC in P, Q; then PQ s || 20 BC.

20. If two sides of a triangle are unequal, the sum of the greater side and
the perpendicular upon it from the opposite corner is greater than the sum of
the lesser side and the perpendicular upon it from the opposite corner.

21. Two circles have internal contact at P; if two perpendiculars to their
line of centres meet the outer circle in A, B and the inner in C, D ; then—

PA:PB = PC: PD.

22, In the figure of iv. 10, if | is the in-centre of triangle ABC ; then AB is
a mean proportional between Bl and the perimeter of ABC.

23. If one comner of a rectangle is fixed, and the two adjacent corners move
on the same fixed circle ; then the fourth corner moves on a fixed circle con-
centric with the other.

24. ABC is a triangle; if P is any point in BC, and PX, PY are parallel
to AC, AB and meet AB, AC in X, Y respectively; then the triangle AXY is
a mean proportional between the triangles BPX, CPY.

25. From the corners of a parallelogram perpendiculars are drdpped on the
diagonals: show that the joins of the feet of these perpendiculars form a
parallelogram similar to the original one.

26. From any point within a parallelogram perpendiculars are dropped on
its sides: show that the area formed by the joins of their feet is constant.

27. A line is divided into two parts in the ratio of 3 to 1, and on each of
these parts as diameter a circle is described; if a common tangent to these
circles is drawn, it meets the common diameter line at a distance from the
lesser circle which is equal to its radius.

28. Two variable circles cut at a fixed point, and have their centres on two
fixed lines, also cutting at that point; show that their common tangents meet
on one of two fixed lines through the fixed point.

29. If a line is drawn to cut two intersecting circles, and their common
chord, the successive points of section being A, B, C, D, E ; then—

10 AB:BC = ED:DC;
20, AE?:BD? = AC.CE:BC.CD.
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30. If AB is any chord of a circle (centre C) and AP, BP are drawn to any
point P on the circumference, and cut the diameter perpendicular to AB in
X, Y; then CX . CY = (radius)’

31. BAC is a triangle, right-angled at A, and AP is perpendicular to BC;
if on BP, CP semi-circles are described, cutting BA, CA in X, Y respectively,

then BX: CY = the triplicate ratio of BA to CA.

32. If ABCD is a quadrilateral, and any transversal (see Index) is drawn,
cutting AB, AD, BC, DC, CA,BD in &, b, ¢, 4, e, f, respectively; then—

ab:cd = af . be: cf. de.
NOTE—Th70. D draw a || to the transversal.

33. If in sides AB, AC (of a triangle) M, N are respectively taken; and in
MN, P is taken, so that BM : AM = AN : NC = PM : PN, then area BPC
is twice area AMN.

34. XPY is a tangent to a fixed circle, at a fixed point P; PQ is a diameter;
QX, QY cut the circle at U, V ; and UV cuts PQ in R : if the rectangle under
PX, PY is constant, then R is fixed.

35. On the diameter of a circle two equal circles are described, so that the
diameter of each is a radius of the original circle; in either of the spaces
between the three circles another circle is inscribed ; prove that—

diam. last © : diam. either of equal ©% = 2: 3.

36. If two fixed parallel tangents to a circle are cut by a variable tangent,
the rectangle under the segments of the variable tang:nt is constant.

37. In the figure of iv. 10, if PQ, parallel to BC, meets AC in Q, then—

A APQ: fig. PBCQ = BC : BA.

38. In a triangle ABC, the side BC and angle A are fixed ; if the bisector
of A meets BC in P, and is produced to Q, so that AP . AQ = AB. AC,
then Q is a fixed point.

39. Any point P, on the circumference of a circle, is joined to A, B, the
ends of a diamecter; if the perpendicular to AB, at any point Q, meets the
circle in X, and PA, PB in Y, Z; then QX? = QY. QZ.

40. If LMN is Simsorn’s Line relatively to a point P and a triangle ABC
(cf. p. 172, Note) th.n—

PA.PL = PB.PM = PC.PN.
And if X is the foot of the perpendicular from P on LMN, then—

PX.PA =PM.PN; PX.PB = PL.PN; PX.PC = PL.PM.
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41. A circle has its centre E at the mid point of the base BC of an isosceles
triangle, and touches the sides AB, AC; if a variable tangent to the circle
meets AB, AC in X, Y; then BX. CY = BE?

43. If in a triangle ABC, AX is perpendicular to BC, and XP, XQ to AB,
AC ; then, AD being a diameter of the circum-circle of ABC—

1°, PQ.AD = 2 area A ABC; and 2°, PQis L to AD.

43. Perpendiculars from the intersection of two opposite sides of a cyclic
quadrilateral on the other sides, are in the same ratio as the latter sides.

44- AB is any finite line, CD a chorc of a circle parallel to AB; AC, being
joined, cuts the circle in E; and BE cuts the circle in F: prove that DF cuts
AB in a fixed point, which is the same for all chords.

45. If tangents from a point O to a circle are bisected by a line which meets
any chord PQ of the circle in R, then the angles ROP, RQO are equal.

46. ABC is a triangle, right-angled at C ; if CX is drawn to meet AB, and
CY to meet AB produced, so that each of the angles BCX, BCY is equal to
angle A, then—

XA : XB = the duplicate ratio of YA to YC.

47. ABCD is a cyclic quadrilateral; BA, CD meet in X, and CA, BD in
Y; if XY cuts AD in Z, then—

AZ:DZ = XA.AB: XD.DC.

48. OA, OB are lines fixed in position, and AB such that triangle AOB is
of fixed area; if through P, the mid point of AB, XPY is drawm, parallel to a
fixed direction, to meet OA, OB in X, Y, then PX . PY is constant.

49. ABCD is a quadrilateral zof cyclic; if the ratios of the three rectangles
under AB, CD, under AC, BD and under AD, BC, to one another are fixed,
then the difference of any pair of angles, subtended by any one of the six lines,
is also fixed.

NOTE—Construct as in vi. Addenda (9) and show that species of & ACE is
Sfixed.,

s0. OA, OB are two lines fixed in direction; P, Q are variable points in
OA, OB; PX, QY are perpendiculars on OB, OA; if PQ always goes through
one fixed point, XY always goes through another.

51. Given the base of a triangle, and the difference of its base angles; if
through the mid point of the base two lines are drawn parallel to the internal
and external bisectors of the vertical angle, then these lines, with the bisectors,
will form a rectangle of constant area.

NoTe—See i. Addenda (10) and (11).

X
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52. Given the vertical angle and area of a triangle, show that the difference
between the square on the median from the vertex, and the square on half the
base, is constant,

53. In any triangle ABC, if D, E are points in BC, CA such that BD is
one-fourth BC, and CE one-fourth CA; and if AD, BE cut in X, then CX
produced will divide AB in the ratio of g to 1.

54. ABCD is a cyclic quadrilateral; if AB, DC meet in P; and BC, AD
in Q, then—

sq. on PQ = sq. on tang. from P + sq. on tang. from Q.

NOTE—Draw BX 20 meet PQ, so that P/B\X = PGA; then, by simr.
A* PBX, PQA, we kave PA . PB = PQ . PX; or sg. on tang. from
P = PQ.PX: then join CX.

55. In the last Exercise, show that the circle on PQ as diameter cuts the
circle round the quadrilateral orthogonally.

56. From a point A, on the outer of two concentric circles, tangents AP, AQ
are drawn to the inmer; if AP, QP produced, meet the outer in T, R respec-

tively ; then— RP:RQ = RT?: RA2,

57. AM is a median of a triangle ABC; AN bisects the angle BAC, and
meets BC in N ; if the perpendicular from B on AN meets AM in P, then PN
is parallel to AB.

58. ABCD is a cyclic quadrilateral, and M the mid point of CD ; if AD,
BC meet in P ; and PM meets AB in X ; then—

XA : XB = PA?: PB?,

59. Two circles cut at A, B; if P is a variable point on one circle, and PA,
PB meet the otherin X, Y ; then the Envelope of XY is a circle.

NOTE—If a wariable line (straight or curved) moving according to some
law, touches in every position a figure of any form, suck figure is termed the
Envelope of the line.

60. The sides and angles of a triangle are given, but its position varies
subject to the condition that two of its sides go through two fixed points; show
that the Envelope of the third side is a circle.

61. Two circles cut in A, B; if X, Y are variable points on their circum-
ferences, but such that the angle XAY is constant; and if XY is cut in a
constant ratio in P, then the Locus of P is a circle.

NoTE—Draw XM, YN respectively || to YA, XA, and meeting O% in M, N :
let \|® from P to AX, AY meet AM, AN in U,V : then it can be proved that

A
UV and UPV are fixed.

v
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62. If a parallel to the side AB, of a triangle ABC, meets CA in X, and
CBin Y; then the Locus of the intersection of the circles round the triangles
CAY, CBYX, is a line through C.

63. If a corner of a triangle is joined to the point of contact of the in-circle
(or an ex-circle) with the side opposite; then the mid point of this join, and
the mid point of the side, are collinear with the centre of the circle.

64. In the figure of vi. Addenda (7) if the triangle varies subject to the con-
ditions that BC is fixed, and BA + AC is constant ; then AX : XD is constant.

65. In Exercise 100, page 188, show that OA : OX = OY : OC.

66. In a triangle ABC, M is the mid point of BC, D the point where the
bisector of angle BAC (internal or external) meets BC; then, if MX, BY,
CZ, are perpendiculars on the other bisector (external or internal) of angle
BAC—BY .CZ = MX. AD.

67. Four rods PA, PB, QAC, QBD are pivoted at P, Q, A, B, so as to
be capable of angular motion in one plane; and so that PAQB is a parallel-
ogram: if any pair of fixed points in QC, QD, respectively, are once collinear
with P, they will always be so, however the rods are moved about.

NOTE—This is virtually the same as the omitted vi. 32. [Ex. 62, p. 82, is
a particular case of it.

68. Two triangles are similar and similarly situated ; if a third triangle can
be drawn to circumscribe the inner and be inseribed in the outer, then its arex
is a mean proportional between the areas of the original triangles.

NOTE—Take the centre of similarity of the A®: see vi. Addenda (3).

69. ABCD is a quadrilateral circumscribing a circle (centre O) and XOY is
perpendicular to the bisector of the angle between BA, CD—X being in AB,
and Y in CD—show that AX : BX = CY : DY.

NOTE— Use Exercise 41.

70. Prove Exercise 113, p. 190, by vi. Addenda (24) and the last Exercise.

NOTE— 7This is Newton's original mode of proof.

71. ABCD is any quadrilateral ; and M, N are the respective mid points of
AC, BD: if MN produced meets AB, BC, CD, DAin P, Q, R, S re-
spectively, then—

PA:PB =QC:QB = RC:RD = SA:SD;
and MP: MQ = MR : MS = NP: NS = NR: NQ.
And if the quadrilateral can have a circle (centre O) inscribed in it, then
also—

OP:OR =AB:CD;
and O0Q:0S = BC: DA,
X2
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72, The following group * are developments of Note (4) p. 253—

(1) If we take two maps of the same country, on different scales, and
throw one on the other, there will be one spot (and only one) whose position
on the one map will be exactly over its position on the other; provided that
the contour of the lesser map is wholly within that of the larger.

Also, if the maps are not superposed, but simply laid at random on a
table, there will be one point on the table which will represent the same place
to whichever map it may be considered to belong.

(2) If cotresponding points are taken, one on each map; then the Locus
of the point of intersection of corresponding lines through them is a circle.

(3) If a series of parallels is taken on one map; then the Locus of the
intersection of each with the corresponding line in the other map, is a straight
line.

(4) If a series of concentric circles is taken in one map; then the Locus
of the intersection of each with the corresponding circle in the other map isa
circle. '

NoTeE—Use vi. Addenda (15).

(5) Two corresponding points, one on each map, are held fixed, while the
maps are moved about ; find the Locus of the centre of similarity.

(6) A pin is put through both maps at a given point ; find the Locus of
the centre of similarity, as one or other map is turned round.

(7) Find the Loci of corresponding points, one on each map, whose
distance apart is constant.

(8) Find the Envelope (cf. Notc on Exercise 59) of the joins of the points
in (7).

(9) If in (5) any two corresponding points, which are at a given distance
apart, are fixed, we get a series of Loci; find their Envelope.

(10) Find the Envelope of the Loci in (2), when the points are at a given
distance apart. ‘

(11) If a circular disc is placed anywhere on the maps, it must cover at
least some corresponding points, provided its centre lies within a certain circle;
otherwise it will not cover any corresponding points.

* Of this group (1) and (7) are due to Professor Purser, of Queen's
College, Belfast; and the rest to Mr. Alexander Larmor, of Clare Collegs,
Cambridge.
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GENERAL ADDENDA.
SECTION i—MAXIMA AND MINIMA.

Def. If a straight line, or angle, or area, can vary, subject to given limita-
tions; it is said to be maximum, when it has its greatest possible value; and

“minimum, when it has its least possible value.

Some cases of maxima and minima have already occurred : see iii. 7, 8, 15;
i. Addenda (3); iii. Addenda (2); vi. Addenda (9). Here follow some Theorems
which may be regarded as fundamental. .

THEOREM (1)—T%e sum of the squares on the two segments into whick a
given line can be divided, is minimum, when the line is bisected.

For, taking fig. (1) of ii. 9,
AX? + BX? = 2AM? + 2 MX3,
and .. is min. when X is at M.

THEOREM (3)— The rectangle under the two segments into whick a given
line can be divided, is maximam when the line is bisected.

. Taking same fig., we have,
AX .BX = BM? — MX3,
and ., is max. when X is at M.

Cor. Of all rectangles, of given perimeter, the square has the maximum area.

THEOREM (3)—1If the rectangle under two lines is given, the sum of the lines
is minimum wken they are equal,

Follows at once from ii. 4ddenda (3).

Cor. Of all rectangles, of given area, the square has the minimum petimeres.



310 GENERAL ADDENDA—SECTION i

THEOREM (4)—If the sum of the squares on two lines is given, the sum of
the lines is maximum when they are equal.

Follows at once from ii. Addenda (6). .

Note—When any two magnitudes whatever are commensurable (so that they
can be expressed by X and y units of measurement respectively), Theorems,
analogous to the foregoing, are seen to be true, from the two algebraic iden-

tities—
X1 + yxzz{ L:—Z)’ + (x > y),};
‘% — W32
xy= “:y)’_( zy_)'
And similar theorems will follow, for the reciprocals of the magnitudes,
from the identities—
2 - 2
ey e
P ) 2 — 239
U {ED -

1+1 X +y .
2 — 2
X y (x:y)_( zy)

Il

Def. When two magnitudes are so related that they vanish together, and
that equal increments of the one involve equal increments of the other, the
magnitudes are said to vary one as the other: such magnitudes will be
maxima together, and minima together.

THEOREM (5)— Zke maximum parallelogram which can be inscribedins
triangle, by drawing parallels to two of its sides, is that formed by drawing the
parallels from the mid point of the third side; and its area is half that-of the
triangle.

Cc

Let PX, PY be | to sides AB,
P X AC, of A ABC, drawn from pt.P I
in BC. .
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Then since /R of 7 AXPY is const.
its area varies as AX . AY.
But AX: BP = AC : BC, a const. ratio.

AX varies as BP.

Simrly. AY ,, CP.
AX.AY , BP.CP;
and this, by Theor. (2) is max. when P is mid pt. BC.
In that case X, Y are also mid pts. of AC, AB ;
and . CJAP = } A ABC.

jVote—-The preceding Theorem is practically equivalent to the omitted vi. 27.

THEOREM (6)— 7%e maximum triangle whick can be inscribed in a given

segment of a circle, is that formed by joining the mid point of its arc to the
extremities of its chord.

P
For if APB is given segt., then
area A formed by joining any pt. P
on its arc to A, B,
= 1 AB . PN,
where PN is L from P on AB.
A N ' .

. area A APB is max. when PN is max.
i.e. when P is mid pt. of arc of segt.

Cor. If the base and vertical angle of a triangle are given, the triangle is
rnaximum when it is isosceles.

THEOREM (7)—When two sides of a triangle are given in length, the area
of the triangle is maximum whken they are placed at right angles.

For let AB, AC be given sides of
A ABC. Draw CN L to AB.
Then
area A ABC = § AB, CN;
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. area A ABC is max. when CN is max.

A
But CN < CA, since CNA is right,
unless CN coincides with CA.

A .
area is max. when CAB is right.

Def. Figures whose perimeters are equal are called isoperimetrical.

THEOREM (8)—Of all isosperimetrical triangles,on the same base, that one ¢
maximum area ss the isosceles.

Let AB be a fixed base, ABC
an isos. A on it, and AXB another
E A, such that

AX + BX = AC + CB.

>

Produce AC to D, so that CD = CA.
Draw CE || to AB, to meet DB in E.
Join DX.

Then it is clear that A CED = A CEB.
.. AC + CB = AC + CD, and . < AX + DX,
i.e. AX + BX < AX + DX;

- BX < DX;

X lies on same side of CE as AB;
i.e. alt. of A AXB < alt. of A ACB;
area A AXB < area A ACB.
i.e. A ACB is max. under given condns,
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THEOREM (9).—Of all lines, passing through a fixed point, that whick
determines with two fixed lines the triangle of minimum area is the one whose
segment, intercepted between the lines, is bisected at the point.

A
Let P be the fixed pt., AB, AC

the fixed lines.
. Take any line XPY, meeting
v ABin X, and ACin Y.
If PX, PY are not equal, in
C PX, the greater, take N so that

PN = PY.

Draw NB || to AC, and meeting AB in B.
Join BP, and produce it to meet AC in C,
In A* BPN, CPY, since

A A
PBN = PCY,
N N\
BPN = CPY,
and PN = PY;
PB = PC,
And A BPN = A CPY.
- O ABC < A AXY, by A BXN.
i.e. for the min. A ABC, PB = PC.

Note—The min. A is easily constructed by drawing a || from P to AC,
meeting AB in E : then EB = EA.

Def. If from a point A a perpendicular AN is drawn to a line XY, and pro-
duced to A, so that NA’ is equal to NA, then A’ is termed the image of A,
with respect to XY ; and if two figures are so situated, on opposite sides of XY,
that every point on one is the image of a point on the other, then the figures
are said to be images of each other, with respect to XY,

Note—The term reflexion is sometimes used instead of smage.

Note—If the plane, in which a figure is situated, is supposed to be turned
about the line of reference XY, as a hinge, until it coincides with its original
position, the figure will then coincide with its image. Cf.1i. 5. .

Hence figures which are images of each other are identically equal.
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THEOREM (10)—If the vertical angle and altitude of a triangle are given, its
area is minimam when it is isosceles.

Let AVB be an isos. A,
whose alt. VN and vert.

N
AVB are given.
P N

N A
Take any other A PVQ, of same alt. and such that PVQ = AVB.
Let A VNP’ be the image of A VNP, with respect to VN,

Then QOB = AOP = BOP'.
QV:VP = QB:BP = QB: AP.
But QV > VP, i.Adddenda (a).
- QB > AP.
PQ > AB.
APVQ > A AVB.
i.e. AVB is the min. A under the given condns.

THEOREM (11)—If A, B are two fixed points, and XY a fixed line: then,
Jor that point P in XY at whick AP, BP make equal angles with XY—
(a) when A, B are on same side of XY,
AP + BP 7s minimum ;
(B) when A, B are on opposite sides of XY,
AP ~ BP /s maximum,

A (a) Let A’ be the imageof
A, with respect to XY.
Q v Then A’B will cut XY inP,

N A A
- APX = A’PX = BPY.
A Let Q be any other pt. it
8 _XY; and join QA, QB, QA

Then, by the nature of images,
AQ + BQ = AQ + BQ > AB > AP + BP.
ie. AP + BPis min,
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(B) Constructing similarly,
we have

QA~QB = QA'~ QB < BA' < BP~ PA' < BP ~ AP.
i.e. AP ~ BP is max.

Cor. If B' is the image of B in both figs.,
then (a) (AP + BP)? = AB? + AA’, BB,
and (8) (AP ~ BP)? == AB? — AA’ . BB".

These results can easily be deduced by applying Ptolemy's Theorem to the
cyclic quad. AA’ BB'.

THEOREM (12)—Of all lines whick can be drawn through a fixed point,
within a fixed angle, that which makes equal angles with the lines forming
Zhe angle has the rectangle under its segments minimum,

A A
Let P be pt. within LAM; AN

the bisector of Q; and PN L to
AN, meeting AL in B and AM
in C.

Clearly AB = AC; and a O
can be drawn thro. B and C,
touching AL, AM at B, C.

Then if any other line is drawn
thro. P, meeting AL, AM in R,
S, the pts. X, Y, in which it cuts

N
the O, will lie within LAM,

But BP.CP = XP. YP,
and .. < RP.SP;
BPC, making equal A® with AL, AM, has BP . CP min.
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THEOREM (13)—If A, B are fixed points, outside a fixed circle, and Pa
variable point on the circle ; then angle APB is—

1°, maximum, when circle through A, P, B kas external contact at P with
fixed circle ; and

2°, minimum, w/ken internal contact.

19, let O thro. A, B have ext.
cont. with fixed © at P.

Take P’ any other pt. on |

fixed O.

Join P’A, P'B; and let one of
them (P'B say) cut O thro. A, B
in X ; and join AX,

N A N
Then APB = AXB, and .. > AP'B.
N
i.e. APB is max. in this position.

N
29, simrly. it can be shown that APB is m:n. when © APB has intemal
contact at P.

THEOREM (14)—Of all lines through one point of intersection of two fixtd
circles, that one will have the rectangle under the intercepted chords maximum
whickh has the tangents 1o the civcles, at its extremities, equal.

Let AB be common chd. of

two intersecting ©s; PBQ

P any line thro. B, terminated
by the @ in P Q.
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7y N
Join PA ; and take X, in AB produced, so that BXQ = APB.
Then A, P, X, Q are concyclic.
-« PB.BQ = AB. BX.

A
But since BXQ is const., all positions of QX are [,
and ... BX max. when XQ touches O.

/\ N N\ N
And then PAB = PQX = QAB = QPX;
so that then XP will touch the other O.
PB . BQ is max. when tangs. at P and Q are equal.

THEOREM (15)—O0f all lines through either point of intersection of two fixed
circles, and terminated by the circles, that whick forms the maximum triangl,
when its extremities are joined to the other point of intersection, is the one per-
pendicular to the common chord,

Let P, Q be pts. of intersec.
of ©% whose centres are C, O;
AQB the line thro. Q L to
PQ; and XQY any other line;
so that A, B, X, Y are on
the O,

AT A
Since PXQ = PAQ, in same segt.
A A
and PYQ = PBQ, ”
AsPXY, PAB are simr.
»~. area A PAB :area A PXY = PA?: PX3,

But, since AaP is right, PA is a diam.
PA > PX.
. area A PAB > area A PXY.
i.e. A PAB is max.
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THEOREM (16)—Of all lines through a point of intersection of two circles,
and terminated by the circles, the maximuam #s the one parallel to their line of
centres ; and is twice the join of their centres.

Let P be a pt. of intersec.
of Os whose centres are C,
O; XPY any line thro. P,
so that X, Y are on the O

Draw CM, ON | to XY; and OR L to CM.
Then XY = 2PM + 2PN = zRO,
which < 2CO, .- C/R\O is right,
unless RO coincides with CO.
XY is max. when it is || to CO;
and then it is 2 CO.

Note—1If we call such lines as XPY double chords of the circles, then the
Theorem is— 7%e maximum double chord of two intersecting circles is perpen-
dicular to their common chord.

THEOREM (17)—1f P, Q, R are given points (not in a line) and ABCa
triangle of given species; and if on sides QR, RP, PQ, remote from triangl
PQR, scgments are described containing angles A, B, C respectively—

19, the circles, being completed, will go through a fixed point O:

29, if any line YPZ is drawn so that Y is on circle through P, R; and Zom
circle through P, Q; and if YR, ZQ meet in X; then will X be on crde
through Q, R:

39, the angles XOY, YOZ, ZOX are fixed :

4°, if YPZ is drawn perpendicular to PO, then will ZX, XY be respectively
perpendicular to QO, RO ; and, in that case, XYZ is the maximum #riangl,

of same species as ABC, whose sides go through ©,Q R.
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Y

For 1° and 2°; let ©% on PQ, PR meet again in O. Join PO, QO, RO.
N\ AN\ A N
Then POQ = supplt. PZQ; and POR = supplt. PYR.
A A A\ N A A A\
POQ + POR+PZQ + PYR =4 rt. A*= POQ + POR + QOR.
N N /\ A
QOR = PZQ + PYR = supplt. QXR.
O and X are concyclic with Q, R.
A A\ N A A\ A
For 3°; XOY = PZQ + QX0 + PYO =PzQ + PRQ;

and .. is fixed.
N\ A
Simrly. YOZ and ZOX are fixed.
N /N
For 4°; ZQ0 = supplt. ZPO; and .-. is right.
N\
Simrly. YRO is right.
."., by Theorem (16) Note, A XYZ has each of its sides max. ;
and .-, as its species is fixed, it is the max. A under the given condns.

Note (1)—If A XYZ is fixed, and A PQR of given species, similar results
will hold ; and A PQR will be min. when OP, &c., are L to sides of XYZ.

Note (2)—If A XYZ is fixed, and RPQ a transversal such that PQ : PR is
constant ; then the pt. O which (by Ex. 100. p. 188) is common to O® round
AsXYZ, XQR, YPR, ZPQ, is fixed.

For A®* QOR, ZOY are simr., and .. OY : OZ = OR : OQ.

But, since A®* POQ, POR are fixed, and PQ : PR const,, it easily follows
that OR : OQ is const.

.. O, being on two fixed @8, is fixed.
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THEOREM (18)—1f, in the last Theorem, the sides @&, b, ©, of triangle
ABC, are given; then O, the point common to the three circles, is the position
Jor whick a.OP + bOQ + c¢.OR # minimum,

Let sides of A XYZ
be | to OP, OQ, OR,
c b as in last Theorem.
Take any other pt. 0';
and drop O'p, O'q, OT
L% on sides of A XYZ.

Then YZ.OP + ZX.0Q + XY.OR,
= 3 area A XY2Z,
=YZ.0p + ZX.0q + XY .Or.
But YZ, ZX, XY are respectively propl. to &, b, e.
a.0P +b.0Q +c¢c.OR=a.0p +b.0q + ¢.0T,
and .. <a.0P +b.0Q + ¢.OR.

i.e. is min.

THEOREM (19)—If A, B are fixed points, and P a variable point on a fizd
circle ; then the ratio of PA to PB is maximum o minimum wken P is one
of the points in whick the fixed circle is cut orthogvnall}' by a circle through

A, B.

Take any pt. X in AB,
and produce AB (or BA)
to Y, so that Y is the
harmonic conjugate (se¢
Section vii) of X with
respect to A, B.




MAXIMA AND MINIMA. 321

Then if Q is any pt. on the © whose diam. is XY,
QA:QB = XA:XB = YA:YB.
But if M is mid. pt. of AB, MX. MY = MA? always.
.. X, Y move in opposite directions,
QA : QB is max. when XY min.
”» min. . max,
Now of all the O% on XY as diam. zwo will touch the given fixed O.
.., as in this case Q is to be on the fixed O,
QA :QB,i.e. PA: PB,
is max. for the one of these two which touches fixed © further in direction AB;
and is min. » » » ” » ’ BA.
Let C be centre of fixed ©. Join CA; and divide it in R, so that
CA.CR = CP2%

Then O thro. A, B, R will cut fixed ® orthogonally—say in P, P’; of which
P is further in direction AB.

Let CP meet AB produced in O. With centre O, and radius OP, describe
O cutting AB internally in X, externally in Y.

Then this @ touches fixed ® in P; and X, Y are harmonic conjugates
to A, B.

and

.. PA:PB is max.
Simrly. P'A:P'B is min*

Note (1)—Of course when PA : PB is max.; PB: PA is min.; and vice
versd; so that each pt. P, P’ determines a max. and min. ratio, according as
A is taken in the antecedent or consequent.

Note (2)—When the given O cuts (as in the fig. it wounld) the L bisector of
AB, the two ©® of contact are on opposite sides of this L, and both contacts
are external ; otherwise both ®® of contact lie on the same side of this L, and
the contacts are one external, and one internal.

THEOREM (20)—ABC is a fixed triangle, D a fixed point in AB, and E in
AB produced : of all triangles so inscribed in ABC, that D is their vertex, and
that their bases produce through E, the maximum is that whick is so situated
that the parallels to CA, CB at the extremities of its base, meet on AB.+

* Mulcaky's Modern Geometry, p. 5. + Do. p. 88.
Y
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Let EXY cut CB, CAin

Y, X, Y, s0 that XZ, YZ, being

II*to CA, CB, Z is in AB.

Draw any other lineEPQ

Q to meet CB, CAin P,Q.
Join PZ, QZ, QX.

Then APQD: APQZ = . from Don EQ: | from Z on EQ.
= ED : EZ, a fixed ratio.
A PQD is max. when A PQZ is max.
Now, °.» PXis || to ZY, X is farther from QZ than P is.
s AXQZ > A PQzZ.
And, - QY is || to ZX, A XQZ = A XY2Z.

N

-—‘z

A XYZ > A PQZ.
i.e. A XYZ is max. under the given condns.
.~ soalsois & XYD.

Note—By drawing the fig. it will be found that the proof is exactly the same
when PQ is taken on the other side of XY.

Def. If four points (no three of which are in the same line) are joined by
four lines, in such a manner that two of the joins cross each other, the resulting
figure is called a cross quadrilateral : the four joins are called the sédes of the
quadrilateral ; the four points are called its cormers ; and if the remaining pair
of joins are drawn, they are called its diagonals.

Note (1)—The appropriateness of these terms will become evident by con-
sidering that, if an ordinary quadrilateral is imagined to consist of four bars
freely jointed at its corners, then by twisting the triangle formed by two adjacent
bars and the line joining their extremities, round the join as axis, until it returns
to the original plane of the quadrilateral, a cross quadrilateral is formed.

Note (3)—A cross quadrilateral obviously consists of two triangles of which
a pair of angles are vertically opposite.

=z
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Note (3)—If a, b, ¢, d denote the successive sides, and x, y the diagonals
of a quadrilateral ; then—
1°, when it is #of crossed, Xy < ac + bd;
29, but when it #s crossed, Xy > ac¢ ~ bd—
unless the four corners are concyclic, when both inequalities become equalities.
Cf. vi. Addenda (9).

THEOREM (21)—1f the lengths of the four sides of a crossed quadrilateral
are given, the difference of the areas of the triangles. composing it is minimum
when its corners are concyclic. .

Let ABCD be a crossed quad. whose sides AB, CD cross at O.
Draw BM, DN .L to AC; and BQ | to ND.

Let a, b, ¢, d respectively denote the fixed lengths AB, BC, CD, DA; and
X, y the variable lengths AC, BD.

Then a? — b? = x (AM'+ CM),
and e? —d? = x (CMN:+ AN);
a’—-—b? + c?-d?=2x.MN =2x.BQ

< x.BQis fixed.
Also
ABOC~aA DOA = ABAC~ADAC = }x (BM~DN) = §x.DQ.

s xX.DQ = 2 diff. of areas in question.

Now take any fixed length a; and let ¢, 5, { be lengths such that
rects. af, a7, a are respectively equal to rects. x . BQ, x. DQ, x. BD.
Then ¢:BQ =19:DQ = ¢{:BD.

s &9, ¢ will form a A simr. to A BQD.

om0
Y2
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But ¢isfixed, . a¢ = x.BQ.
n is min. when { is min.
. an (i.e. x. DQ) is min. when a (i.e. Xy) is min.
But Xy > ac ~ bd, unless A, B, C, D are concyclic.
x . DQ is min. when quad. is cyclic,
and then so also is diff. of areas AOD, COB.* '

MNote—If the quad. is an ordinary one, #0¢ crossed, the same reasoning proves 4
that the sum of the A%, i. e, the area of the quad., is maximum when it is cyclic.

Cor. Given the sides &, b, ¢, d, of a quad., the acute angle between its .

diags. is—
1°, max. when quad. is cyclic but not crossed ;
2°, min. » » and crossed—

except when 8’ — b? + ¢ — d* = o, and then the diags. are at right angles;
and the area is min.

* This proof and Cor. are due to Professor Purser of Queen’s College, Belfast,
by whom they were communicated to the Editor. Professor Purser originally ,
proposed the Theorem for demonstration in an examination paper in 1880;
and afterwards in the Educational Times: see the Reprint, Vol. XXXV, p.9%9 l



EXERCISES ON MAXIMA AND MINIMA.

1. Find the ménimum distance between two non-intersecting circles.

3. The maximum rectangle which can be inscribed in a given circle is a
‘square. .
NOTE—Consider one of the O formed by the diags., and apply Theorem (6).

3. Find the maximum rectangle which can be inscribed in a given semi-
circle.

- NOTE—Draw the radii to the two corners on the arc ; and use Theorem (7).

4- The area of the triangle which a variable tangent to a fixed circle makes

with two fixed tangents (or these produced) is maximum or minimum when

the variable tangent is bisected at its point of contact.
NoTE—Use Theorem (10).

5. If the diagonals of a parallelogram are given, its area is maximum when
it is a rhombus.

6. If the diagonals of any quadrilateral are given, its area will be maximum
when they cut at right angles; but is independent of the lengths of the seg-
ments they make, -

. NOTE—See i. Addenda (28) ; and use Theorem (7).

7. The minimum square which can be inscribed in a given square is half its
area.

NOTE—Deduce from Theorem (1). )

8. C is the centre of a given circle, A a point outside it ; if AXY is drawn
to cut the circle in X, Y, find when area triangle CXY is maximum. '

9. C is the centre of a fixed circle, XY a variable chord of the circle; if CP
is perpendicular to XY, find when

1°, CP + PXis maximum.
20, CP.PX »

10. In Theorem (13) if A, B are within the circle, similar results are true.

11. A, B are fixed points within a fixed circle; if P is a variable point on
the circle, and PA, PB produced, meet the circle in X, Y; find when XY is
maximum.

NOTE—Use the last Exercise.

12. A is a fixed point on a fixed circle, B the mid point of a fixed radius; if
P is a variable point on the circle, find when AP + 2 BP is minimum.

NOTE—Apply Vi. Addenda (9) to quad. APBO, where O is centre.

13. If in Theorem (13) a line is substituted for the circle, show that similar
results are true.
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14. P is a variable point on a fixed circle; A, B two fixed points : find when
1°, PA? + PB? is maximum or minimum.
2o, PA + PB » . (Alkazen’s Problem.)

NOTE—For 1°, the ends of the diameter bisecting AB : for 2°—though, by
Theorem (11), we can see when it happens—the points cannot be found with the
ruler and compasses only ; but a solution on other grounds, by Dr. Curtis,
is given in the Educational Times, Vol. XXXIX, p. 59, of the Reprint.

15. Draw the minimum tangent from a point, in a given line, to a given circle.

16. Given an angle, and a fixed point on its bisector, show that the line
through the point, which makes equal angles with the arms of the angle, is the
minimum line, and cuts off the minimum triangle.

17. Given an angle, show that of all lines which can be drawn across it to
form a triangle of given area, the minimum is that which makes equal angles
with the arms of the angle.

18. Inscribe the maximum triangle in a given circle.

19. Find P, in the diameter AB of a circle, so that PQ being perpendicular
to AB, and meeting the circle in Q, AP . PQ is maximum.

20. If TA, TB are fixed tangents to a fixed circle, and P a variable point on
the circle, find when the rectangle under, 1°, the perpendiculars from P on
TA, TB, 2°, the perpendiculars from A, B on the tangent at P, are respectively
maxima and minima.

NoOTE— Use vi. Addenda (13).

21. Given a circle and two lines at right angles, not cutting it, find the points
on the circle the sum of whose distances from the lines is maximum or
minimum.

22. From a fixed point O on the production of a diameter of a circle, draw a
secant OPQ, so that the difference of the perpendiculars from P, Q on that
diameter may be maximum. .

NotE—Use Theorem (20).

23. O is a fixed point in the production of side CB, of fixed triangle ABC :
draw OXY to meet AB, AC in X, Y, so that the difference of perpendiculars
from X, Y on BC may be maximum.

NoOTE—Use Theorem (20).

24. ABC is a fixed triangle, P a variable point within it : find when—

1°, PA + PB + PC,
20, PA? + PB? + PC?,
are minima.
NoTE—Deduce 1°, from Theorem (11); and 2°, from ii. Addenda (16).
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35. AB is the diameter of a semi-circle, and P a variable point on its arc;
find when & . PA + b . PB is maximum, if a, b are given whole numbers.

26. A and B are fixed points, one inside and one outside a fixed circle
(centre C): if BC, AC are respectively m and n times the radius, show that
the points in which the¥circle t.ln:ongh A, B, C cuts the fixed circle, determine
the positions of P, Q, on the fixed circle, for which—

1°, m.PA + n.PB is minimum ; and,
2°, m.QA~n.QB is maximum—
C, P being on opposite, and C, Q on the same side of AB.

27. Find P in the bisector of angle A, of triangle ABC, so that the dif-
ference of the angles PBC, PCB is maximum ; and show that then the sum
of these angles is half the angle BAC.

NoTe—If AC < AB, /et L from C on bisector meet AB in D; draw O
thro. B, D to touch bisector in T : then O thro. B, T, C will cut bisector in P.

28. If the number of sides of a polygon is fixed, and its corners lie on fixed
lines, show that when its perimeter is minimum the fixed lines bisect its angles
externally.

NOTE—Use Theorem (11) (a).

29. Of all isoperimetrical polygons, of a given number of sides, that of max:-
mum area is the equilateral.

30. If all the sides of a polygon, excepting one, are given in length, show
that its area is maximum when the remaining side is the diameter of a semi-
circle, whose arc goes through all the corners.

Deduce from this that if all the sides of a polygon are given in length its
area is maximum when its corners are concyclic.

31. (1) Of all polygons of a given number of sides, inscribed in a given circle,
show that the regular one has its area and perimeter maximum.

(2) Of all polygons of a given number of sides, described about a given
circle, show that the regular one has its area and perimeter minimum.

33. In Theorem (19) if P is on a fixed line, instead of a fixed circle, show
that similar results are true.

33. By means of the last Exercise, find when the ratio of two sides of a
triangle is maximum, being given that the third side (or base) is fixed in
magnitude and position, and also that—

19, the vertex is on a fixed line bisecting the base; or
29, one base angle (supposed acute) is fixed ; or
3°, the area is fixed.

NOTE— Results are—1°, vertical \ right ; 3° other base N\ right ; 3°, differ-

ence of base \® right,



SECTION ii—CONCURRENCY AND COLLINEARITY.

\

THEOREM (1)—If X, Y, Z are points in the sides BC, CA, AB of a triangle
ABGC, such that the perpendiculars to the sides at these points are concurremi,
then—

(BX? — CX?) + (CY? — AY?) + (AZ? — BZ? = o;
and conversely. '

A

Let P be the pt. of concurrence.
Then joining P with A, B, C,
we have
B X

(BX? — CX% + (CY? — AY?Y) 4+ (AZ? — B2,
= BP? — CP? + CP? — AP? + AP? — BP?,
=o.
For the converse ; let L® at X, Y meet in P.
Suppose PZ’ L to AB. Then, by preceding part,
(BX? — CX?) + (CY? — AY?) + (AZ'? — B2'?) = 0
and .. = (BX? = CX?% + (CY? — AY?) + (AZ? — BZ?3), by hypothesis.
Z and Z’ are the same point.

THEOREM (2)—(Ceva’'s) When three lines AX, BY, CZ, drawn from the
corners A, B, C of a triangle ABC, to meet its opposite sides in X, Y, 2, are
concurrent, then—

(AZ:2ZB) (BX:XC) (CY:YA) =1;
and conversely.

A

Y Let P be the point of Concur-
rence.

Then by vi. Addenda (a0),
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AZ:ZB = AAPC: ABPC,
BX:XC = ABPA: ACPA,
CY:YA = ACPB: A APB;
., compounding the ratios, and recollecting that the ratio compounded of
Teciprocal ratios is unity, we get
(AZ:2ZB) (BX:XC) (CY:YA) =1.
For the converse; let AX, BY cut in P; and suppose that CP meets AB
in Z’: then, by preceding part,
(AZ': Z’B) (BX:XC) (CY:YA) = 1;
and . = (AZ:ZB) (BX:XC) (CY: YA), by hypothesis.
.. Z and Z' are the same point.

THEOREM (3)—( Menelaus') If three points X, Y, Z, lying respectively on
the three sides BC, CA, AB of a triangle ABC, are collinear, then—

(AZ:ZB) (BX:XC) (CY:YA) = 1;

and conversely.
. A
M From A, B, C let Ls AL, BM,
CN be drawn respectively on
L
Y XYZ.
B [ X

Then by simr. A, AZ:ZB = AL : BM,
BX:XC = BM: CN,
and CY:YA = CN:AL.
(AZ:2B) (BX:XC) (CY:YA) = 1.
For the converse ; let XY meet AB in Z’; then, by preceding part,
(AZ':Z'B) (BX:XC) (CY:YA) =1;
and .. = (AZ:2ZB) (BX:XC) (CY : YA), by hypothesis.
Z and Z' are the same point.

Def. Any line drawn across a system of lines is called a trans'uerxq-.l of aex
system.

b
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Hence the preceding Theorem may be expressed thus—2Zf a fransversal cuts
the sides (or sides produced) opposite corners A, B, C, of triangle ABC, is
X, Y, Z, respectively, them—

(AZ :2B) (BX:XC) (CY:YA) = 1;
and conversely, if this relation holds between the segments into which the sides
of a triangle ABC are cut (externally or internally) in X, Y, Z, then XYZ is
a transversal of the triangle.

Note—If in the above result, the antecedents of the ratios are exchanged
among themselves, or the consequents among them-
selves, the result is still true; or we may take the
reciprocals of all the ratios. In order to recollect
the way in which the letters, in the three preceding
Theorems, are to be taken, place them round a circle,
as in the accompanying figure, where the corners of
the A are placed as A, B, C; and the points in the
sides respectively opposite to them as X, Y, Z; thes,
beginning at azy point, take the successive letters,
Loing one way round.

THEOREM (4)—( Desargues’) If two triangles are so placed that ther
corners connect concurrently, then their corresponding sides intersect collinearly;
and conversely.

Let ABC, a8+ be A*such
that Aae, BB, Cy are cor-
current in P.

Let BC, By meet in X;

s ACyay , Y;
,» AB,ag , Z

Then *.© A PaB is cut by transversal ZBA,
s (@2:28) B 8P PA A = 1. I:



CONCURRENCY AND.COLLINEARITY. 33I

And “.* A PB4« is cut by transversal XCB,
(BX:Xy) (yC:CP) (PB:BB) = 1.
Also *.© A Pav is cut by transversal YCA,
(YY:Ya) (aA:AP) (PC:Cy) = 1.
.., compounding these ratios, and recollecting that compounds of reciprocal
ratios are unity, we get
(@Z:2Z8) BX:Xy) (YY:Ya) =1.
. X, Y, Z are collinear.
For the converse; if X, Y, 2 (the respective intersections of BC, B+, of
,\AC, a¥, and of AB, aB) are collinear, let yC, 8B meet in P.
Then A*BBZ, CyY have joins of corresponding corners concurrent, viz.,
BC, 8%, ZY, meeting in X,
~., by first part, intersections of 8B, ¥C, of ZB, YC, and of Z8, Y are
collinear;
i.e. P, A, a are in one line.
Aa, BB, C are concurrent.

Def. Two triangles, related as in the preceding Theorem, are said to be in
perspective ; and the point of concurrency, and line of collinearity, are termed
tespectively, the centre and axis of perspective.

Note—The appropriateness of the term perspective will be readily seen, by
any one who has a slight knowledge of perspective drawing, from the following
consideration—which also gives a proof of the Theorem.

Let ABC, aB+ be in different planes, not ||, so that P is the vertex of a
pyramid, of which ABC, a8+ are triangular sections.

Then planes of ABC, a8+ will intersect in a line (L say).

But AB, ap, being in one plane, and not ||, must meet.

their pt. of meeting is in L.
. Simrly. BC, 8y meet in L ; and so also do CA, ya.

And this remains true if plane of ABC is turned about L as a hinge.

Let it be turned into coincidence with plane of aB8vy: then Desargues’
T%eorem follows,

Def. Any number of collinear points, when taken in connection with each
other, is termed a range. )

Def. Any number of concurrent lines, when taken in connection with each
other, is termed a pencil : the separate lines are termed rays; and the point
of concurrency is termed the focus of the pencil.
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Def. Let a finite line AB be divided, internally in X, and externallyinY,
then the ratios of the segments are AX : BX and AY : BY ; and the ratio of
the rectangles got by taking the terms of these ratios cross-ways,

AX : BX
thus >< viz. AX . BY : AY . BX
AY : BY

is called a cross-ratio (or an ankarmonic-ratio) of the four segments.

Note—If we write the ratios thus— %( and g—:; and assume that ratios,

expressed in a fractional form, may be manipulated like arithmetic fractions;
then, since

AX
BX AX.BY
AY ~ AY.BX’
BY

we see that a cross ratio of four segments is the ratio of the ratios of the seg-
ments ; but the assumption implies that the segments are commensurable.

THEOREM (5)—.f a fixed pencil of four rays is cut by a transversal, the
cross-ratio of the four segments of the transversal is invariable.

E

Let pencil (focus F) be cut by
any transversal in A, B, C, D.

Thro. B draw the || to FD,
meeting FA in P, and FC in Q.

Then AB:AD = PB: FD,
and CD:BC = FD:QB.
AB.CD: AD.BC = PB : QB, a const. ratio.
the cross-ratio AB . CD : AD . BC is constant for all transversals,
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Note (1)—The cross-ratio of a range A, B, C, D is denoted by (ABCD) ; and
that of a pencil (as above) by F (ABCD).

By Euler's Theorem [ii. Addenda (8)), viz. that for & range A, B, C, D,
AB.CD + AD.BC = AC.BD,
we see that, if any one of the cross-ratios .
AB.CD:AD.BC; AB.CD:AC.BD; AD.BC:AC.BD,
or their reciprocals, is constant, so is also each of the others.

Hence, if in either term of a cross-ratio two pairs of letters are interchanged,
the ratio remains constant.

Def. If two ranges of points (or pencils of rays) have the same cross-ratio,
they are said to be equi-cross.*

From Theorem (5) we have—

Cor. (1). If the rays AF, BF, CF, DF are produced, the cross-ratio of the
new pencil formed is the same as that of the original pencil.

Cor. (3). If two pencils are equi-cross, and have three rays in common, they
have a fourth ray in common.

Cor. (3). If the successive angles of one pencil are respectively equal to the
successive angles of another pencil, the pencils are equi-cross.

For the pencils can be superposed so as to coincide.

Cor. (4). If four fixed points on a circle are joined to a fifth variable point,
the pencil has a constant cross-ratio.

For the successive angles formed by the joins are constant.

Note (3)—The cross-ratio of the pencil formed by joining a variable point P
on a circle to four fixed points A, B, C, D, on the same circle, is denoted by
P (ABCD); and its value is that of the range formed by any transversal to the
pencil.

* The term cross-ratio was given by the late Professor Clifford in his
Elements of Dynamic, p. 43. Egui-cross was suggested by the late Professor
Townsend : see 7aylor's Ancient and Modern Geometry of Conics,D. 230, Woke.
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THEOREM (6)—If A, B, C, D, E, F are any six points on a circle, whick
are joined successively in any order ; then the intersections of the first and
fourth, of the second and fifth, and of the third and sixth of these joins
(produced when necessary) are collinear.

Let AB, DE cutin X;
,, BC,EF , Y;
» CD,FA , 2

Join 2ZX, ZY, ZE.

Let ZAcut XEin Q;

and 2C ,, YE, P.

Then
Z(FYPE)=C(FYPE)=C(FBDE)=A(FBDE)=A (QXDE)=2Z (QXDE).
" .., since the pencils are equi-cross and have three rays in common, their .
fourth ray is in common : ‘
i.e. XZ, ZY are in the same line.

Note (1)—In the single case in which the points are joined in their successive
order round the circle, the joins form a hexagon ; and the Theorem becomes—
The intersections of the opposite sides of a cyclic hexagon are collinear. Thisis
known as Pascal’s Theorem. '

Note (2)—Any such line as XZY is called a Pascal Line: there are sixty of
them, corresponding to the sixty different ways. in which the six points can be
joined.

THEOREM (7)—If two ranges of four points, not on the same line, have o
common point, and are equi-cross ; them the joins of corresponding points are
concurrent.

F
Let ABCD, AB'C'D’ be

two ranges, having A common,
and (ABCD) = (AB'C'D’).
Let BB', CC’ meet in F.

Join FD’; and let it meet
ABCD in X. Join FA.

»
®
(¢
X
O
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Then F (ABCX) = F (AB'C'D’) = F (ABCD).
ooy by Theor. (5) Cor. (3), FX and FD are the same ray:
i.e. X and D are the same pt.

BB’, CC’, DD are concurrent.

THEOREM (8)—1If two pencils of four rays, not from the same focus, have a
common ray, and are equi-cross; then the intersections of corresponding rays
are collinear.

Let F (ABCD) and
F' (ABCD) have a
common ray FF’, and
the same cross-ratio.

Produce BC both
ways, so as to cut FF’
in A, FD in X, and
FDinY.

Then F (ABCX) = F(ABCD) = F' (ABCD) = F'(ABCY) = F(ABCY).
.~y by ZTkeor. (§) Cor. (3), FX and FY are the same ray:
i.e. X and Y coincide ;
and .. must coincide with D ;
.« B, C, D are collinear.,

Note—The two preceding Theorems may be concisely summed up thus—Zf
two ranges of points (or pencils of rays) ABCD, abed, are equi-cross ; then,
if (A, &) coalesce, the pairs (B, b) (C, ), (D, Q) will connect concurrently or
sntersect collinearly.



EXERCISES ON CONCURRENCY AND
COLLINEARITY.

1. By means of Theorem (1) prove that the following sets of three lines are,
in each case, concurrent—

(1) The perpendiculars to the sides of a triangle at their mid points:

(2) the perpendiculars through the corners of a triangle on the opposite
sides '

(3) The perpendiculars to the sides of a triangle at the points where the
sides (not produced) are touched by the three ex-circles:

(4) The two perpendiculars at the points where two ex-circles touch the
sides of a triangle, produced through the same corner, and the perpendicular at
the point where the in-circle touches the side opposite that comer :

(5) The three tangents at the points of contact of three circles which touch
two and two : ’

(6) Any three perpendiculars to the sides of a triangle, if the three perpen-
diculars respectively equidistant from the mid points of the sides are concurrent :

(7) The three perpendiculars from the corners of one triangle on the sides
of another, ¢f the three corresponding perpendiculars from the corners of the
second on the sides of the first are concurrent.

2. By means of Ceva’s Theorem prove that the following sets of three lines
are, in each case, concurrent—

(1) The medians of a triangle :

(3) The bisectors of the internal angles of a triangle; or of two external
and the third internal :

(3) The joins of the points of contact, of the in-circle of a triangle with
the opposite corners :

(4) The altitudes of a triangle :

(5) The joins of the corners of a triangle to three of the points in which

|

the opposite sides are cut by a circle, f the joins to the other three points of '

section are concurrent :

(6) The joins of the corners of a triangle to points on the opposite sides,
#f the joins to the points respectively equidistant from the mid points of the
sides are concurrent :

(7) The joins of the corners of a triangle to the points in the opposite
sides where they are met by lines bisecting the angles (all internally, or two
externally and one internally) between three lines drawn from any point to the
corners of the triangle,
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3. By means of Menclaus’ Theorem prove that the following sets of three
points are, in each case, collinear—

(1) The points in which the three external bisectors of the angles of a

triangle meet the opposite sides produced :

(2) The points in which two internal and one external bisector of the

angles of a triangle meet the opposite sides (produced if necessary) :

(3) Three points on the sides of a triangle (produced if necessary) 7f the
three respectively equidistant from the mid points of the sides are collinear :

(4) The points in which two of the internal and one external bisector of
the angles between three lines drawn from any point to the comers of a triangle
meet its opposite sides.

4. By means of Desargues’ Theorem prove that—

(1) When three triangles are in perspective, two and two, and have a
common axis of perspective, their three centres of perspective are collinear :

(2) When three triangles are in perspective, two and two, and have a
common centre of perspective, their three axes of perspective are concurrent.
(Chasles, Géométrie Supérieure, pp. 383, 284 : see also Townsend, Vol. I, p. 194,
where these Theorems are generalised for any rectilineal figure.)

5. Prove the last Exercise, as in the Note to Theorem (4) by considering the
triangles not in a plane.

6. Three circles touch the sides of a triangle ABC at the points where the
in-circle touches them ; and the circles touch each other in P, Q, R; show
that AP, BQ, CR are concurrent.

7. Lines from two corners of a triangle divide the opposite sides in same
ratio ; if the third corner is joined to their intersection, this join produced will
either bisect the third side, or divide it in duplicate of the above ratio.

8. ABC is a triangle, O a point within it; if AO, BO, CO meet BC, CA,
AB in X, Y, Z respectively; and YZ, CB, produced meet in P ; then—

BX:CX = BP: CP.

NOTE—Combine Ceva's and Menelaus' Theorems.

9. If a variable transversal cuts the sides of a fixed triangle in X, Y, Z; and
the ratio of XY to YZ is fixed; then the circum-circle of any one of the three
triangles cut off by the transversal goes through a fixed point.

10. If through one of the points of intersection of two circles two lines YXZ,
QPR are drawn at right angles ; so that X, P are on the line of centres; Y, Q
on one circumference ; and Z, R on the other ; then—

XY : XZ = PQ: PR,

Note—Use Mencelaus' Theorem.

zZ
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11. From the corners B, C, of a triangle ABC, BX, CY are drawn parallel
to the opposite sides, so as each to be equal to a given length ; if parallels to
the adjacent sides, through X, Y, meet in Z; then XC, YB, ZA are concurrent.

132. If from any point within a triangle perpendiculars are dropped on its

sides, and the circle through the feet of these perpendiculars cuts the sides
again; then the perpendiculars at these last points of section are concurrent.

13. The perpendiculars from the corners of a triangle, on the sides of its
pedal triangle, are concurrent at the circum-centre of the original triangle.

14. If twelve perpendiculars are drawn to the sides of a triangle, from the
four centres of its circles of contact, these perpendiculars will be concurrent,
three by three, in four points which are the centres of the circum-circles of the
four ex-central triangles.

NOTE—T7%e jfour ex-central triangles are formed by joining the ex- and
in-centres.

15. In any triangle, show that the N.P.-circle bisects all lines from the
orthocentre to the circumference of the circum-circle; and also bisects all lines
from a corner to the circumference of the circle through the orthocentre and
the other two corners: hence prove that—

If in each ex-central triangle, its orthocentre is joined with its circum-centre,
the four joins are concurrent in the centre of the N.P. circle of the four
ex-central triangles.

NOTE—T%e last five Exercises are proved in Booth’s New Geometrical
Methods, Vol. I1, pp. 263, 285, 300, 319, 320. .

16. If A, B, C are three collinear points, and &, b, ¢ three other collinesr
points; then the intersections of Ab, Ba, of Be, Cb, and of Ca, Ag, ar
collinear.

NOTE—Use Theorem (8).

17. If A, B, C are three concurrent lines, and &, b, ¢ three other concurrent
lines; then (denoting the intersection of A and @ by Aa) the joins of Ab, B,
of Be, Cb, and of Ca, Ac are concurrent. (Chasles, Géométrie Supéricure,

P- 294.)

\




SECTION iii—CENTRES OF SIMILITUDE.

Note—By O A, it is to be understood that we mean to indicate t%e circle
whose centre is A; where, from the construction of the figure, no ambiguity
can arise.

Def. If the join of the centres A and B, of two circles, is divided externally
in S, and internally in o, so that
SA : SB = radiusof © A : radius of OB = ¢A: 0B,

the point S is called the external centre of similitude; and the point ¢ is called
the énternal centre of similitude of the two circles.

THEOREM (1)—4 fangent drawn to one of two circles, from either centre of
similitude, is also a tangent lo the other.

S /A\a B

From S, the ext. centre of simil. of ©* A, B, let SP be drawn, touching © A
in P; and let BQ be L on SP (produced if necessary).
Then by simr. A%
AP : BQ = SA : SB = radius of ® A : radius of © B.
BQ = radius of © B.
SPQ is tang. to © B, at Q.

The proof is exactly simr. for ¢, the int. centre of simi\.
zZ2
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Def. The common tangents to two circles from their external centre of
similitude are called their direct common tangents ; and those from their internal
centre of similitude are called their Z7ansverse common tangents.

Note—When one of the circles is entirely within the other, the circles have
no common tangents, and therefore both centres of similitude lie within both
circles.

Similarly when the circles intersect, the external centre of similitude lies out-
side both circles, and the internal centre of similitude within both.

And when the circles touch externally, the internal centre of similitude
coincides with the point of contact. ‘

THEOREM (2)— Te join of the extremities of two parallel radii of two circles
goes through their external centre of similitude, when the radii are on the same
side of the line of centyes ; and through their internal centre of similitude,
when the vadii are on opposite sides of the line of centres.

Let AP, BQ be || radii of ®©% A, B ; and on same side of AB.
Let QP, BA meet in S.
Then, by simr. A3, SA: SB = AP : BQ;
S is ext. centre of simil.
Simrly. if AP, BQ' are on opposite sides of AB; PQ’ will go through g,
the 77¢. centre of similitude.

Def. If through either centre of similitude of two circles, a line is drawn
cutting the circles ; then, of the four points of section, the one which is nearer
the centre of similitude on one circle is said to correspond to the one which is
nearer on the other circle; and this pair of nearer points are called corre-
sponding points. So also the pair of remoter points are called corresponding
points. But a nearer point of one circle, and a remoter point of the other
circle, are called non-corresponding points.

. i —

|
|
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THEOREM (3)—If through a centre of similitude of two circles, a line is
drawn cutting the circles, the radii to a pair of corresponding points are
parallel.

Let S be a centre of simil. of @* A, B ; and let SPQpq cut © Ain P, Q,
and © B in p, q; so that P, p and Q, q are the pairs of corresponding points.
Then, since SA: SB = AP : Bp;
AP and Bp are ||.
Simrly. AQ and Bq are ||.

Cor. The tangents at P, p, being L to AP, Bp are ||; and so also are the
tangs. at Q, q.

THEOREM (4)—If through a centre of similitude of two circles, a line is
drawn cutting the circles ; then the rectangle under the distances of one pair
of non-corresponding points from that centre of similitude, is equal to the
rectangle under the distances of the other pair of non-corresponding points from
that centre ; and eack of these rectangles is constant.

Taking fig. of Theorem (3), we have

SP:Sp = AP:Bp = SQ:Sq;
SP.Sq = SQ. Sp.

Also SP.Sq:Sp.Sq = SP: Sp = SA: SB, a const. ratio.
And Sp.Sq = sq. on tang. from S to © B, which is const.
SP. Sq is const.
and .'. soalsois SQ.Sp.
Simrly. for the internal centre of similitude.

Def. Each of these constant rectangles is called a rectangle of amti-
similitude. :
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THEOREM (5)—1f a variable cirvcle touches two fixed circles, the join of the
points of contact goes through the external centre of similitude of the fixed
circles, when the contacts are of the same kind ; and through the internal
centre, when of different kinds.

1) X

Let © X be variable, and touch fixed ©* A, B, in Q, p respectively.
Let pQ cut BA in S, and © A again in P.
Then Bp, AQ will meet in X.
In fig. (1) contacts are of same kind.
In fig. (2) contacts are of opposite kinds.
N N N N
In both figs. XpQ = XQp = AQP = APQ.
AP, Bp are |,
AP :Bp = SA: SB;
S is a centre of simil.

Cor. The tangent to © X from S is constant. For the sq. on it = Sp. SQ,
which is const. by Theorem (4). |

THEOREM (6)— The six centres of similitude, whick are got by taking thre
circles in pairs, are so situated that—

(@) the joins of the centre of eack circle with the internal centre of similitude
of the other two are concurrent :

(B) the external centre of similitude of any pair, and the two internal centres
of similitude of the other two pairs, are collinear :

(y) the three external centres of similitude are collinear.
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Let A, B, C be centres of three ©%;
S, 0, the respective ext. and int. centres simil. of ©* B, C;
sl (4} » » » C: A H
S, o, ”» » ) A, B.
Let a, b, ¢ be respective radii of ©¢ A, B, C.
Then Ag,:0,C =a:ec,
Co,:0,B =¢c:b,
Bes,:0,A =b:a;
.*.» compounding the ratios, we get
(Agy:0,C) (Co,:0,B) (Bay:0,A) = 15
. Aag,, Ba,, Co, are concurrent.

Again, AS,:S,C =a:c,
CS,:SB=c¢:h,
BS,:S,A=b:a;

(AS,:S,C) (CS,:8,B) (BS,:S,A) = 1;
. S, S,, S,, are collinear.
Simrly. it can be shown that
S, o, g, are collinear,
that S, o, 0,
and that S, ¢, 0,

»

”

Def. Theline S, S, S, is called the external axis of similitude of the three

ircles; and the lines S, 0, 03, S, 0, 03, S, 0, 0, are called the three snternal
xes of similitude.



EXERCISES ON CENTRES OF SIMILITUDE.

1. The centroid and orthocentre of a triangle are respectively the internal
and external centres of similitude of its circum-circle and N. P. circle.

2. D, E, F are the points of contact of the in-circle, respectively opposite the
comers A, B, C of a triangle ; if X is taken in CB, so that CX, BD are equal;
and if AX cuts the in-circle in P, Q (of which P is nearer to A}, thea

AP .BC = AE . PX.

3. X, Y are the respective points of contact with BC, of the in-circle, and
an ex-circle, of a triangle ABC; if YP is perpendicular to AX, then P is on
the circumference of the ex-circle.

4. Through the external centre of similitude of two circles A, B, a variable
line is drawn, meeting the circles in P, Q, p, q; if a circle is drawn touching
A, B at non-corresponding points P, q ; and another circle touching them at
P, Q; then the difference of the radii of these last two circles is equal to the
sum of the radii of A, B.

5. Given two non-intersecting circles ; show that of all lines, parallel to a
given direction, which meet the circles, the one through the internal centre of
similitude has one of its segments, intercepted between the two circumferences,
maximum, and one minimum.

NOTE—Use Theorem (3) Cor.

Def. The circle on S¢ [fig. of Theorem (1)] as diameter, is called the circle
of similitude of circles A and B.

6. Show that the circle of similitude of two circles is the Locus of points at
which the circles subtend equal angles.

NOTE—By reference to vi. Addenda (15) it will be seen that the civcle of
similitude is suck a Locus as is there investigated ; and that if X is any point
on its circumference, XA : XB = radius of © A: radius of © B.

7. If PX, PY are tangents to two circles from any point P on their circle of
similitude; and if XY meet the circles again in x, y; then will Xxand Yy
be equal. (Clasles, Géométrie Supérieure, p. 525.)

8. In Theorem (5) all the variable circles are cut orthogonally by a fixed
circle.

9. Two fixed circles are each touched by two variable circles ; if the variable
circles also touch each other, find the Locus of their point of contact.

NoTE—Use Theorem (5).
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10. If Tt is a common tangent, and PQpq a common line of section of two
circles, drawn through the same centre of similitude, and so that P, p and
Q, q are corresponding points ; then—

Tt? = Pp.Qaq.

11. If from S, a centre of similitude of two circles, two lines SPQpq,
SXY XYy, are drawn to cut the circles; so that P, Q, X, Y are on one circle ;
and p, q, X, ¥ are the corresponding points on the other; and if each pair of
points on the same circle are joined, then—

19, the join of any pair, as PX, is parallel to the join PxX of the corresponding
pair:

29, the quadrilaterals PYxq, QXyp, QYxp, PXyq are cyclic:

39 the join of any pair of points, as PX, meets the join qy of the non-
corresponding pair at a point such that the tangents from it to the circles are
equal. [Cf. Section iv. (1) for the Locus of these points.]

12. If X is the centre of the circle of similitude of two circles A, B, whose
respective radii are &, b, show that

AX:BX = a?: b’
Hence deduce that, if C is a third circle ; and Y, Z the centres of the circles of
similitude of B, C and of C, A ; then X, Y, Z are collinear.

Def. The two circles round the two centres of similitude of a pair of circles
as centres, the squares on whose radii are equal to the corresponding rectangles
of anti-similitude, are called the circles of anti-similitude.

13. Every circle orthogonal to two circles is orthogonal at once to their
circle of similitude, and their two circles of anti-similitude.

14. If A, B, C are any three circles; X a circle which touches them all
internally, and Y a circle which touches them all externally; prove that—

19, the radical axis (see Section iv.) of X, Y, is the axis of external similitude
of A, B, C; and

29, the internal centre of similitude of X, Y, is the radical centre of A, B, C.

How should the Theorems be modified, when the contacts are not all of the
same kind ?

15. If a variable circle cuts two fixed circles, at equal angles, the join of a
pair of non-corresponding points of ‘intersection goes through the external
centre of similitude of the fixed circles.



SECTION iv—CO-AXAL CIRCLES.

Def. That line which is perpendicular to the line of centres of two circles,
and divides the distance between their centres (internally or externally) into
segments, the difference of the squares on which is equal to the difference of
the squares on the radii, is called the »adica/ axis of the circles.

THEOREM (1)— The radical axis of two circles is the Locus of points from
whick tangents to the circles are equal.

@ R

Take any two O¢ C, B—the radius of ® C being the greater—and let Abe
the pt. in CB, fig. (1), or CB produced, fig. (2), for which !
CA? — BA? = (radius of @ C)* — (radius of ® B)?
Let R be any pt. in the L to CB at A.
Draw RP, RQ tangs. respectively to ©* C, B.

Since CA? — BA? = CP? — BQ?;
CR? — BR? = CP? —- BQ3?,

or CR? — CP? = BR? — BQ?%;

RP? = RQ2%

i. e. tangs. from R to the OF are equal ;
and RA is the Locus of such points.

Cor. (1). When two Of intersect, their radical exis is also their common
chord.
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Cor. (2). There is an unlimited number of ©f having the same radical axis
as any two O%: for—

1°, when the ©F intersect, a// O¢ through the pts. of section have the same
radical axis, by Cor. (1): .

29, otherwige; draw RS in any direction, on either side of RA, so that
RS = RP: then if SX, L to SR, meets CB in X, the © with X as centre
and XS as radius has the same radical axis as ©* C, B.

THEOREM (2)—Tlu difference of the squares on tangents from any point to
two circles, is equal to twice the rectangle under the join of their centres, and
the distance of the point from their radical axis.

R

v Let RA be radical axis
of @ C, B—A being in
U CB.

/ Let PV, PU be respec-
A tive tangs. to them from
c ™M B any pt. P.

Draw PN, PQ _L * respecty. to RA, CB.
Let M be the mid pt. of CB.
Then, since PV? + CV? = PC?% and PU? + BU? = PB?;
PV? — PU% + CV? — BU? = PC? — PB*.
But PC? — PB? = CQ? — BQ? = 2 BC. QM;
and CV? -~ BU? = CA? — BA? = 2BC . AM.
PV? - PU? = 2BC.QA = 2 BC.PN.

Cor. (1). If Pis on RA, PN = o, and PV = PU, as in Zheorem (1).

Cor. (2). If PU = o, PV? = 2 BC ., PN.

Cor. (3). If PU = o,and CV = o0, PC? = 2 BC. PN. (Cf.p.191, £x.137.)
Cor. (4). If PXX’, PYY' are secants, PX.PX — PY . PY' = 2©®C .P\.
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THEOREM (3)— The three radical axes of three civcles (whose centres are not
collincar) taken two and two, are concurrent. I

Let A, B, C be pts. not collinear; and let @* A, B, C have respective radii ‘
T, Ty, T;; also let X, Y, Z be respective pts. in which the three radical axes of !,
the ©* cut BC, CA, AB. .

Then BX? — CX? = r? — 1, |

CY? - AY? =1 — 1},
AZ? — BZ? =1r? — 1;; '
(BX? — CX?%) + (CY? = AY?) + (AZ? — BZ*) = o, '
which is the condn. for the concurrency of the three L% at X, Y, Z: J
i.e. the three radical axes are concurrent.

Def. The point of concurrency of the three radical axes of three circles is
called their radical centre.

Def. If a number of circles have their centres collinear, the line of centres is ‘
called their central axis, \

Def. Any number of circles which have the same central axis, and the same
radical axis, are said to be co-axal. i

R

1) (2)
c X

If O and OX are the variable centre and radius of any © of a co-axal system;
and A the intersection of their central and radical axes; then, by def. of
co-axal ©%, OA? ~ OX? is constant for all the system, = 32 suppose.

1°, if any two of the ®% have common pts. C, C', fig. (1), then all the @% of
the system go thro. C, C’; and the system is said to be of the common point
speczes.  In that case CA = 8 = C'A and the O radius 3 is minsmum.
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29, if the ©% do not intersect, fig. (2), OX can diminish, until O comes to L,
where AL = 8; and if we consider a pt. as the limiting value of a ©, when
its radius decreases indefinitely, then L may be considered as the minimum O ;
and if L' is the image of L. with respect to the radical axis, there are corre-
sponding O, on the other side of the radical axis, with L' as minimum. The
two series of O% together form a co-axal system which is said to be of the
limiting point species—L and L' being defined as the limiting points.

In neither species is there a maximum circle of the system; but the radical
axis may be considered as the limit towards coincidence with which the ©*
tend, as they increase indefinitely in size.

By consideration of the above figure, it will be seen that, if we take any two
lines cutting at right angles in A; and P, Q are any points in one of them,
equidistant from A; then P, Q will be the limiting points of one co-axal
system, and the common points of another; and the lines are the correspond-
ing central and radical, or radical and central, axes of the systems.

Hence to every system of the one species there is a corresponding system of
the other species, such that the radical axis, central axis, and common (or
limiting) points of the one, are respectively the central axis, radical axis, and
limiting (or common) points of the other; and all ©® of one system are ortho-
gonal to all O* of the other system.

Suppose & to diminish indefinitely: then the limiting (or common) points
approach indefinitely near A ; and will coincide with A, when & vanishes.

Hence, if a series of O® are in contact at one point, the series may be con-
sidered as a co-axal system of which the point of contact is a coincident
position of the two limiting, or the two common, points of the system.

If . it can be shown that the limiting point of two ©® is o7 one of them, it
follows that the ©® /ouck at that point.
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THEOREM (4)—1If three circles are co-axal, the squares on tangents to two of
them from a point on the thivd, ave in the ratio of the distances of the centre of
the third from the other two centres.

Let ©* A, B, C be co-axal; Papt. on © C; PT, PS tangs. to @*A,B; -
PN _L on their radical axis. l
Then, by Zheorem (3) Cor. (2), PT2 = 3 CA. PN,
and PS? = 2CB, PN;

PT?: PS? = CA:CB.

Cor. If © B is supposed to shrink up into the limiting pt. L. of the system,
then
PT2: PL* = CA: CL.
Hence, if L is the limiting pt. of two O, and PT a tang. from any pt. P, on
the outer, to the inner, then
PT : PL is a constant ratio, I

THEOREM (5)—ABC s a triangle inscribed in a civcle; AT, BT/, CT are
tangents to another circle; then if of the three rectangles BC . AT, CA . BT/,
AB . CT", the sum of any two s equal to the third, the circles will touch.

For let L be the limiting pt. of the
©#%; then, by the preceding Cor., l
AT:AL =BT':BL =CT"”:CL

.. the given condn. becomes that—
of the three

BC.AL, CA.BL, AB.CL,

the sum of two = the third.

.., by the converse of Ptolemy’s Theorem, L is concyclic with A, B, C.
O* touch at L.*

* Communicated to the Editor by Professor Purser, of Queen’s College,
Belfast,
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THEOREM (6)—( Feuerback’s) The N. P. circle touckes the in-circle and
three ex-circles of any triangle.

Q

@

X

Let, with respect to comners A, B, C, of a A,
a, b, ¢ be the sides; 8 the semi-perimeter;
X, Y, Z the mid. pts. of sides;
P, Q,R pts. of contact of in-O.
Then circum-© of A XYZ is N.P. © of A ABC.

Now XP =2 _(g—¢)= =P,
2 2
b a—c
va-2-@-a=22°
and ZR = & — (s-a) = 2=P.
2 2
vz.xp = 2 (2=P) _se-sb,
2 2 4
xy,2R=E(“"b)="Lb°,
2 P) 4
and zx.YQ=9(’" )="‘b‘b°.
2 2 4

Yz.xp+zx.YQ=9°_:b_°-xY.ZR;

.., by last Theorem, N. P. © touches in-© at some pt. T.
Similarly the N. P. © touches each of the ex-Qt.



EXERCISES ON CO-AXAL CIRCLES.

1. The circle of similitude of two circles is co-axal with them.

3. The three circles of similitude of three circles, taken two and two, are
co-axal.

3. Given two intersecting circles A, B; show that there is another circle C,
co-axal with them, such that, if tangents are drawn to the three from any
point, then—

sq. on tang. to A + sq. on tang. to B = 2 sq. on tang. to C.

4. A variable circle cuts two fixed circles orthogonally ; find the Locus of its
centre.

5. If a variable circle touches two fixed circles, its radius bears a constant
ratio to the distance of its centre from their radical axis.

6. A variable circle goes through a fixed point A, and cuts a fixed circle
orthogonally in P, Q: show that the rectangle under AP, AQ varies as the
chord PQ.

NoTE—Use Theorem (3), Cor. 2, and vi. Addenda (8).

7. Given a fixed circle, centre C, and a fixed line AB ; if a system of circles
have AB as their central axis, and cut given circle orthogonally, they ate
co-axal, their radical axis being the perpendicular from C on AB.

8. In a co-axal system, of the limiting point species, if through a limiting
point L, a line is drawn to cut a circle of the system in X, Y; and if XM, YN
are perpendiculars on the radical axis, then XM . YN = LA3?, where A is the
intersection of the radical and central axes.

9. Perpendiculars drawn through the mid points of the sides of a triangle to
the bisectors of its angles, are the radical axes of the in-circle and the several
ex-circles.

10. X, Y, P, Q, R are any five circles; if ABC is the triangle formed by
the radical axes of X, P, of X, Q, and of X, R; and aB+y is the triangle
formed by the radical axes of Y, P, of Y, Q, and of Y, R; then ABC, a8y
are in perspective.

11. If AOD, BOE, COF are the altitudes of a triangle ABC, and G its
centroid ; then the circum-circles of ADG, BEG, CFG, have a second point
in common ; namely, the intersection of OG with the radical axis of the N.P.
circle and the circum-circle of ABC.

12. The sixteen circles of contact, of the four triangles formed by four inter-
secting lines, have their centres, in fours, on four co-axal circles.

~—




SECTION v—“THE TANGENCIES.”

Given in position any three of the following nine—three points, three lines,
three circles of fixed magnitude—it is required to describe a circle which shall
pass through such points as are given, and touch such lines and circles as are
given. These Problems are known as 7%e Zangencies.

There are ez cases.

Case 1. .Given three points—Euc. iv. 5.

Case 2. Given three lines—Euc. iv. 4.

Case 3. Gtven two points and a line.

< = Y Let A, B be given pts. and XY given
line.
8 Join AB, and let it meet XY in C.
In XY take CP a mean propl. to
CA, CB; so that CP? = CA . CB.
A

Then the © thro. A, B, P touches XY at P.
There are two positions of P, and .". two solutions.

Case 4. Given two lines and a point.

Let OX, OY be the given
lines; A the given pt.
N _ Draw ON the bisector of

A
XOY; and let B be the image
3 of A with respect to ON.

By Case 3, draw a O thro. A, B to touch OX in P: then this ® will clearly
touch OY in Q, the image of P with respect to ON.
There are two positions of P, and .-, two solutions.
AQ
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Case 5. Given two points and a circle.

> 1
0O Let A, B be the given pts. '
Draw any © thro. A, B to cut
given O in C, D.
Let AB, CD meet in O; and
draw OP to touch given O in P.

Then, since OP? = OC .OD = OA. OB,
O thro. A, B, P touches OP in P;
and .. also touches given © in P.
There are two positions of P, and .. two solutions.

e e’

Case 6. Given two circles and a point.

e . SRR ¢ . e

Let A be given pt.; and B, C centres of given @2,
Take S the ext. centre of similitude of B, C.
Let BC et ©* i\, K.
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Join SA ; and in it take SX the fourth propl. to SA, SK, SL, so that
SA:SK = SL: 8X,
and .. SA.SX = SK . SL.

Thro. A and X describe (Case 3) © to touch ©@ B in P ; let O be its centre.
Join SP, cutting © B in D again, and meeting © C.in Q.
Then SA.SX = SK.SL = SP. SQ, *.* Sis cent. of simil.
». Qison O thro. A, X, P.
Also BD is || to CQ, by a property of centre of similitude.

N\ A
SDB = CaQsS.
N N N A N\
But OQP = OPQ = BPD = BDP = suppt. SDB;

A N\
OQP = suppt. CQS;
CQO is a st. line;
0O O touches ©* B, C, and goes thro. A.
Since there are two positions of P, there are two solutions corresponding
to S.
Also taking the internal centre of similitude there will be two more solutions.
i.e. there are four solutions in all.

Case 7. Given a point, a line, and a circle.

c Let A be given pt.; C centre
of given © ; and BD given line.
Draw CN L to BD at N,
and let it meet O in F.
(o) Produce NC to meet O again
in E.

8 N Q D

Join EA; and in it take EX the fourth propl. to EA, EN, EF; so that
EA:EN = EF: EX,

and .. EN.EF = EA . EX,
Aaz2



356 GENERAL ADDENDA—SECTION v.

Thro. A and X describe (Case 3) a © to touch BD in Q.
Join EQ, cutting given O in P ; and join CP, OP, OQ, FP.

Then since F/F\’E and F/I‘}Q are each right,
quad. FNQP is cyclic.
EP.EQ = EF.EN = EA. EX;
». P is on circumf. of ® O.

A A A A
OPQ = OQP = CEP = CPE;
CPO is a st. line.
.~ O%touch at P.
Two O¢ can be described thro..A and X, touching BD, which give two

solutions; and similarly two more solutions can be got by joining FA, instead
of EA.

Case 8. Given two lines, and a circle.

Let AB, DE be given lines; C
centre of given O.

On sides of AB, DE, remote from
C, draw ||* to them, at distance from
them which = rad. of C.

Describe (Case 4) a O thro. C to touch the || to AB in M, and the || to DE
in N.

Let O be its centre ; and let OM cut AB in Q, and ON cut DE in R.

Join CO cutting given © in P; and with centre O and radius OP describe

a 0.
Then OC = OM, and QM = CP.

0Q = OP, which simrly. = OR.
Q and R are pts. on © O.
Also O touches AB, DE at these pts., *.© A® there are right.

The two solutions of Case 4 give two solutions: two more will be got by
drawing ||* to AB, ED on same side as C.

o e

P N —
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Case 9. Given two circles and a line.

Let A, B be centres of given O¢;
DE given line.

On side of ED remote from B
(the centre of the lesser @) draw a
|| to DE at distance from it which
= rad. of B. '

With centre A, and radius which
= diff. of radii of A and B, describe
a 0.

Draw (Case 7) a © thro. B to touch the constructed line at N, and
constructed @ at M. .

Let O be centre of this ®; let ON cut ED in R; let OAcut ® Ain P;
and let OB cut ®© B in Q.

Then since OB = ON, and QB = RN,
OR = 0Q, which simrly. = OP.
.. O centre O and rad. OP goes thro. Q and R, and touches given ®® and
line at P, Q, R.
The four solutions of Case 7 will give four solutions here: four more will
come from drawing || to ED on same side as B.

Case 10. Given three circles.

Let A, B, C be centres of given
08, of which A has a radius which
P that of either of the others.

With B as centre, and radius
which = rad. B — rad. A, describe

a 0.
With C as centre, and radius
c which = rad. C - rad. A, describe

a 0.
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Thro. A draw a @ to touch these last two constructed @* (Case 6) in M,N
respectively.

Let BM, CN meet in O; and join OA.

Let OAcut OAin P; OBcut ©BinQ; and OC cut ©Cin R.

Then OM = OA, and MQ = PA.
- 0Q = OP, which simrly. = OR.

». O, centre O radius OP, goes thro. Q and R; and touches given O*in
P, Q, R, " OA, OB, OC are lines of centres.

It will easily appear that there are eight solutions.

EXERCISES ON THE TANGENCIES.

1. For certain relations among the dafz, some of the preceding constructions

fail : investigate the necessary modifications to be made, when in—

Case (3), AB is parallel to XY; or A is in XY:

Case (4), given lines are parallel ; or A is in one of them:

Case (5), A and B are equidistant from centre of given circle; or Aison
given circle :

Case (6), given circles are equal.

2. In the figure of Euc. i. 1, describe a circle to touch the given line, and the
two circles of construction.

3. In Case (7) there are generally two circles which can be drawn to have
external contact with the given circle: if A is supposed variable, find its Locus
under the condition that these two circles touch each other.

4. Given three circles, describe another to touch two of them, and—

1°, bisect the circumference of the third ;
2°, cut the third orthogonally.

5. If we consider a point as an infinitely small circle, and a line as an
infinitely large circle; show that Cases (3) to (10) may all be solved by the
following construction (Gergonne's)—Let A, B, C be three given circles; O
their orthogonal circle : let the chords of intersection of O with A, B, C meet
an axis of similitude of A, B, C in P, Q, R; and from P, Q, R draw pairs of
tangents to A, B, C respectively: then the two circles through the six points
of contact of these tangents will touch A, B, C: also, since there are four axes
of similitude, there will be eight circles of contact.




SECTION vi—INVERSION.

Def. Every two points P and Q, on a diameter of a circle (centre C) such
that the rectangle under CP, CQ is equal to the square on the radius, are
called inverse points with respect to that circle. Also the circle is called the
circle of inversion ; and its centre is called the centre of inversion.

Note—Any fixed circle may be taken as the circle of inversion.

Def. The inverse of a Locus is the Locus of the inverses of all points
on it.

Thus if to every position of a point P on a Locus we take the corresponding
inverse D, then the Locus of P is the inverse of the Locus of P,

Note—In what follows the radius of the circle of inversion is denoted by R.

THEOREM (1)—The inverse of a line is a circle through the centre of
inversion.

> - Let AP be a line; C the centre of inversion;
CA 1 to AP; and P any pt. in AP.

Iet & be inverse of A, and p inverse of P.

Then CP.Cp =R?=CA.Ca,
P, p, a, A are concyclic.

/\
But PAa is right.

N
Cpa is right.
Locus of p is © on Ca as diameter.

Cor. A line is the radical axis of its inverse and the cixcle of Inversion.
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THEOREM (3)— 7%e inverse of a circle through the centre of inversion is
a line.

Let CA be diam. of O thro. C, the centre
c of inversion ; P any pt. on this ©.

Let & be inverse of A, and P inverse of P.

Then CP.Cp = R?=CA.Ca;
P, p, a, A are concyclic.

N
But CPA is right.

A
Cap is right.
Locus of p is the line L to CA.

Note—We can now give the theory of the Peaucellier movement: for, re-
ferring to the figure on p. 5, by the symmetry of the instrument, P, O, Q will
always be in one line; and if ANB cuts this line in N, the A® at N are right,
and N is the mid point of the diags. of the rhombus.

QO . PO = (QN + NO) (QN — NO),
= QN? — NO3,
= QA? — AO?, which is const.
P, Q are inverse points; and, since Q moves on a @ thro. the centre of
inversion O, P will move on a st. line.

THEOREM (3)— The inverse of a circle not through the centre of inversion
is a circle.

P

e — g el Tl A et
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Let A be centre of given © ; P any point on it.
From C, the centre of inversion, draw CP, and let it cut the circle again in Q.
Let p, q be respective inverses of P, Q.

CP.Cp =R?=CQ.Caq.
Join AQ; and draw pa || to QA to meet CA in a.
Then CP. CQ is constant.
Cp : CQ is const.
pa : QA is const.
But QA is of const. length ;
. Ppais of const. length.
Also CA: Ca is const.,
and .. a is a fixed pt.
Locus of p is circle centre a.

Cor. (1). C is a centre of similitude of the ®.
Cor. (3). If CT is tang. to ® A, rad.of ® a:rad. of ® A = R?: CT32

THEOREM (4)—Eack point of intersection of two Loci is the inverse of a
point of intersection of their inverse Loci.

For the inverse of a pt. of section of the Loci must be a pt. on eack of the
inverse Loci :
i. e. must be a pt. where they intersect.

Def. 1f one of the points of section of a secant of a circle is made to move
up to the other, then the limiting position of the secant (to which it constantly
approaches, and which it ultimately assumes, when the points are brought
indefinitely near together) is called a tangent to the circle.

Note (1)—This definition of a tangent will be seen to amount to the same as
Euclid’s, if we consider that it may be put thus—a tangent is a secant through
two coincident points, that is through one point.

Note (2)—The angle between a line and a circle, is the angle made by the
line with the tangent at the point. where the line cuts the circle; and the
angle between two circles, is the angle between their tangents at a point of
section. -

Def. A variable line from a fixed point to a fixed circle is called a radius
vector of the circle, with respect to that point as origin.
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inversion as origin, cuts the circle and its inverse at supplementary angles.

|
N
THEOREM (5)—Any radius vector of a circle, with respect to the centre of ‘

Let CPp, CQq be any radii vectores thro. C, the centre of inversion; so
that p, q are respective inverses of P, Q.

Then CP.Cp = R?=CQ.Cq,
P, Q, q, p are concyclic. ‘
N N
PQq = suppt. Ppa.
But when Q moves up to P, so does q up to p.
And ultimately, when Q coincides thh P, PQ becomes the tangent at P;

and pq the tangent at p; and then F’Qq and qu are AS at which CPy
cuts the circle and its inverse.

THEOREM (6)—Two Loci cut at the same angle as their inverses cut.
\b a
JN’)E \/

Let A, B be two Loci, which cut in P}
a, b their inverses, which cut in p;
80 that P is inverse of P.

|
|
|
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Then CPp is a radius vector, where C is the centre of inversion.
A between CP, AP = suppt. A between Cp, ap.
And A between CP, BP = suppt. A between CP, bp.
But diff. of two A® = diff. of their suppts.
.. A between AP, BP = A between ap, bp.

Cor. (1). If two circles (or a line and a circle) touch, their inverses touch.

Cor. (2). If a Locus and its Envelope are inverted, their inverses touch.

THEOREM (7)—If &, b, ¢, &c., are the respective inverses of any number of
points A, B, C, &c. ; then (O being the centre of inversion)—

19, for every two points A, B,
ab:AB = R?: OA . OB.
2°, for every three points A, B, C,
be:ca = OA.BC:OB. CA.
3°, for every four points A, B, C, D,
be.ad:ca.bd = BC.AD: CA.BD.

b
For since
OA.Oa = R? = OB.Ob,
». AsOAB, Oba are simr.
(o} A a

1°,ab: AB = Oa: OB,
= OA.Oa:0A.OB,
= R?:0A.0B.
20 and 3° follow at once from this.*

Cor. Cross-ratios are unchanged by inversion.

* See Townsend, Vol. 11,, p. 387.



364 GENERAL ADDENDA—SECTION vi.

The preceding Theorems are fundamental. From them may be easily
deduced the following, which are important—

(8)— T'wo points and their inverses are concyclic.
(9)—If A, B are Mnts, and &, b their inverses ; then—O being the centre
of inversion—

ab:AB = L from O on ab : L from O on AB.

(10)—4A circle through a pair of inverse points, cuts diameters of the circle
of inversion in inverse points.

(11)—Any point on a chord of a civcle has its inverse (with respect to that
circle) concyclic with the centre and the extremities of the ckord.

(12)—Every circle through a pair of inverse points, on same side of the
centre of inversion, is orthogonal to the circle of inversion.

(13)—If a circle is inverted with respect to any orthogomal circle, it is ils
own inverse; and it is said to invert into itself. So also—A circle inverts

into itself if the mid point of a chord, and the semi-chord are taken as centre,
and radius of inversion.

(14) Every two circles invert eack into the other, with respect to either of
their two circles of anti-similitude. (Cf. Exercise 13, p. 345.)

(15)—Of two orthogonal circles, either cuts diameters of the other in points
which are inverses with respect to that other.

(16)—1If P, Q are inverse points, C the centre of inversion, and X any point
on the circle of inversion ; then—
PX?:QX? = PC: QC;

and conversely.

Note—~Follows from similarity of A8 PCX, XCQ. ‘

() —If L is the line with respect to which P, Q are images, each of the
other, then—

PX? = 2 PC.XL, and QX?=32QC.XL;
and conversely—XL being perpendicular to line L.

e N ——— e ™ s« vo———— T c—
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(18)—Two circles, inverses of eack other, are co-axal with the circle of
inversion.

(19)—Every two circles invert into equal circles from every point on either
of the co-axal circles, whose centres are their centres of similitude.

(20)—1In a co-axal system of circles, of the limiting-point species, ZZe
limiting points are inverses with respect to every circle of the system. .

(31)—1If a co-axal system, of the common-point species, is inverted with
respect to either common point as centre of inversion, the inverse system consists
of lines concurrent in the inverse of the other common point.

(23)—1If a co-axal system, of the limiting-point species, #s inverted with
respect to either limiting point, the inverse system is a series of concentric
circles, whose centre is the inverse of the other limiting point.

As a striking example of the last Theorem—Let one circle lie within another:
then if any one complete ving of circles can be placed between them (touching
them and each other) an infinite number of such rings can be placed.

This follows at once by inverting the circles with respect to a limiting-point
as centre of inversion.

EXERCISES ON INVERSION.

1. Show that—
(1) Euc. i. 13 inverts into Euc. iii. 22 ;

(2 4 29 » ” iii. 323
3 » i.56 , »  Vi3;
(4) » iilay ”» ”» vi. 3;

(5) Euler’s Theorem, p. 104, inverts into Ptolemy’s Theorem, p. 289.
(6) Euc. i. 20 inverts into Euc. vi. Addenda (g).
2. What does Prtolemy’s Theorem invert into, when the centre of inversion is—
19, a comer of the quadrilateral ?
29, a point on the circle round the quadrilateral, but 7o a corner?
. Show that Locus (3), p. 178, inverts into vi. Addenda (15).

4. Show that if Locus (¢), p. 178, is inverted with respect to one of the
extremities of the fixed base, it gives the Theorem—If the base of a triangle,
and ratio of its area to the area of the square on one of its sides, are given;
then the Locus of its vertex is a circle, touching its base at one end.
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5. If A, B, C are fixed collinear points; and P a variable point such that
the angles APB, BCP are equal ; then evidently the Locus of P is a circle,
centre A: show that if this is inverted with respect to a point in CBA pro-
duced, the inverse Theorem is Locus vi. Addenda (17).

6. What is the inverse of a polygon ?

7. Invert vi. Addenda (13).

8. Invert Euc. iii. 35, when C is the mid point of the arc AB.

9. A, O, B, P are concyclic points: if A, O, B are fixed, and P variable,
what Theorem results from inverting the figure with respect to O ?#

10. Invert the characteristic property of Simson’s Line, p. 172.

11. If there are three fixed circles through two fixed points, and any variable
circle is drawn, cutting two of them at fixed angles, it will cut the third at a
fixed angle.

NOTE—/nvert with respect to one of the fixed points.

12. If a quadrilateral ABCD is #0f cyclic, prove that the rectangles AB . CD,
BC . AD, CA . BD, are proportional to the sides of a triangle, of which an
angle is equal to the sum of two opposite angles of the quadrilateral.

NoTE—Invert with respect to one corner of the quad.

13. From a fixed point O, variable lines OX, OY are drawn to meet a fixed
line in X, Y; and so that the angle XOY is constant : show that the circum-
circle of triangle XOY always touches a fixed circle. (Messenger of Mathe-
matics, Vol. IIL. p. 231.)

NoTE—Tnvert with respect to O.

14. Show that every two figures, inverses of each other, invert from any
point into two figures, inverses of each other with respect to the inverse of the
original circle of inversion.

‘What does the Theorem become when the point is on the circle of inversion ?

15. Show that Feuerback’s Theorem [Section iv, Zheorem (6)] may be
proved by inversion thus—Let Q be point of contact of in-circle, centre |; and
Q' of ex-circle, centre E ; M the mid point of BC and QQ’: take M and MQ
as centre and radius of inversion. Then circles |, E invert into themselves, and
circle N (nine-point) inverts into a line perpendicular to MN, cutting BC in
R, where MR .MP = MQ?: P being the foot of the altitude from A.
(J- P. Taylor, Quarterly Journal, Vol. XIII. p. 197.) ’

NoTeE—Show that R is on |\E ; and that the line inverse of © N is the fourth
common tangent of ©° |, E.

“* Exercises 9, 8, 7, 5, 4, 3, and (1), (2), (3) of 1, are due to Mr. R, A, H.
MacFarland of Caius College, Cambridge.



SECTION vii—HARMONIC RANGES.

Def. If the segment AB of a line is divided internally in X and externally
in Y, in the same ratio, so that
AX:BX = AY: BY,
then the four points A, X, B, Y are termed a harmonic range; and the pair
of points X and Y are termed harmonic conjugates of each other with
respect to A and B.

Note (1)—Since the above relation may be written
YB:XB = YA : XA,
it follows that A and B are harmonic conjugates of each other with respect to
X and Y.

Note (3)—Since AX . BY = BX. AY, the cross-ratio (AXBY) is unity,
and .. constant. Hence all Theorems deduced from the constancy of cross-
ratios are true for harmonic ranges.

Def. Three magnitudes are said to be in harmonic proportion when
’ 1st: 3rd = 1st ~ and : 2nd ~ 3rd.
And the 2nd is termed the harmonie mean between the 1st and 3rd.

The words karmonic range and harmonic mean will be respectively ab-
breviated into H. R. and H. M.

THEOREM (1)—If four points form an H.R. the distance of either extreme
point from its own conjugate is an H. M. between its distances from the other
two.

A X B Y For if A, X, B, Y is an H. R,,

tken YA:YB = XA:XB = YA - YX:YX — YB,
and .. YXisan H. M. between YA, YB.

And again, AY:AX = BY:BX = AY — AB: AB - AX,
and .. AB is an H. M. between AX, AX.
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Cor. Since AY (AB — AX) = AX (AY — AB); 1
AB (AX + AY) = 3 AX . AY.
Simrly. XY (AY + BY) = 3 AY ., BY.

And, conversely, if either of these relations holds, the points A, X, B, Y
form an H. R.

THEOREM (2)—1If X, Y are harmonic conjugates with respect to A, B; and
M is the mid point of AB; then MA? = MX . MY = MB?; and conversely.

— e e

A MX B Y Since AX:BX = AY:BY, 4
|

AX + BX: AX — BX = AY + BY:AY - BY,
or 2MA:3MX = 2MY:2MA, |
whence MA? = MX . MY.
The converse follows by simply retracing the preceding steps. |

Cor. X and Y move in opposite directions.

THEROREM (3)—If the points of section of a pencil of four rays by any one
transversal form an H. R., then the points of section of the pencil by every
transversal will form an H. R.

Let pencil, vertex O, be cut /
harmonically by a transversal in
A, B,C,D. ‘

Thro. C draw PCQ, || to AO,
to meet OB, OD in P, Q.

Then AB:BC = AO:CP,

and AD:DC = AO: CQ,

CP = CQ. .

Now let abed be any other transversal to the pencil; and peq || to PCQ; '
where similar letters are on same ray.
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Then cp = cq.
But ab:be = aO:ecp,
and ad:dec = a0O:cq.
ab:bec = ad:de.
a,b,c,disan H.R.

Def. A pencil through two pairs of harmonic conjugates is called a har-
monic pencil.

Cor. (1). The intercepts made by three adjacent rays of a harmonic pencil,
on a parallel to the fourth ray, are equal.

Cor. (2). O (ABCD) is harmonic if a transversal parallel to a ray is cut
into equal segments by the remaining three.

THEOREM (4)—The arms of an angle, and its internal and external
bisectors form a harmonic pencil ; and conversely, if in a harmonic pencil the
angle between a pair of rays is right, then these rays are the internal and
external bisectors of the angle between the other two.

The first part follows at once from vi. 3, in connection with the de¢f. of
an H. R.

o

For the converse, let
O (ABCD) be a har-
monic pencil, such that

B/\D 3 .
A O is right.

‘Draw PBQ || to OD, meeting OA, OC in P, Q.
Then since PB = QB, and PBQ is L to OB,

A A
POB = QOB,
A
i.e. OB is internal bisector of AOC.
A
Also OD, being .L to OB, ii) external bisector of AQGT.
B
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THEOREM (5)—In a complete quadrilateral, if the intersections of the three
diagonals are joined, and the joins produced ; then all ranges and pencils are
harmonic.

X

In quad. ABCD, let
D BC, AD meet in X,
AB,DC , Y,
AC,BD , O.

A Q B 4

Alsolet XO cut CD in P,and ABin Q;
le¢ YOcutBCinR,and AD in S;
and let XY cut AOC in Z.
Then, since O is a pt. within A ABX,
(AQ:QB) (BC:CX) (XD :DA) = 1.
And, since YCD is a transversal of A ABX,
(AY : YB) (BC:CX) (XD :DA) = 1.
AQ:QB = AY:YB;
i.e. (AQBY) is harmonic.
X (AQBY) and O (AQBY) are harmonic.
And .. so also are X (AOC2Z), Y (AOCZ), Y (ASDX), &c.

Note—The preceding . Theorem suggests a mode of drawing the fourth ray of
a harmonic pencil, when three consecutive rays are given. For let XA, XQ,
XB be three given rays; take O any pt. in XQ, and let BO, AO meet XA, XB
in D, C; let DC meet AB in Y; then XY is the fourth harmonic ray.

Cor. The Theorem is also true for the more extended definition of a complete
quadrilateral given in the Note on p. 299.



EXERCISES ON HARMONIC RANGES.

1. The join of the points of contact of two sides of a triangle with its
in-circle, meets the third side at the harmonic conjugate of the third point of
contact, with respect to the two corners in that side.

NoTE— Use Menelaus' Theorem.

2. A similar Theorem to the last holds for each of the ex-circles.

3. Through any point in an altitude of a triangle lines are drawn from the
ends of the base; if the points in which these lines meet the opposite sides are
joined to the foot of the altitude, the joins make equal angles with the altitude.

NoTE—iii. Addenda (19) is a particular case of this.

4. From a fixed point two variable transversals are drawn to two fixed
intersecting lines ; if the points of section are joined transversely, find the Locus
of the intersection of the joins. -

5. If a line is drawn across a pair of orthogonal circles, it is harmonically
divided by the circumferences if it goes through the centre of either.

6. Conversely to the last Exercise—If a circle is drawn through a pair of
harmonic conjugates with respect to the ends of a diameter of another circle,
then the circles cut orthogonally.

7. If a line touches two circles, then any circle co-axal with them cauts it in
points which are harmonic conjugates with respect to the points of contact.

8. Any point on the circumference of a circle is joined to the ends of a chord ;
show that the joins (produced if necessary) cut the diameter perpendicular to
the chord in points which are harmonic conjugates with respect to the ends of
that diameter.

9. If X, Y are a pair of harmonic conjugates with respect to the ends A, B
of a diameter of a circle, and P is any point in the perpendicular to AY atY;
then PX is cut harmonically by the circle.

10. If a transversal is drawn to a triangle, so as to bisect one of its sides,
then the parallel to the bisected side, through the opposite corner, meets the
transversal in a point which forms a harmonic range with the three points in
which the transversal cuts the sides.

11. Two circles cut in A, B; if XX’ is any diameter of one, and YY” any
diameter of the other; and if XY, X’Y’ meet in Z, and XY, X’Y in 2’; then
the circle on ZZ’ as diameter goes through A, B.

NOTE—Use Theorems (5), (4) and Igmelaus‘. .

BD2



SECTION viii—POLES AND POLARS.

Def. That line through the inverse of any point, with respect to a circle,
which is perpendicular to the diameter containing the point, is called the polar
of the point ; and, conversely, the inverse of the foot of the perpendicular from
the centre of a circle on any line is termed the pole of the line with respect to
the circle—the point and its inverse being taken, in each case, on the same side
of the centre.

Thus if X, ¥ are inverse points; then X, and the perpendicular to XY
through Y; or Y, and the perpendicular to XY through X ; are respectively
pole and polar of each other with respect to the circle of inversion.

Note (1)—From the definition of pole and polar it'follows that—

1°, they lie on the same side of the centre ;

2°, as one approaches the centre, the other recedes from it; and con-
versely ;

3°, in the case of a line touching = circle, ‘the point of contact and the
tangent are pole and polar of each other ;

4°, the point of intersection, and chord of contact, of two tangents, are pole
and polar.

5° the angle subtended at-the centre of a circle by the join of two poles,
is equal or supplementary to the angle between their polars.

Note (2)—As pole and polar have been .defined only wzth »espect to a circle
of inversion, it is unnecessary to make further explicit mention of this circle,
but its existence is always to be tacitly understood. )

THEOREM (1)— When a line goes through a fixed point, its pole lies on the
polar of that point ; and, conversely, when a point.lies on a fixed line its polar
goes through the pole of that line.

M ) @)

r

. .
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Let P, L be fixed pt. and line, pole and polar of each other; C centre of @
of inversion; Q the pt. where CP meets L.
‘19, Tet CN, L to any line through P, meet L in M.
Then PNMAQ is cyclic.
s CN.CM = CP.CQ = (rad.)%.
M is pole of PN.
29, let M lie on L ; and let PN be L to CM.
Then, as before, CN .CM = (rad.)%
PN is polar of M.

Cor. (1). The join of any two points is the polar of the intersection of their
polars ; and the intersection of two lines is the pole of the join of their poles.

Cor. (2). If a triangle has two of its corners, and their opposite sides,
respectively pole and polar, then the third corner and side are also pole and

polar.

Def. A triangle such that each of its corners and the opposite side are pole
and polar is called self-conjugate.

THEOREM (2)—1In a self-conjugate triangle the ortho-centre is the centre of
inversion.
For, see fig. of iii. Addenda (19),
OA.O0X =0B.0OY = 0C.0z,
© with O as centre, and radius whose square = any one of these rects,
is © of inversion.

Note—From the nature of a pole and its polar, it appears that if a triangle
is self-conjugate, its ortho-centre lies outside it ; that is the triangle must be
obtuse-angled.

THEOREM (3)— The three circles on the sides of a self-conjugate triangle as
diameters cut the circle of inversion orthogonally.

For (same fig. as in last Theorem) © on AB as diam. goes thro. X, Y.
. (tang. from O to it)? = OA . OX = (rad. © of inversion)®.
O on AB as diam. cuts © of inversion orthogonally.
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THEOREM (4)—If a line cuts a circle, and any point in the line is taken as
< a pole; then the point in which the polar cuts the line is the harmonic con-
jugate of the pole with respect to the two points in whick the line meets the

circle.
@ @) 4
E— N !
D
%x Al v ‘ B Y '

Let E, D be pts. in which a line cuts O, centre O; X a pt. in it taken as
pole; Z the pt. in which the polar of X cuts ED ; XBA the diam. thro. X,
cutting the polarin Y; OC L to XE.

Then OX.OY = R%;
OX? ¥ OX.XY = CO?® + CD*; [ — in fig. (), '
CO? + CX? ¥ CX.XZ = CO? + CD?%; [+ » (z).]
CX.CzZ = CD3
But C is mid pt. of ED.
X, Z are harmonic conjugates to E, D.

THEOREM (§)—( Salmon’s) The distances of two points from the centre of a
circle, have the same ratio as their distances eackh from the polar of the other
with respect to the circle.

M

polars, with regard to © C, are M, N.
Draw PN, QM Lson N, M;
and PX, QY lsto CQN, CPM.

\
?";“ Let P, Q be pts. whose respective
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Then CP.CM = R? = CQ.CN.
And CP.CY = CQ.CX, P, Y, X, Q are concyclic.
.., by subtraction, CP.YM = CQ . XN;
PC:QC = XN:YM = PN: QM.

THEOREM (6)—ABCD s a cyclic guadrilateral ; if AB, DC meet in X;
BC, AD in Y; and AC, BD in Z; then XYZ is a self-conjugate triangle.

Let XZ cut YCB
in P, and YDA in Q.

Then (BPCY) and (AQDY) are harmonic ranges.
But the polar of Y cats YCB in the harmonic conjugate of Y with respect to
C, B; and cuts YDA in the harmonic conjugate of Y with respect to D, A.
». P, Q are the pts. in which the polar of Y cuts BC, AD:

i.e. XZisthe polar of Y.

Simrly. YZ is the polar of X.
also XY is the polar of Z,

i.e. A XYZ is self-conjugate.

Cor. If secants XBA, XCD are drawn to a © ; and if BC, AD meet in Y ;
and AC, BD in Z; then YZ is the polar of X, and YX is the polar of Z.

Note—The preceding Corollary gives a means of drawing a tangent to a
given circle by a ruler only. For, taking a point X, outside the circle, and
drawing secants &c., as in the Corollary; then since YZ is the polar of X,
it cuts the circle in the points of contact of tangents from X ; and joining these
points to X, gives the tangents. Now all these lines are merely joins of points,
and therefore can be drawn by the ruler only.



EXERCISES ON POLES AND POLARS.

1. If four points are collinear, their polars form a pencil ; and the cross-
satio of this pencil is equal to that of the points.

2. The polar of a fixed point, with respect to any one of a co-axal system of
circles, goes through a fixed point.

3. If a variable chord of a circle subtends a right angle at a fixed point, the
Locus of its pole is a circle.

NOTE— T%e pole is the inverse of the mid pt. of the ckd.

4. If at the corners of a cyclic quadrilateral tangents are drawn to its circum-
circle, forming another quadrilateral ; then—

19, the four internal diagonals are concarrent, and form a harmonic pencil ;
2°, the third diagonals are coincident.

NoTE—Use Theorem (6) Cor.

5. If one side of a cyclic quadrilateral is fixed, the join of the intersection of
its diagonals with that of the sides adjacent to the fixed side, goes throngh a
fixed point.

6. If a quadrilateral circumscribes a circle, the intersection of each pair of the
three diagonals is the pole of the remaining diagonal.

7. If each corner of one triangle is the pole of a side of another triangle, the
triangles are in perspective.

8. If any number of circles have a pole and polar in common they are a
co-axal system.

9. Given the position of a pair of opposite sides of a cyclic quadrilateral,
and also the intersection of its diagonals, find the Locus of the centre of its
circum-circle.

10. From a fixed point outside a fixed circle two variable lines are drawn to
meet the circle in P, p and Q, q respectively: show that if PQ always goes
through a fixed point, then pq always goes through another fixed point.

11. If a variable line is drawn through a fixed point in the line of centres of
two fixed circles, the join of its poles, with respect to the circles, goes through
a fixed point. When will the two fixed points coincide ?

12, Find the Locus of a point such that its polars, with regard to three
given circles, are concurrent.

NOTE—The Locus is © orthogonal to the given O%; and the pt. of con-
currence is the other end of its diam. thro. variable pt.
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13. Two fixed lines meet on the circumference of a fixed circle: a variable
point P is taken in one line; and its polar, with respect to the circle, meets
the other in Q : show that PQ goes through a fixed point.

14. If two of the vertices of the self-conjugate triangle XYZ [Theorem (6)]
lie on circles concentric with the circle round the quadrilateral; then will the
third vertex lie on a concentric circle,

15. If XX/, YY’, Z2’ are the diagonals of a quadrilateral circumscribing
a circle, centre O; and L, M, N their mid points; then the ratios of
OX .OX, OY .OY’, OZ . 0Z, to each other, are respectively the same as
those of OL, OM, ON. (W. S. M°Cay, Edaucational Times. Reprint,
Vol. XXXIX. p. 88.)

16. Show that, assuming Pascals Theorem [Section ii. Theorem (6) Note],
the following Theorem (Brianchon’s) can be deduced by Polars—The joins of
the opposite corners of a hexagon which circumscribes a circle, are concurrent.

Def. The circle with respect to which a triangle is self-conjugate is called
the polar circle of the triangle. '

17. Using the extended definition of a complete quadrilateral given in the
Note on p. 299 ; if XBA, XCD, YCB, YDA are the four lines; L, M, N the
mid points of diagonals AC, BD, XY ; P, Q, R the points where the diagonals
intersect; O,, O,, O,, O, the ortho-centres of the four triangles XBC, XAD,
YAB, YCD ; and Q the centre of the circum-circle of PQR ; then—

1°, the five points O,, O,, O,, O,, Q are collinear;

29, this line of collinearity is perpendicular to LMN, and is the radical axis
of the three circles whose diameters are the diagonal ;

3°, the polar circles of the above four triangles, and the circle 2, have LMN
as their radical axis;

49 the set of three circles and the set of five circles cut orthogonally.

NOTE— Unless X//-\\Y is obtuse, 2 of the A® will not be obtuse-angled, and
. will not have polar circles. The proofs of the theorems depend on properties
geven on pp. 299, 353 (£x. 7), 368, 370, 373.

18. Show that the harmonic section of a line by a circle, pole, and polar,
may be proved by Inversion.

NoTE—1In figs. of Theor. (4) take X as centre of inversion; and for the
radius of inversion take in fig. (1) the tangent from X, and in fig. (2) the semi-
chd. thro. X L to AB. Ther: the © inverts into itself; O, Y are inverse pts.,
and C, Z are inverse pts. It will readily follow that

2XD . XE = XZ (XD + XE).



MISCELLANEOUS PROBLEMS.

1. Given the rectangle under two lines, and the difference of their squares,
to find the lengths of the lines. (The omitted case of 11. p. 227.)

NOTE—Let AB? be the given diff. of sgs., and ABC the given rect. Produc
AB 20 X, so that AX . BX = BC?*.  O0n AX place a semi-O ; and produce CB
to meet it.in Y. AY, BY are the reqd. lengths.

3. Bisect a given triangle by a line through a given point either within or
without it. )

NoTe—Let P be the pt., ABC the A. Draw AQ so that B/RQ = CA\P,
and AQ . AP = } AB . AC: Ut segt. on PQ, contg. BAP, cut AB in X;
XP is the bisector.

3. Divide a triangle into parts in a given ratio, by a line parallel to a given
direction. :

NoTE— Let AE, || 20 given direc., meet BC in E : divide BC ¢n D, in given
ratio, BD being lesser part: take BX mean propl. to BE, BD : then || thro. X
to AE divides A as reqd.

4. From a corner of a triangle draw a line to meet the opposite side so as
to be a mean proportional between the segments into which it divides that
side.

5. Given three collinear points; find a point collinear with them, so that
its distance from one may be a mean proportional between its distances from
the other two.

6. Gjven three points, not collinear; find a point whose distances from the
three points are proportional to given lengths.

7. Construct a triangle which shall have a given ratio to a given triangle.

8. Construct a triangle of given species, so that the distances of its comers
from a given point may be equal to given lengths.

ANALYSIS—Suppose ABC the regd. A and P the given pt. : then, if on AP
a & PAX is described simr. to A CAB, and BX is joined, A® BAX, CAP
will be simr., -. CA : BA = CP : BX, ... BX is known, and A PBX tan be
constructed.

Exercise 93, p. 85, gives the construction for the particular case of an equi-
lateral A

9. Find a point within a triangle such that its joins to the three corners
trisect the triangle.
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10. Find O within a triangle ABC so that the circum-circles of AOB,
BOC, COA may be equal.

11. Through a given point, between two lines given in position, draw a
line so that the segments of it between the point and thé lines may have a
given ratio.

12. Through a given point, within a given circle, draw a line so that the
segments of it between the point and the circumference may have a given ratio.

13. Given a circle, and the positions of two lines; find P on the circle so
that PX, PY, drawn parallel to given directions to meet the lines in X, Y, may
have a given ratio.

14. From a given point, within a given angle, draw lines to meet the arms
of the angle, so as to be in a given ratio and contain‘a given angle.

15. Through a given point P, within a given angle C, draw a line AB, to
make with the arms of the given angle, a triangle ABC of given area.

ANALYSIS—Ld CQ ¢ drawn to meet © round ABC in Q, so that

ACQ BCP then A8 ACQ PCB are sitmr.; .. CQ.CP = CA.CB,

which is known ; and as also QAP = PCA, Q can be found. Cf.Problem 2.

16. Describe a circle to go through a fixed point, touch a fixed line, and
have its centre in another fixed line.

NoTE—Let P be given pt., AB the line to be touched, and AC to contain the
centre: then if BQ, L from P on AB, meets AC in Q, and QX is inflected to
AP 50 that QX = QB, PC || 0 XQ will meet AC in the regd. centre.

17. Given three points; find a fourth, so that for every line through it, if
perpendiculars are drawn from the three points on the line, the sum of two of
them is equal to the third.

NOTE—Te pt. reqd. is the mean centre of the three pts. when the mults. are
eack unity.

18. Given the three altitudes of a triangle, construct it,

19. If X, Y, Z are the points of contact of the in-circle with the sides
respectively opposite the corners A, B, C of a triangle ; find P, so that—

A\ N A\ N N N
BPX = CPX, CPY = APY, and APZ = BPZ.

NoTE— Use vi. Addenda (17).

20. Construct a cyclic quadrilateral, the lengths of whose sides are given.

21. Draw a transversal to a given triangle, so that the segments of it inter-
cepted between the sides (or sides produced) may have given lengths.

22. In a given triangle inscribe another of given species, one of whose sides
shall go through a given point. .
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23. Given the direction of the base of a triangle, and the point at which it
is touched by tke in-circle; and given also the radius of the in-circle, and the
difference of the other sides; find the Locus of the vertex.

24. Construct a triangle when given its vertical angle, the sum of the sides
forming that angle, and the difference of the segments of the base made by the
foot of the altitude.

25. Find a point in one side of a triangle such that the sum of parallels from
it to the other two sides (terminated by them) may be equal to a given length.

26. O is a fixed point, OA a fixed direction; if a circle of fixed radius
rolls along OA, and OP is drawn to touch it, and produced to Q, so that
OP . PQ = (radius)?, find the Locus of Q.

27. Given the sum of two sides of a triangle, an angle opposite either of
these sides, and the radius of the in-circle; construct the triangle.

28. From a fixed point A azy line is drawn to meet a fixed line in P; if
AQ is drawn so that the angle PAQ, and the rectangle under AP, AQ are of
given magnitude, find the Locus of Q.

29. Through fixed points A, B, outside a fixed circle, draw AXP, BYP, so
that P, X, Y may be on the circle, and XY parallel to a given direction.

30. ABCD is a quadrilateral which varies subject to the following condi-
tions : the corners A, C are fixed; the species of the triangle BCD is fixed;
and the ratio of the rectangles under the opposite sides is fixed : find the Locus
of either of the free corners.

NOTE—Use the construction of vi. Addenda (9), and the result of vi. Ad-
denda (22).

31. Draw a parallel to one side of a triangle so that of the intercepts
between it and that side—

19, the sum = a given length; or
29, the d7ff. = v

32. Given the lengths of the sides of a quadrilateral, and of the join of the
mid points of one pair of opposite sides; construct the quadrilateral.

33. Draw the triangle of minimum perimeter, which has two corners, one on
each of two fixed lines, and the third comer coincident with a fixed point.

When is a solution impossible ?

34. Show that the Problem—To inscribe a quadrilateral of minimum peri-
meter in a given quadrilateral is either indeterminate, or impossible.

35. Find the point in one side of a triangle the sum of whose distances from
the other two sides is minimum.

When is there no minimum? )
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36. Find the point the sum of whose distances from the three sides of a
triangle is minimum.

37. About a given triangle circumscribe the maximum equilateral triangle.

38. With the corners of a triangle as centres describe three circles to touch
two and two.

39. Given the base of a triangle, and the length of the line drawn from one
end of the base to cut the opposite side in a given ratio ; find the Locus of the
vertex.

40. Inscribe a square in a triangle—

1°, by using proportions ; and
2°, without using proportions.

41. About a given quadrilateral circumscribe a quadrilateral of given species.

42. In a given quadrilateral inscribe a quadrilateral of given species.

43. Given two intersecting circles, and a point in the area common to them,
draw the line through the point which divides that common area into parts
whose difference is maximum.

NoTE—7ake MN the chd. of © (centre A) whick is L to AP at P; and let
the © whick is the image of © A, with respect to MN, cut the other © in X :
XP is the reqd. line.

44. Through A, one of the points of intersection of two circles, draw the double
chord XAY, so that & . AX + b.AY = e¢?; wherea, b, ¢ are given lengths.

45. Describe a circle so that the angles it subtends at three given points
may be respectively equal to given angles.

46. Describe a circle so that the tangents to it from three given points may
be respectively equal to given lengths.

47- Find the Locus of the point of contact of two variable circles, which
touch two fixed circles and touch each other.

48. Find the Locus of the point from which tangents to two fixed circles
are in a given ratio.

NoTE—Use General Addenda, iv. 2. Cor. (3).

49. OX, OY are fixed lines at right angles; and P is a fixed point in the
bisector of the angle XOY : find a construction to give X so that the line XPY
may be of a given length. (Pappus’ Problem.)

NoTE—Drgp PM L 20 OX, and PN L 2 OY ; and produce MP 2o L, so
that PL = given length : with centre N, and radius NL describe a ©, meeting
NP produced in H, K: then the O% on HP, KP as diams. will (when a solu-
tion is possible) by their intersections with OX, give four positions of X that
solve the problem.
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50. AB is a fixed finite line; AX, BY are perpendiculars to it; and P
is a point in it: if X, Y and P vary subject to the condition that
AX .BY = AP . BP, find the Locus of the foot of the perpendicular from
P on XY.

51. Given the mid points of the sides of a polygon, construct it.

NoTE—Let Ay, A,, &c., An be mid pts. Take any pt. P,, and draw the trial
20l. P, P,&c. Pn, so that A,, A,, &., are respective mid pts. of P Py, P, P,, &c.
Join PaPy; and bisect it in X,. Draw X, Xy, X, X,, &c., so that A, A,, &.
are their respective mid pts. Join Xn X,: it will go thro. An; and X, X, &o. Xn
is reqd. pol.

532. Four rods AB, BC, CD, DA of given commensurable lengths, such
that AB + CD = BC + DA, are pivoted together at A, B, C, D, so as to
be capable of free angular motion in one plane; if AB is fixed, find the Locus

of the in-centre of the quadrilateral formed by the rods.

53. Given two circles of a co-axal system, describe a circle of the same
system to—

19, go through a given point ; or

20, touch a given line; or

3°, touch a given circle; or

4°, cut a given circle orthogonally; or

5°, cut the join of two given points harmonically.

54. Given six concyclic points A, B, C, D, E, F, find a seventh P, concyclic
with them, so that the cross-ratios (PABC) and (PDEF) may be equal.

NOTE—See General Addenda ii. (6). There are two solutions, viz, the pts.
in whick XY meets the O.

55. Solve the last Problem when col/inear is substituted for concyclic.

56. Inscribe a triangle in a given circle, so that its sides may pass respec-
tively through three given points. (Castillon’s Problem)

NoTe—If A, B, C are the given pts.; B'C’, C'A', A'B’ their polars;
L, M, N tke pts. in whick A'A, B'B, C'C cut B'C’, C'A', A'B’; then the sides
of A LMN will cut the © in six pts.; and if these are joined alternately,
two AS solving the Prob. are obtained. For proof use General Addenda vii. (5),
viii. (4), and Exercise 7, p. 376.

57. Circumscribe a triangle about a given circle, so that its corners may be
respectively on three given lines.

58. If a triangle has one angle fixed in magnitude and position, and its

. perimeter is given ; find the Envelope of its circum-circle. (Mankeim)

NOTE—7Invert with respect to the Vertex of the fixed (.
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NOTE— There is no particular arrangement, either of difficulty or otherwise,
in the following.

1. If the bisectors (terminated by the opposite sides) of two angles of a
triangle are equal, prove that the sides opposite these angles are equal.

NoTe—If BX, CY are the equal bisectors, complete L1 XCYZ, and join BZ ;

N N N\ N
assume that ABC > ACB ; thence XC (or YZ) > YB ; and ... YBZ >YZB;

A N N A N
but XBZ = XZB ; ... XBY < XZY (or YCX) contrary to the assumption.

3. In Castillow’s Problem (p. 383, Ex. 56) find what conditions in the data
make the solution indeterminate.

3. Given in a triangle (with the notation of p. 211) the angle A, and 8 — 8,
find the Envelope of the circum-circle. (Mankeim)

4. Given the base of a triangle and the radius of its circum-circle, find the
Locus of its in-centre.

5. Prove that the sum of the squares on the twelve lines from the corners
of a triangle to the points of contact of its circles of contact with the cor-
responding opposite sides, is equal to five times the sum of the squares on the
sides of the triangle.

6. Prove that the sum of the squares on the tangents from the centres
of the four circles of contact of a triangle to amy circle -through the circum-
centre, is equal to three times the square on the diameter of the circum-circle.

7. If &, b, ¢, d are the successive sides of an ordinary quadrilateral; show
that, if a circle can be inscribed in it, the process, given in Noze (1) p. 323,
to form it into a cross-guadrilateral, fails; and that, in any case, if the
process gives &, ¢, as diagonals, it will not give b, d, as diagonals; and
vice versd. ’ .

8. Show that a common tangent to two circles subtends a right angle at
either limiting point.

9. If A, B are inverse points, show that—

19, for every point P on the circle of inversion, PA : PB is constant :

20, if A is inside the circle, the segments of any chord through A subtend
equal angles at B ;

3°, if B is outside the circle, the segments of a.ny chord through B subtend
. supplementary angles at A,
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10. Show that any two circles and their inverses are touched by four circles,
each of which cuts the circle of inversion orthogonally.

11. If ABC is a triangle, and points P, Q are taken in AB, AC, respectively,
such that BP. BA + CQ . CA = CB?; show that the Locus of the intersec-
tion of BQ, CP, is a circle.

12. If TP, TQ are tangents to a circle; Pp, Qq a pair of parallel chords;
and Tt parallel to them, cutting PQ in t; prove that

Pp:Qq = Pt: Qt.

13. If ABCD is any parallelogram, and P a point within it at which
opposite sides subtend supplementary angles; show that the circles PAB,
PBC, PCD, PDA are all equal.

14. If on sides AB, AC, of a triangle, isosceles right-angled triangles AEC,
AFB are described, both either externally or internally; and if D is the mid
point of BC ; prove that DEF is an isosceles right-angled triangle.

15. In the sides of a triangle ABC, respectively opposite A, B, C, points
D, E, F are taken, so that

AF:FB =BD:DC =CE: EA;

show that AD, BE, CF cut each other in the same proportion.

16. 1f ABCD is a cyclic quadrilateral, and E, F are points in CB, CD, such
that the angles DAE, BAF are right ; prove that EF goes through the centre
of the circle round the quadrilateral.

17. If A, A, B, B’ are four collinear points, in order; and P any point at
which AA’, BB’ subtend equal angles; prove that

.PA? : PB* = AA’. AB’': BB'. A'B,
and PA”:PB”? = AA'. A’'B:BB’. AB".

18. If APQ is the tangent at a fixed point A, on a fixed circle, and AP. AQ
is constant; prove that the Locus of the intersections of the second tangents
from P, Q,.is a straight line parallel to APQ.

19. If ABCD is any quadrilateral, and P a point within it at which opposite
sides subtend supplementary angles ; then, if EF is the third diagonal, prove
that the angles APC, BPD, EPF have common bisectors.

20. If A, B are fixed points, in a fixed tangent, to a fixed circle; and X, Y
any harmonic conjugates to A, B; find the Locus of the intersection of tangents
from X, Y to the circle.

21. Given a triangle, an area, and a ratio; draw a transversal to cut off
a triangle equal to the area, and have its segments in the given ratio.
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22. S, 8§’ are inverse points with respect to a circle; CA the radius through
S; H the mid point of SS'; if P is any point on the pedal of the circle with
regard to S, prove that

a.r + b.r =} (a~Db?),

where SP =r, HP =1, CA=4a, CS = b. (F. S. Macaulay)

NOTE—T%e pedal of a O, with respect to a pt., is the Locus of the foot of the
A from the pt. on any tang. The form of the result shows that this pedal is
what is called a focal curve, of the kind whose type is * + p¥’ = a; where
X, Y are the radii vectores from the foci S, H ; and p, & are const.: such curves
are known as ‘Cartesian Ovals) Taking the case when S is within the O ;
if PN s L to SH, the result comes by eliminating SH, SN between

=1r?+ SH?— 2SH.SN, 2b.SH = a* - b? and b.SN =r(a —r).

23. If X, Y, Z are points in sides of triangle ABC, respectively opposite

A, B, C such that
BX:XC =CY:YA=AZ:BZ = A:y,
prove that AXYZ: AABC = A" —Ap + p?: (A + p)

24. If In, Cn are the areas of the regular in- and circum-polygons of 7 sides

with respect to the same circle, prove that
In:lzn = l2n: Cn,
and Cn:Czn =Cn + l.n:2l2n.

25. Show that of two regular isoperimetrical polygons, the maximum is
that which has the greater number of sides.

NOTE—Hence may be deduced that the © is the maximum area of given
perimeter.

26. Two sides of a given triangle touch two fixed circles, find the Envelope
of the third side.

27. If two sides of a given polygon touch two fixed circles, show that all the
sides touch fixed circles.

28. (1) Through fixed points A, B, a variable circle is drawn, cutting a
fixed circle in X, Y ; and XY, AB meet in T : if a variable line Tg G is drawn,
meeting the fixed circle in g, G, prove that

AG.GB:Ag.gB =TG:Tg.

(2) Two points A, B, and a circle are given: show that a point T, and
lines TV, TZ, can be found, such that, if from T a variable line is drawn to cut
the circle in G, g, then

AG.GB:Ag.gB = TG Tg. Toory)
cc
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29. A, B are inverse points with respect to a circle whose centre is C; Pis

any point on the circle; BN is perpendicular to the tangent at P; DCE is thegmt

diameter perpendicular to CA; PM is the perpendicular on CA (or AC

produced) and meets AE in Q: prove that MQ, BN are equal. g

30. Show that a variable circle, cutting two given circles at given angle,

constantly touches two fixed circles, and cuts a third orthogonally. 0]

31. If a circle constantly touches two fixed circles, show that it cuts any
circle co-axal with them at a constant angle.

32. If a circle A cuts a circle B in X, Z; and touches a circle concentric
with B in Y ; then the arcs XY, YZ are obviously equal: derive a Theoren
from this by inverting with respect to a point on the circumference of A.

33. Through each corner of a triangle ABC, parallels are drawn to the
opposite sides, forming a new triangle whose sides are YAZ, ZBX, XCY;

show that the nine-point circle of ABC touches the nine-point. circles of XBC,
YCA, ZAB at the mid points of BC, CA, AB, respectively.

34. Through a fixed point, within a fixed angle BAC, draw XPY, so
that the perimeter of the triangle AXY is minimum.

35. Find the Locus of the centre of a circle cutting two given lines at given
angles.

36. A, B, C, D, are concyclic points, in the order named: O,, O,, O,, O,,
are the respective orthocentres of the triangles BCD, ACD, ABD, ABC:
prove that—

19, 0,A, 0,B, O,C, O,D, are concurrent; and that,
29, if the quadrilateral ABCD is turned, in its own plane, round this point
of concurrency, through 180°, it will coincide with the quadrilateral O, 0,0, 0,.

37. If C is the centre of a fixed circle, ACB an angle of fixed magnitude,
and APB a tangent to the circle; show that the area ABC will be minimum
when P is the mid point of the intercepted arc. Hence solve this Problem—

To circumscribe about a given circle a quadrilateral of which the opposite
angles shall be of given magnitude, and the area minimum.

38. Given a circle and a fixed point A, prove that another fixed point B can
be found such that, if a tangent is drawn at a variable point P, AP? will vary
as the perpendicular from B on this tangent.

NOTE—Recollect that a tang. is the polar of its own pt. of cont., and
use Salmon's Theoren.

39. If on the sides of any triangle equilateral triangles are described (all
externally, or all internally to the triangle) show that the joins of their centres
form an equilateral triangle. (Cf. pp. 318, 319.)

|

—— . m——
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40. Is it possible to inscribe in a circle a pentagon equiangular to anzy given

. pentagon ?

b

41. Given two circles, find a paint such that tangents from it to the circles
may be equal, and the angle between them of given magnitude.

43. Given a quadrilateral; find a point such that, if perpendiculars are
dropped from it on the sides, the joins of their feet form a parallelogram.

43. Two straight roads intersect : if A, B are points in one; and C, D points

in the other; such that

A A A A
CAB = 75°24', DAB = 40°30,,  CBA = 48°42’, DBA = 83° 36/,
find the angle between the roads.

Can the Problem be solved if the angles are given in general terms?
44. In Pascal’'s Theorem (p. 334) if the hexagon varies subject to the

- limitations that the circle, and the three collinear points of intersection,

are fixed, prove that any diagonal goes through a fixed point.

45. 1f one pair of opposite sides of a quadrilateral inscribed in a fixed circle
touch another fixed circle, show that the ether pair of opposite sides touch a
third fixed circle co-axal with the two former.

Hence prove Poncelet’s Theorem—If all the sides but one of a variable
polygon inscribed in a fixed circle touch fixed circles co-axal with-the first, the
remaining side touches another fixed circle of the system.

46. Two tangents are drawn to a circle, and two lines dividing the angle
between the tangents harmonically; show that the pole of one of these lines
lies on the other.

N
NoTE—A4n AOC s divided harmonically by OB, OD, when, ABCD being
a transversal, O (ABCD) is harmonic.

47. XYZ is a transversal to a triangle, such that the ratio of XY to YZ

s constant ; if XY is divided in P, so that the ratio XP to PY is constant, find

the Locus of P.
48. In a segment of a circle inscribe the rectangle of maximum area.

NOTE—By General Addenda i. 3, if tangs. are drawn to the arc of the segt.
at the corners of an inscribed rect., forming with the chd. produced of the segt.a
A, the rect. is max. when then the pts. of conl. are mid poinis of sides of A.
Now let X be pt, where a tang. meets chd. ; P pt. where L at X to chd. meets
rad. thro. pt. of cont.; M pt. where PX meets || to chd. thro. O, the centre of
O©: then PM . PX = 2 (rad.)’, and PM — PX is known; .*. PM can be found ;
and then & PMO is known.

cc2
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49. Given base, difference of base angles, and rectangle under the sides,
construct the triangle.

50. Given a point and an angle, draw through the point a line so that
the length of it intercepted between the arms of the angle may be given.

Reduce to the preceding Problem the following—Given a semi-circle and
a line ; draw a tangent to the semi-circle, so that its intercept between the line
and the diameter may be divided at the point of contact in a given ratio.

51. With the notation of p. 213, if U is taken in |IE, so that IU = } |E;;
and V, W are taken similarly ; and if a, 8, 4 are mid points of sides of triangle
E, E, E,; show that the circum-circle of UVW bisects IA, IB, IC, la, 18, 7.

(- Griffths)

53. Construct a triangle of given species, with its corners on three concentric
circles.

If the triangle is equilateral, find the relation between the radii that there
may be only one solution.

53. Find a point in a given line so that the sum (or difference) of its
distances from two fixed points may be given.

Reduce to the preceding Problem the following—Describe a circle, with
its centre on a given diameter of a given circle, to cut that circle orthogonally,
and touch another given circle,

54. If P is a given point outside a triangle, and Q a given point in one of
its sides ; draw PXY to cut the other sides in X, Y, so that the angle XQY may
be given.

When will the angle XQY be maximum?

§5. If A, B, C, D is a harmonic range ; and squares are described on AB,
BC, CD, AD—the three first being on one side of AD, and the last on the
opposite side—prove that the circles round the four squares have one point in
common.

56. Draw the maximum triangle, of given species, so that each side touches
one of three given circles.

57. If a circle rolls (without slipping) on the circumference of a circle of
double its radius (the contact being internal) show that each of the points of the
lesser circle goes along a diameter of the larger. (La Hire)

58. If a circle rolls on a fixed circle of half its radius (the contact being
internal) prove that the Envelope of any chord of the rolling circle is a circle,
which reduces to a point when the chord is a diameter. (Wolstenholme)

59. Given the in- and circum-circles of a triangle, find the Locus of—

19 its orthocentre ; 2°, its three ex-centres.

o e < e et N . {
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z)6o. OA, OB are fixed lines; C, D fixed points inside the angle AOB ; draw
i circle, with O as centre, cutting OA, OB in X, Y, so that, if DX, DY are
“joined, CX + DY may be minimum.

61. In a given circle draw two parallel chords, so that they shall be to each
: other in a given ratio, and be at a given distance apart. .

62. Given three concurrent lines, and a triangle, construct a triangle with its
corners on the lines, and identically equal to the given triangle.

63. A variable circle goes through a given point and touches a given
circle S; prove that its chord of intersection with another fixed circle, con-
centric with S, touches a fixed circle. '

64. A, B, C, D are four concyclic points: a system of circles is drawn
having A, B for limiting points; and a second system having C, D for limiting
points: find the Locus of the points of contact of a circle of the first system
with a circle of the second system.

65. If the join of two points on two circles subtends a right angle at a
limiting point, prove that the Locus of the intersection of tangents at the points
is a co-axal circle, (W. S. M<Cay)

66. A six-point circle. If XYZ is a pedal triangle; and Xa, Xa, Y8, Yb,
Z+, Zo are perpendiculars on the sides of the original triangle ; prove that the
six points a, B, 4, a, b, ¢ are concyclic. (H. M. Taylor)

67. If two circles are inverted into two others ; then if Ot, Ot’ are tangents
from the centre of inversion to the second pair, and R the radius of inversion,
prove that—

common tangent to Ist pair : common tangent to 2nd pair = R%: Ot . Ot’
(Prof. Purser)

NoTE—Let PQ be common tang. to 1st pair; P, Q inverse, and P’, Q'
corresponding pts. of P, Q ; DA produced meets © thro. p, P’ in X, and O thro.
q,q' iny. Easy to see that X, Q are corresponding pts., and also y, P.

Then (common tang. to 1st pair)?: (common tang. to and pair)?

= PQ?: py. ax [cf. p. 345, Ex. 10]
= (PQ:pq) (pa : py) (PQ:pq) (pq:qx)
= (OP : Oq) (Oq : 0q’) (0OQ:0p) (Op:0p") [Simr. O and
= (OP :0p) (0Q:0q’) Componendo]
= (0T : Ot) (OT': Ot')
= (R? :0t% (R? : Ot'?).

Whence result follows by converse part of v. 9.
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NOTE— The remaining Exercises are taken from the Geometry Papers set,
at the Royal University of Ireland, to candidates for the Mathematical Scholar-
ships given to commencing Students.

68. If a chord of a given circle subtend a right a.ﬂgle at a given point, the
rectangle contained by the perpendiculars on it, from the given point and from
the centre of the given circle, is constant. Also the sum of the squares of
perpendiculars on it from two other fixed points (which may be found) is
constant.

69. The sum of the squares of lines drawn from the angular points of a
regular polygon of » sides to any point in the circumference of its inscribed
circle is equal to 7 times the sum of the squares of the radii of its inscribed and
circumscribed circles.

7o. If &, b, ¢ denote the sides of a triangle ABC; D, D’ the points where the
internal and external bisectors of the angle A meet the opposite side, prove

, aabe
that DD =pa

And, in the same case, if E, E’, and F, F’, be points similarly determined
on the sides CA, AB respectively, prove that

! ! I
oo *EE Y FF T°
a’ b? ct

and bb—, + —E—Er + ﬁ = 0.

NOTE—17¢ is sometimes difficult, if not impossible, to interpret results like
these within the limits of Euclidian Geometry. The Student, in proving them,
should in general avoid the use of the word * multiply’ ; which is an arithmetic
term, and always tacitly assumes that the multiplier is a commensurable number.

71. If two circles intercept on any secant chords that have a given ratio, the
tangents to the given circles at the points of intersection with the secant have
a given ratio.

va. If &, b, ¢, d denote the four sides; and D, D’ the diagonals of a
quadrilateral ; prove that the sides of the triangle formed by joining the feet of
the perpendiculars from any of its angular points on the sides of the triangle
formed by the three remaining points, are proportional to the three rectangles

=~ bd, DD'.
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73. If a variable circle touch two fixed circles in the points A, B; and the
line AB be drawn intersecting the fixed circles again in A’, B’; and if DD’ be
the common tangent of the two fixed circles ; prove that

DD"?: AB’= (R £ p)(R + ¢)): R?,
where R is the radius of the variable, and p, p’ of the fixed circles; and the
choice of sign depends on the nature of the contact,

74- If four circles are touched by a fifth ; and if we denote by 12 the common
tangent to the first and second, and use a similar notation for the others ; prove
that 12 .—3_4+;3.4—l =13.34.

NOTE—This is Dr. Casey’s well-known extension of Ptolemy’s Theorem : it
may be best proved thus—Invert with respect to a p't on the 5™ ©, and we get
4 O loucking a line ; apply Euler’s Theorem (p. 104) to the seg'ts of this line
made by the ts of contact ; and connect these seg’ts with the tang’s 13, &c., by
Purser's Theorem (p. 389).

75. If three concurrent lines from the angles of a triangle ABC meet the
opposite sides in the points A, B’, C, the diameter of the circle circumscribed
about ABC is equal to AB’.BC’. CA’ divided by the area of the triangle
AB'C. .

NOTE— The remark in the Note on Ex. 70, applies here.

46. Prove the minimum property of Philo's Line.

77. The base AB, of a given triangle ABC, is cut harmonically in X and Y ;
show that the circle circumscribing the triangle XCY passes through a second
fixed point.

78. Determine a point P such that its three distances from the vertices of
a given triangle may bear to one another given ratios. Show that, if two real
positions of the point P exist, the line joining them passes through the centre
of the circumscribing circle of the given triangle.

79. Draw a line which shall cut off similar segments from three given
circles.

How many solutions does the Problem admit of?

80. ABC is a fixed triangle; A'B’C’ is a similar triangle of 9gposite sense,
lying inside the first ; show that, if &, b, ¢ are the sides of the outer, p,, P, Ps
perpendiculars let fall from A’, B’, C’ on these sides,

ap, + bp, + ep, = twice area outer triangle.

Def'—Two similar figures may be said to be of opgosite sense if, in order to
place the sides of one parallel to those of the other, it would be necessary to
invert one of their planes.
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81, Describe a pentagon of maximum area, such that four of its sides shall
have given and equal lengths, and the angles at the extremities of the fifth side
shall be right angles,

82. From a variable point P perpendiculars are let fall on the sides of a
given triangle: find the Locus of P, if the area of the triangle formed by
joining the feet of the perpendiculars is constant.

83. Two variable lines, OA and OB, making with one another a given angle,
are drawn from a given point O to meet a given line: circles are drawn touching
the given lines at A and B, and each passing through O; find the Locus of
their other point of intersection.

NoOTE—/nvert with respect to O.

84. A given circle is touched at two fixed points by two variable circles,
which also touch one another: find the Locus of their point of contact.

85. On a given straight line find a point whose distance from a fixed point is
equal to its distance from a fixed line.. State the conditions as to the data
which would render the Problem impossible.

86. Prove that all circles touching two given circles are cut orthogonally by
one or other of the two circles which pass through the intersections of the given
ones, and bisect the angles between them.

NOTE—/nvert with respect to one of the p'ts of intersection of the given OF.

87. Three equal circles ABB'A’, ACC'A’, CBB'C/, intersect in any manner;
but so that B, B, the intersections of the first and third, lie within the second:
prove that

arc AB + arc BC—arc AC = arc A'B’ +arc B'C'—arc A’C",

88. A point P moves so that m . AP — = BP = AB; A and B being two

fixed points: show that a point X can be found in AB, such that the ratio of
XP to AP + BP shall be constant. :

89. Two given circles turn round two fixed points A, B, on their circum-
ferences, in such a manner that one of their intersections describes the line AB:
find the Locus of their second intersection.

go. Through the vertices of a triangle ABC lines are drawn to a point O;
if any triangle have its sides parallel to OA, OB, OC ; and if through each of
its vertices a parallel to the corresponding sides of the original triangle be
drawn; prove that these three parallels meet in a point.

91. Being given the sides of the squares inscribed in a right-angled triangle,
construct the triangle.

\
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- 92. Three sides a, b, ¢, of a quadrilateral are given; and its area is a
maximum ; prove that the remaining side x satisfies the equation
x%— (a' + b? + e?)x — 2abec =0,

NOTE—See Note on Ex. Jo.

93. One of the vertical angles of a triangle is fixed in magnitude and position,
.and the circumscribing circle passes through another fixed point A; find the
Locus of the foot of the perpendicular let fall from A on the variable side of the
triangle.

94.-If through a fixed point O a variable right line be drawn, cutting any
number of given circles in pairs of points (A, A") (B, B") &c., find the Locus
of the point X on the line such that, if 1, m, n are given constants,

1 1 I 1 1
o—x=1(m+'o—‘A,)+m(O—B-+o‘—‘B,)+&c.

95. If four circles be such that each cuts the other orthogonally; prove that
the centres of three of them are the vertices of a triangle self-reciprocal with
respect to the fourth.

96. Through a given point A draw a right line, such that the right line
joining its poles, with respect to two given circles, shall pass through another
fixed point.

97. If A’, B, C’ be the feet of the perpendiculars from the verticzs A, B, C
of a triangle on the opposite sides ; prove, if A”, B”, C” be the centres of the
circumscribed circles of the triangles AB’C’, BC'A’, CA'B’, respectively ; and
a, B, v the centres of their inscribed circles ; A”a, B”B, ¢’y are concurrent,

98. If the perpendiculars from a point K on the sides of a triangle be
proportional to the sides; prove that lines drawn through it, parallel to the
sides, meet them in six concyclic points.

99. If from any point of the Pascal’s Line of a hexagon, inscribed in a circle,
perpendiculars be let fall on the sides; prove that the product of the per-
pendiculars on three alternate sides is equal to the product of the perpendiculars
on the three remaining sides.

NOTE—If we call the L* D,, sy Ps, Piy Doy Do, it will be more geometrical to
put the result in the form (D, :P;) (P::Pd) (Ps:Pe) = 1.

100. If a circle be inverted from any arbitrary point, prove that the inverses
of the angular points of any inscribed square will form a harmonic system of
points.

101. Prove that the difference of the squares of the two interior diagonals of
a cyclic quadrilateral is to twice their rectangle, as the distance between their
middle points is to the third diagonal.
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102. Prove that upon a given line can be described six triangles equiangular
to a given triangle ; and that their six vertices are concyclic.

103. If two triangles are given, in all but position, place them so that the
vertices of one may be the poles of the sides of the other, with respect to
a circle.

104. ABC is a given triangle; L, M, N its three ex-centres; show that the
Problem—To draw a triangle whose vertices shall lie on the sides of ABC,
and whose corresponding sides shall pass respectively through L, M, N—is
indeterminate.

105. A quadrilateral is inscribed in one circle and circumscribed to another;
show that its diagonals meet in a limiting point of the two circles.

106. The poles of the radical axis of two circles are harmonic conjugates
with respect to their centres of similitude. )

107. Given in position, but not in length, one pair of opposite sides of a
cyclic quadrilateral, and the intersection of its diagonals ; find the Locus of the
centre of its circumscribing circle.

108. A, B, C, D are four fixed points on a circle; X, Y two variable points
on the same: show that the line joining the intersection of the chords AY and
CX to that of the chords BY and DX, passes through a fixed point,

109. Two maps of the same country, on different scales, are placed anywhere
on a table; one of the maps, which is drawn on transparent paper, being turned
upside-down upon its face: find the point on the table which represents the
same place, to whichever map it is considered to belong.

110. A pair of points are taken on each side of a triangle; if each pair are
concyclic with each other pair, then all six are concyclic.

111. If CA, CB are tangents to a circle, show that, if any third tangent cuts
them in P, Q, the rectangle AP . BQ is to the rectangle CP.CQ in a
constant ratio.

112. If A, B are inverse points with regard to a circle, and any point P be
taken on the circle, and AP, BP intersect the circle again in X, Y; given
AB = ¢, AP =1, BP = v/, find the distances of X, Y from A and B.

113. The vertical angle of an isosceles triangle is 120°; find the Locus of
a point P, if the sum of the squares of its perpendicular distances from the two
sides is equal to the square of its distance from the base.

NOTE—The Locus is the polar © of the A.

114. From what point can the three sides of a triangle be inverted into three
equal circles?
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115. Through a fixed point O, within a circle, any two chords AB, CD are
drawn: find the Locus of the intersection of AC and BD.

116. Given a triangle ABC, show that a point P may be found, such that
every circle through C and P shall cut the sides AC, BC in points R and S,
such that AR : BS is a constant ratio.

117. Given three points A, B, C, draw a line through C, such that the sum,
or difference, of the squares of the perpendiculars on it from A, B shall be
given. .

118. If A, B, C are three given points on a line (AB > BC) and any point
P be taken, such that AP, BP, CP are in descending geometrical progression ;
show that all positions of P lie within the circle passing through B, and having
A, C as inverse points.
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Ceva’s Theorem, 328.
Chapple’s Theorem, 295.
Chord, 132.
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Concentric, 115.

Concurrent lines, 69.

Concyeclic points, 145.

Consequents of ratios, 233.

Contact of a line with a circle, 139.
internal and external of two

circles, 126.
Converse, 1.
Convex, 26.

Corners of a triangle, 3.

Corollary, def. of, 53.

Corresponding points, 340.

Corresponding sides and angles,
193.

Cross quadrilateral, 333.

Cross-ratio, 332 and 333.

Cyclic quadrilateral, 145.

Degree, def. of a, 25.

Desargues’ Theorem, 330.

Diameter, 122,

Dissection of one square to form
two, 60, 61.

Dividendo, 239.

Double chord, 318.

Drawing instruments allowed by
Euclid, 4.

Duplicate ratio, 243.

Envelope, def. of, 306.
Equi-cross, 333.
Equiangular polygon, 5I.
¢ Equiangular to each other,’ 193.
Equilateral triangle, 7.

polygon, 51.
Euler, Theorem of, 104.
Ex-aequali, 240.
Ex-central triangles, 338.
Ex-centre, 76.
Exterior angles of a triangle, 3.
External division of a line, 94.
Extreme and mean ratio, 277.

Feuerbach’s Theorem, 351.
do. by inversion, 366.

Focus of a pencil, 331.
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Gergonne’s Theorem, 358.

Harmonic conjugates, 367.
range, 367.
mean, 367.
pencil, 369.
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" examples of, 9.

symbol of, 9.
Image, 313.
In-centre, 73.
Incommensurable, 230 and 231.
Indeterminate, 29%.
Indirect proof, meaning of, 12.
Inflection of a line, 192.
Inscribed polygons, 193.
Inverse points, 359.

Loci, 359.
Inversion, centre and radius of, 359-
Invertendo, 237.
Isoperimetrical, 312.
Isosceles, 11.

Lemma, def. of, 122.

Limiting points of circles, 349.
Line, def. of, 1.

Line of centres, 134.

Locus, def. of, 177.

Magnitude, 229.
of same kind, 230.
Manheim’e Problems, 383, 383.
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Maximum, 309.

Mean centre, 110,
Measure, 230.

Medial section, 99.
Median, 69. .
Menelaus’ Theorem, 329.
Minimum, 309.

Multiple, 229.

.

Nine-point circle, 177.
Non-corresponding points, 340.
Normal, 141.

Number, 229.

Oblique, 54.
Orthocentre, 74.
Orthogonal section of circles, 220.

«, mathematical def. of, 26.

Pappus’ Problem, 381.
extension of i. 47, 82.

Parallelogram, def. of, 37.
diagonals of, 37.

Parallels, 3I.

Pascal’s Theorem, 334.

Pascal Lines, 334.

Peaucellier’s Cell, description of, .
theory of, 360.

Pedal Line, 1732.

Pedal Triangle, 174.

Pencil, 331.

Perigal’s dissection proof of i. 47,

60, 61.

Perpendicular, def. of, 15.
foot of, 17.

Perspective, centre and axis of, 331.

Philo’s Line, 284.

Plane and plane figure, 3.

Plane rectilineal figure, 2.

Point, def. of a, 1.

Polar cirole of a triangle, 377.
Pole and Polar, 372.
Polygon, 51.
Poncelet, Theorems of, 175 and 387.
Postulate, meaning of, 1.

on the idea of straightness, 1.

on joining points, I.

on producing lines, 2.

on describing circles, 3.
Postulate on the hypothetical trans-

ference of figures, 9. -

Projection of a line, 6.
Proportionals, 231 and 233.
Ptolemy’s Theorem, 289.
Purser’s Theorems, 333, 350, 389.

Quadrature of a rectilineal figure,
44 and g9.
Quadrilateral, def of, 51.
area of, 76 and %7. -
complete, 299.
Ccross, 322.

Radian, def. of a, 35.
Radical axis, 346.

centre, 348.
Radius vector, 361.
Range, 331.
Ratio, 230 and 231.

same, 232.

greater and less, 234.

of greater and less inequality, 234.

. extreme and mean, 275.

Rays of a pencil, 331.
Reciprocal ratios, 237.
Reciprocally proportional, 260.
Rectangle, 86.
¢ Reductio ad absurdum,’ 13.
Re-entrant, 26.
Regular polygons, 193.
Rhombus, 51.
Right angles, def. of, 15.

all equal, 16.
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Salmon’s Theorem, 374.
Seoant, 146.
Sector, def. of, 165.
Segments, of a line, 95.

of a circle, 143,

angles in, 142.

similar, 146,
Self-conjugate triangle, 373.
‘Sense,’
Similar figures, 253.
Similarity, centre of, 253 and 283.
Similarly situated, 264.
Similitude, centre of, 339.

axes of, 343.

circle of, 344.
Simson’s line, 172.
¢ 8pecies given,’ 297.
Square, 50.
Straight, 1.
Submultiple, 229.
Superposition, 9.
Supplement of an angle, 15.
Surface, 2.
Symbols, 6.
Synthesis, 221,

‘ Tangencies,’ 353.
Tangent, 139.

‘same’ and ‘opposite,’ 391.

Tangent, drawn by ruler only, 375.
limit of a secant, 361.
Terms of a ratio, 3233.
Third diagonal of a quadrilateral,
299.
Transversal, 329.
Trapezium, def. of, 51.
area of, 7.
Triangle, def. of, 2.
corners, sides, angles of, 3.
exterior angles of, 3.
vertex and base of, 11 and 47.
altitude of, 74.
equilateral, 7.
isosceles, 11.
right-angled, so.
acute-angled, 51.
obtuse-angled, 51.
self-conjugate, 373.
polar circle of a, 377.
Triplicate ratio, 243.

Unit angles, 25.

¢ Vary as,” 310,
Vertex of a triangle, 11 and 47.

THE END.
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