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PREFACE,

——

I rave endeavoured in this Manual to collect and
arrange all those Elementary Geometrical Propo-
sitions not given in Kuclid which a Student will
require in his Mathematical Course. The neces-
sity for such a Work will be obvious to every per-
son engaged in Mathematical Tuition. I have
been frequently obliged, when teaching the Higher
Mathematics, to interrupt my demonstrations, in
order to prove some elementary Propositions on
which they depended, but which were not given
in any book to which I could refer. The object
of the present little Treatise is to supply that
want.

The following is the plan of the Work. It
is divided into five Chapters, corresponding to
Books I., II., III., IV.,, VI. of Euclid. The
Supplements to Books I.-IV. consist of two Sec-
tions each, namely, Section I., Additional Propo-
sitions; Section II., Exercises. This part will be
found to contain original proofs of some of the
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most elegant Propositions in" Geometry. The
Supplement to Book VI. is the most important ;
it embraces more than half the work, and consists
of eight Sections, as follows : —I., Additional Pro-
positions ; II., Centres of Similitude; III., Theory
of Harmonic Section ; IV., Theory of Inversion ;
V., Coaxal Circles; VI., Theory of Anharmonic
Section ; VII., Theory of Poles and Polars, and
Reciprocation ; VIII.,, Miscellaneous Exercises.
Some of the Propositions in these Sections have
first appeared in Papers published by myself; but
the greater number have been selected from the
writings of CuasLes, SaLmoN, and TowNsEND.
For the proofs given by these authors, in some
instances others have been substituted, but in
no case except where by doing so they could be
made more simple and elementary.

The present edition is greatly enlarged : the
new matter, consisting of recent discoveries in Ge-
ometry, is contained in a Supplemental Chapter.
Several of the Demonstrations, and some of the
Propositions in this Chapter, are original, in par-
ticular the Theory of Harmonic Polygons, in Sec-
tion VI. A large number of the Miscellaneous
Exercises are also original.

In collecting and arranging these additions
I have received valuable assistance from Professor
NEUBERG, of the University of Liege, and from
M. Brocarp (after whom the Brocard Circle is
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named). The other writers to whom I am in-
debted are mentioned in the text.

The principles of Modern Geometry contained
in the Work are, in the present state of science,
indispensable in Pure and Applied Mathematics,*
and in Mathematical Physics;t and it is important
that the Student should become early acquainted
with them,

JOHN CASEY.

86, Sourn CirctLAR RoAp,
DusriN, Aug. 31, 1886.

* See CHALMERS’ ¢ Graphical Determination of Forces in
Engineering Structures,”” and Lévy’s ¢ Statique Graphique.”’

+ See Sir W. Thomson’s Papers on ¢¢ Electrostatics and Mag-
netism”’ ; Clerk Maxwell’s ¢¢ Electricity.”
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BOOK FIRRST.

SECTION TI.

ADppITIONAL PROPOSITIONS.

In the following pages the Propositions of the text of
Euclid will be referred to- by Roman numerals enclosed
in brackets, and those of the work itself by the Arabic.
The number of the book will be given only when diffe-
rent from that under which the reference occurs.

For the purpose of saving space, the following
symbols will be employed :—

Circle will be denoted by ©

Triangle ’s JAN
Parallelogram ,, (—
Parallel ’ |
Angle ’ L
Perpendicular ,, L

In addition to the foregoing, we shall employ the
usual symbols of Algebra, and other contractions whose
meanings will be so obvious as not to require expla-

nation.
B
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Prop. 1.—The diagonals of a parallelogram bisect each
other.

Let ABCD be the o=, its diagonals AC, BD bisect
each other.

Dem.—Because AC, meets the |[s AB, CD, the £
BAO=DCO. In like manner, A
the £ ABO = CDO (xxix.),
and the side AB = side CD

B

(xxxiv.); .. AO = 0OC; 0
BO = OD (xxvi.)
Cor. 1.—If the diagonals P c

of a quadrilateral bisect each other it is a =.
Cor. 2.—If the diagonals of a quadrilateral divide it
into four equal triangles, it is a =.

Prop. 2.— The line DE drawn through the middle point
D of the side AB of a triangle, ,
parallel to e second side BC,
bisects the third side AC.

Dem.—Through Cdraw CF B F

| to AB, meeting DE produced
in F. Since BCFD is a =,
CF = BD (xxxiv.); but BD = C

= AD (hyp.); ... CF = AD.

Again, the Z FCE=DAE, and £ EFC = ADE (xxix.);

.. AE = EC (xxvi.). Hence AC is bisected.
Cor.—DE = 1+ BC. For DE = EF = DF.

Prop. 8.—The line DE which joins the middle points
D and E of the sides AB, AC of a triangle vs parallel to
the base BC.

Dem.—Join BE, CD (fig. 2), then A BDE = ADE
(xxxviil.), and CDE = ADE; there- A
fore the & BDE = CDE, and the
line DE is | to BC (xxxix.).

Cor.1.—1f D, E, F be the middle D E
points of the sides AB, AC, BC of
a A, the four As into which the
lines DE, EF, FD dividethe AABC By 7 ¢
are all equal. This follows from
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(xxxiv.), because the figures ADFE, CEDF, BFED,

are c3s.

Cor. 2.—1If through the points D, E, any two |js be
drawn meeting the base BC in two points M, N, the
= DENM is = 3 A ABC. For DENM = —= DEFB
(xxxV.).

DEr.— When three or more lines pass through the same
point they are said to be concurrent.

Prop. 4.—The bisectors of the three sides of @ triangle
are concurrent. A
Let BE, CD, the bisectors of
AC, AB, intersect in O; the
Prop. will be proved by show-
ing that AO produced bisects D B
BC. Through B draw BG ||
to CD, meeting AO produced
in &; join CG. Then, be-

0
cause DO Dbisects AB, and is B F ¢
| to BG, it bisects AG (2) in W
0. Again, because OE bisects &

the sides AG, AC, of the A
AGC, it is || to GC(3). Hence the figure OBGC is
a 3, and the diagonals bisect each other(1); .-. BC is
bisected in F.

Cor.—The bisectors of the sides of a A divide each
other in the ratio of 2 : 1.

Because AO = OG and OG = 20F, AO = 20F.

Prop. 5.— The middle points E, F, G, H of the sides AC,
BC, AD, BD of two triangles ABC ABD on the same base
AB are the angular points

of a parallelogram, whose
area 18 equal to half sum /\
or half difference of the areas E X
- of the triangles, according as A[\
they are on opposite sides,
or on the same side of the
common base.

Dem. 1. Let the As
be on opposite sides. The

B 2

N

<v



4 A SEQUEL TO EUCLID.

figure EFHG is evidently a &, since the opposite sides
EF, GH are each || to AB(3), and =+ AB (Prop. 2, Cor.).
Again, let the lines EG, FH meet AB in the points
M, N; then = EFNM = 1+ A ABC (Prop. 3, Cor. 2),
and —m GHNM = 3 A ABD. Hence = EFHG =
4+ (ABC + ABD).

Dem. 2,—When ABC, ABD are on the same side
of AB, we have evidently —= EFGH = EFNM -
GHNM = % (ABC - ABD).

Observation.—The second case of this proposition may be
inferred from the first if we make the convention of regarding the
sign of the area of the A ABD to change from positive to nega-
tive, when the A goes to the other side of the base. This affords
a simple instance of a convention universally adopted by modern
geometers, namely—when a geometrical magnitude of any kind,
which varies continuously according to any law, passes through a
zero value to give it the algebraic signs, plus and minus, on diffe-
rent sides of the zero—in other words, to suppose it to change
sign in passing through zero, unless zero is a maximum or mini-
mum.

Prop. 6.—If two equal triangles ABC, ABD be on the
same base AB, but on opposite sides, the line Jomning the
vertices C, D us bisected by AB.

Dem.—Through A and B
draw AE, BE || respectively
to BD, AD; join EC. Now,
since AEBD is a o, the
A AEB = ADB (xxxiv.); but
ADB = ACB (hyp.); .. AEB
= ACB; ... CE is || to AB
(xxxix.). Let CD, ED meet
AB in the points M, N, respec-
tively. Now, since AEBD is
a 3, ED is bisected in N (1); and since NM is | to
EC, CD is bisected in M (2).

Cor.—If the line joining the vertices of two As on
the same base, but on opposite sides, be bisected by the
base, the As are equal.

Prop.7.—1If the opposite sides AB, CD of @ quadrilateral
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meet i P, and of G, H be the middle points of the
diagonals AC, BD, the p

triangle PGH = } the
quadrilateral ABCD. C

Dem.—Bisect the 1
sides BC, AD in Q and H
R; join QH, QG, QP, =r 5 P
RH, RG. Now, since G
QG is || to AB(3), if
produced it will bisect B
PC; then, since CP,
joining the vertices of
the As CGQ, PGQ on the same base GQ, but on oppo-
site sides, is bisected by GQ produced, the A PGQ
= CGQ (Prop. 6, Cor.) =+ ABC.

In like manner PHQ =31 BCD. Again, the= GQHR
=} (ABD - ABC) (5); ... AQGH =+ABD - £ ABC:
hence, A PGH=%(ABC+3BCD+ ABD - ABC) =% qua-
drilateral ABCD.

Cor.—The middle points of the three diagonals of a
complete quadrilateral are collinear (7.e. in the same
right line). For, let S
AD and BC meet |
in S, then SP will
be the third dia-
gonal; join S and P
to the middle points
G, H of the dia-
gonals AC, BD;
then the As SGH,
PGH, being each
= %+ quadrilateral
ABCD, arc =to one
another ; ... GH
produced bisects SP
(6). |

Der.—1If a variable point moves according to any law,
the path which it describes vs termed vts locus.

Thus, if a point P moves so as to be always at the
same distance from a fixed point O, the locus of P is
a ©, whose centre is O and radius=QP. Or, again, if

A
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A and B be two fixed points, and if a variable point P
moves so that the area of the A ABP retains the same
value during the motion, the locus of P will be a right
line || to AB.

Prop. 8.—If AB, CD be two lines given in position
and magnitude, and if a point P moves so that the sum
of the areas of the triangles ABP, CDP ¢s given, the locus
of P is a right line.

Dem.—Let AB, CD intersect in O; then cut
off OE = AB, and OF = CD, join OP EP, EF,
FP; then A APB

OPE and CPD =
OPF; hence the sum
of the areas of the As
OEP, OFP is given;
.. the area of the
quadrilateral OEPTF is
given; butthe A OEF
is evidently given ; .-.
the area of the A EFP

is given, and the base R
EF is given; .-. the locus of P is a right line || to EF.

Let the locus in #his question be the dotted line in the diagram.
It is evident, when the point P coincides with R, the area of the
A CDP vanishes; and when the point P passes to the other side
of CD, such as to the point T, the area of the A CDP must be
regarded as negative. Similar remarks hold for the A APB and
the line AB. This is an instance of the principle (see 5, note)
that the area of a A passes from positive to negative as compared
with any given A in its own plane, when (in the course of any
continuous change) its vertex erosses its base.

Cor. 1.—If m and » be any two multiples, and if
we make OE =mAB and OF =#CD, we shall in a
similar way have the locus of the point P when m times
A ABP + n times CDP is given; viz., it will be a right
line || to EF.

Cor. 2.—1If the line CD be produced through O, and
if we take in the line produced, OF’ = »CD, we shall
get the locus of P when m times A ABP - n times
CDP is given.

Cor, 3 —If three lmes, or in general any number of
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lines, be given in magnitude and position, and if m, »,
P, ¢, &c., be any system of multiples, all positive, or
some positive and some negative, and if the area of
m times A ABP + » times CDP + p times GHP + &c.,
be given, the locus of P is a right line.

Cor. 4.—If ABCD be a quadrilateral, and if P be a
point, so that the sum of the areas of the As ABP,
CDP is half the area of the quadrilateral, the locus
of P is a right line passing through the middle points
of the three diagonals of the quadrilateral.

Prop. 9.— 70 divide a given line AB into two parts,
the dufference of whose squares shall be equal to the square
of @ given line CD. E D

Con.—Draw BE at ]
right angles to AB,
and make it = CD;
join AE, and make
the £ AEF = EAB;
then F is the point 1
required. A ¥ B C

Dem.—Because the Z AEF = EAF, the side AF
=FE; .. AF?*=FF’=FB* + BE?; ... AF?- FB*=BE?;
but BE? = CD?; .. AF?> - FB? = CD?

If CD be greater than AB, BE will be greater than AB, and
the £ EAB will be greater than the £ AEB; hence the line EF,
which makes with AE the £ AEF = £ EAB, will fall at the

other side of EB, and the point F will be in the line A B produced.
The point F is in this case a point of external division.

Prop. 10.— Gwen the base of a triangle tn magnitude
and position, and given also the difference of the squares of
its sides, to find the locus of its vertex.

Let ABC be the A whose base AB is given ; let fall
the L CP on AB; then

AC? = AP* + CP?; (xlvii.)
BC? = BP* + CP?;
therefore AC? - BC* = AP? - BP?;
but AC? — BC? is given; ... AP?—- BP%1s given. Hence
AB is divided in P into two parts, the difference of
whose squares is given ; .. P is a given point (9), and
the line CP is given in position ; and since the point C
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must be always on the line CP, the locus of C is a right
line L to the base.

Cor.—The three Ls of a A are concurrent. Let
the Ls from A and B on the opposite sides be AD and
BE, and let O be the point of intersection of these Ls.
Now, AC? - AB* = 0C* - 0B?; (10)
and AB? - BC* = 0A%- 0C?;
therefore = AC* - BC?* = OA%- OB
Hence the line CO produced will be L to AB.

Prop. 11.—If perpendiculars AE, BF be drawn from
the extremities A, B of the base of a triangle on the in-
ternal bisector of the vertical angle, the line joiming the
meddle point G of the base
to the foot of exther perpen-
decular vs equal to half the
difference of the sides AC,
BC.

Dem.—Produce BF to
D; then in the As BCF, G

DCF there are evidently A / B
two Zs and a side of one |
= respectively to two Zs E

and a side of the other;
. CD=CBand FD=FB;
hence AD isthe difference H
of the sides AC, BC; and, since F and G are the
middle points of the sides BD, BA; ... FG =4 AD
=% (AC - BC). In like manner EG = (AC - BC).

Cor. 1.—By a similar method it may be proved that
lines drawn from the middle point of the base to the feet
of 1 sfrom the extremities of the base on the bisector of
the external vertical angle are each = half sum of AC
and BC.

Cor.2.—The £ ABDis=}difference of the base angles.

Cor. 3.—CBD is = half sum of the base angles.

Cor. 4.—The angle between CF and the L from C
on AB = 1 difference of the base angles.

Cor. 5,—AID = difference of the base angles.

Cor. 6.—Given the base and the difference of the
sides of 4 A, the locus of the feet of the Ls from the
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extremities of the base on the bisector of the internal
vertical Zis a circle, whose centre is the middle point of
the base, and whose radius = half difference of the sides.

Cor. 7.—Given the base of a A and the sum of the
sides, the locus of the feet of the L s from the extremi-
ties of the base on the bisector of the external vertical
Z is a circle, whose centre is the middle point of the
base, and whose radius = half sum of the sides.

Prop. 12.—The three perpendiculars to the sides of a
iriangle at thewr middle points are concurrent.

Dem.—Let the middle points be D, E, F. Draw
FG, EG L to AB, AC,
and let these L s meet
in G; join GD: the
prop. will be proved
by showing that GD
1s L to BC. Join AG,
B@&, CG. Now, in the
As AFG and BFG,
since AF=FB, andFG
common, and the Z gy —3
AFG = BFG, AG is
=GB (iv.). In like manner AG=GC ; hence BG = GC.
And since the As BDG, CDG have the side BD = DC
and DG common, and the base BG = GC, the Z BDG
= CDG (viii.); .*. GD is L to BC.

Cor. 1.—If the bisectors of the sides of the A meet
in H, and GHbe joined
and produced to meet
any of the three Ls
from the Zs on the
opposite sides ; for in-
stance, the L from A
to BC, in the point I,
suppose; then GH=4%
HI. For DH=%HA
(Cor., Prop. 4). B b

Cor. 2—Hence the Ls of the A pass through the
point I. This is another proof that the Ls of a A are
concurrent.

Cc
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Cor. 3.—The lines GD, GE, GF are respectively
=3 1A, 1B, 1 IC.

Cor. 4.—The point of concurrence of Ls from the
Zs on the opposite sides, the point of concurrence of
bisectors of sides, and the point of concurrence of Ls
at middle points of sides of a A, are collinear.

Prop. 13.—If two triangles ABC, ABD, be on the
same base AB and be-
tween the same paral-
lels, and if a parallel
to AB intersect the °
lines AC, BC, mn E
and ¥, and the lines
AD, BD, n G and
H, EF s = GH.

Dem.—If not, let GH be greater than EF, and cut
off GK =EF. Join AK, KB, KD, AF; then (xxxviii.)
A AGK = AEF, and DGK = CEF, and (xxxvii.) ABK
=ABF; ... the quadrilateral ABKD = A ABC; but A
ABC = ABD; .-. the quadrilateral ABKD = A ABD,
which is impossible. Hence EF = GH.

Cor. 1.—1f instead of two As on the same base and
between the same | s, we have two As on equal bases
and between the same ||s, the intercepts made by the
sides of the As on a | to the line joining the vertices
are equal.

Cor. 2.—The line drawn from the vertex of a A to
the middle point of the base bisects any line parallel to
the base, and terminated by the sides of the triangle.

Prop. 14.— 70 wnscribe a square in a triangle.

C

-~
-
so N

N

I A J D 1 KJ B E
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Con.—X.et ABC be the A : let fall the A CD; cut off
BE =AD; join EC; bisect the Z EDC by the line DF,
meeting EC in F; through F draw a || to AB, cutting
the sides BC, AC in the points G, H; from G, H let fall
the Ls GI, HJ : the figure GIJH is a square.

Dem.—~Since the Z EDC is bisected by DF, and the
Zs K and L right angles, and DF common, FK = FL
(xxvi.); but FL =GH (Prop. 13, Cor. 1), and FK = GI
(xxxiv.); .. GI = GH, and the figure IGHJ is a square,
and it is inscribed in the triangle.

Cor.—1f we bisect the £ ADC by the line DF/,
meeting EC produced in F’/, and through F’ draw a
line | to AB meeting BC, and AC produced in G', H/,
and from G’, H’ let fall As G'I’, H'J' on AB, we shall
have an escribed square.

Prop. 15.— 7o divide a given line AB into any number
of equal parts.

Con.—Draw through A any line AF, making an Z
with AB; in AF take any point C, and cut off CD, DE,
EF, &c., each = AC, ‘F
until we have as many
equal parts as the E
number into which we
want to divide AB—
say, for instance, four C K L
equal parts. Join BF; |
atd draw 0G, DI EL AN
each || to BF; then AB 4 @ H I B
is divided into four equal parts.

Dem.—Since ADH is a A, and AD is blsected in C,
and CG is | to DH; then (2) AH is bisected in G
-. AG = GH. Again, through C draw a line || to AB,
cutting DH and EI in K and L; then, since CD = DE,
we have (2) CK = KL; but CK = GH, and KL = HI;
. GH = HI. In like manner, HI = IB. Hence the
parts into which AB is divided are all equal.

This Proposition may be enunciated as a theorem as follows :—

If one side of a A be divided into any number of equal parts, and

through the points of division lines be drawn || to the base, these || s
will divide the second side into the same number of equal parts,




12 A SEQUEL TO EUCLID.

Prop. 16.—If a line AB be diwvided vnto (m + n) equal
parts, and suppose AC contains m of these parts, and CB con-
tains n of them. Then,if 4
from the points A, C, B
perpendiculars AD, CF, C
BE be let fall on any
line, then mBE + nAD g G B
= (m + n) CF.

Dem. — Draw BH
| to ED, and through
the points of division of
ABimaginelines drawn
| to BH ; these lines will divide AH into m + n equal
parts, and CG into # equal parts; .*. # times AH=(m +#»)
times CG ; and since DH and BE are each =GF, we have
n times HD + m times BE = (m + ») times GF. Hence, by
addition, » times AD + m times BE = (m +») times CF.

Der.—The centre of mean position of any number of
points A, B, C, D, &c., is a point which may be found
“as follows :—Busect the line joining any two points AB
n G, goin & to a third pownt C, and divide GC in H,
so that GH = % GC; join H to a fourth pont D, and
divide HD wn K, so that HIC = 2HD, and so on : the last
pownt found will be the centre of mean position of the
system of points.

Prop. 17.—1If there be any system of points A, B, C, D,
whose number vs n, and of perpendiculars be let fall from
these points on any line L, the sum of the perpendiculars
Sfrom all the points on L vs equaln times the perpendicular
Jfrom the centre of mean position.

Dem.—Let the Ls be denoted by AL, BL, CL, &ec.
Then, since AB is bisected in G, we have (16)

AL + BL = 2GL;

and since GC is divided into (1 +2) equal parts in H, so
that HG contains one part and HC two parts; then
2GL + CL = 8HL;

.. AL + BL + CL = 8HL, &c., &c.
Hence the Proposition is proved,

D iy ® 1
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Cor.—If from any number of points Ls be let fall on
any line passing through their mean centre, the sum of
the Lsis zero. Hence some of the Ls must be nega-
tive, and we have the sum of the Ls on the positive
side equal to the sum of those on the negative side.

Prop. 18.— We may extend the foregoing Definition as
Jollows :— Let there be any system of pownts A, B, C, D, &¢.,
and a corresponding system of multiples a, b, ¢, d, &ec.,
connected with them ; then divide the line joining the points
AB wnto (a + b) equal parts, and let AG contain b of these
parts, and GB contain a parts. Again, join & to a third
point G, and dinde GC into (a + b + ¢) equal parts, and let
GH contain ¢ of these parts, and HC the remaining parts,
and so on; then the point last found will be the mean
centre for the system of multiples a, b, ¢, d, &c.

From this Definition we may prove exactly the same
as in Prop. 17, that if AL, BL, CL, &c., be the Ls
{rom the points A, B, C, &c., on any line L, then

a  AL+b.BL+¢.CL+d.DL + &ec.

=(a+ b+ c+d+ &c.) times the L from the centre of
mean position on the line L.

Der.—If a geometrical magnitude varies vts position
continuously according to any law, and if ot retains the
same value throughout, vt is sad to be a constant ; but of
1t goes on wncreasing jfor some time, and then begins to
decrease, vt 1s sard to be @ maximum at the end of the
increase : again, if it decreases for some tvme, and then
begins to increase, it is a minimum when 1t commences to
wmcerease.

From these Definitions it will be seen that a maxi-
mum value is greater than the ones which immediately
precede and follow; and that a minimum is less than
the value of that which immediately precedes, and less
than that which immediately follows. We give here a
few simple but important Propositions bearing on this
part of Geometry.
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Prop. 19.—Through a given point P to draw a line
which shall form, with two giwen lines CA, CB, a triangle
of minimum area. C

Con.—ThroughPdraw
PD || to CB; cut off AD
=CD; join AP, and pro-
duce to B. Then AB is
the line required. b B

Dem.—Let RQ be any A \
other line through P; R
draw AM | to CB. Now, because AD = DC, we
have AP = PB; and the As APM and QPB have the
£s APM, AMP respectively equal to BPQ, BQP, and
the sides AP and PB equal to one another; .-. the
triangles are equal ; hence the A APR is greater than
BPQ: to each add the quadrilateral CAPQ, and we get
the & CQR greater than ABC.

Cor. 1.—The line through the point P which cuts
off the minimum triangle is bisected in that point.

Cor. 2.—If through the mid- a
dle point P, and through any
other point D of the side AB of
the & ABC we draw lines || to \

the remaining sides, so as to \E",'“"“‘";

form two inscribed —s CP, CD, Do

then CP is greater than CD. \
Dem.—Through D draw PN

QR, so as to be bisected in D ; °© B Q

then the & ABC is greater than CQR ; but the s
are halves of the As; hence CP is greater than CD.

A very simple proof of this Cor. can also be given by
means of (xliii.)

Prop. 20.— When two sides of a triangle are given in
magnitude, the area is @ maximum when they contain a
right angle.

" Dem.—Let BAC be a A having the Z A right;
with A as centre and AC as radius, describe a © ;
take any other point D in the circumference; it is
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evident the Prop. will be proved by showing that the
A BACis greater than BAD. c
Let fall the L. DE; then
(xix.) AD is greater than D
DE; ... AC is greater than
DE; and since the base AB
is common, the A ABC is
greater than ABD. A 7 B
Cor.—1f the diagonals of /
a quadrilateral be given in
magnitude, the area is a maximum when they are at
right angles to each other.

Prop. 21.— Given two points, A, B: 4t ©s required to
find a pornt P 1n a giwen line L, so that AP + PB may be
a MINLINUIMN.

Con.—From B let fall the L BC on L; produce
BC to D, and make CD = CB; join AD, cuttmg L in
P; then P is the point D

required.
Dem.—Join PB, and |
take any other point Q P C L

in L; join AQ, QB, QD.
N ow, since BC=CD and
CP common, and the Zs
at C right Z.s we have B
BP=PD. Inlikemanner
BQ=QD; totheseequals 4
add respectlvely AP and AQ, and we have AD = AP
+ PB, and AQ + QD =AQ + QB; but AQ + QD is
greater than AD; ... AQ +QBis greater than AP+ PB.

Cor. 1.—The lines AP, PB, whose sum is a mini-
mum, make equal angies with the line L.

Cor. 2.—The perimeter of a variable A, inscribed in
a fixed A, 1s a minimum when the sides of the former
make equal Zswith the sides of the latter. For, sup-
pose one side of the inscribed A to remain fixed while
the two remaining sides vary, the sum of the varying
sides will be a minimum when they make equal Zs
with the side of the fixed triangle.
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Cor. 3.—Of all polygons whose vertices lie on fixed
lines, that of minimum perimeter is the one whose
several angles are bisected externally by the lines on
which they move.

Prop. 82.— Of all triangles having the same base and
area, the perimeter of an isosceles triangle vs a minvmum.

Dem.—~Since the As are all equal in area, the vertices
must lie on a line || to the base, and the sides of an
isosceles A will evidently make equal Zs with this
parallel ; hence their sum is a minimum.

Cor.—Of all polygons having the same number of
sides and equal areas, the perimeter of an equilateral
polygon is a minimum.

Prop. 238.—4 large number of deducibles may be given
in connexion with Euclid, fig., Prop. xlvil.  We insert a

few here, confining ourselves to those that may be proved
by the Iirst Book.

1). The transverse lines AE, BK are L to each
other. For, in the As ACE, BCK, which are in every
respect equal, the Z EAC e’
= BKC, and the Z AQO
=‘KQC s hence the angle
AOQ =KCQ,andis ... a F
right angle.

(2). A KCE=DBF.

Dem.— Produce KC,
and let fall the 1 EN.
Now, the Z ACN =BCE,
each being a right angle;
.*. the ZACB=ECN, and
£LBAC=ENC,eachbeing
a right angle, and side
BC = CE; hence (xxvi.) D L B
EN=ABandCN=AC; but AC=CK; ... CN=CK, and
the A ENC= ECK (xxxviil.) ; butthe A ENC=ABC;
hence the A ECK = ABC. In like manner, the
L DBF = ABC; ... the A ECK = DBF.

(3). EK® + FD? = 5BC-.

Dem.—EK? = EN? + NK? (x1vii.) ;

N<
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but EN = AB, and NK = 2AC;
therefore EK? = AB? + 4ACA
In like manner
FD? = 4AB? + AC#;
therefore =~ EK? + FD?=5(AB? + AC?) = 5BC?,

(4). The intercepts AQ, AR are equal.
(5). The lines CF, BK, AL are concurrent.

SECTION II,

ExERCISES.

1. The line which bisects the vertical Z of an isosceles Abisects
the base perpendicularly.

2. The diagonals of a quadrilateral whose four sides are equal
bisect each other perpendicularly.

3. If the line which bisects the vertical £ of a A also bisects the
base, the A is isosceles.

4. From a given point in one of the sides of a A draw a right
line bisecting the area of the A.

5. The sum of the 1 sfrom any point in the base of an isosceles
A on the equal sides is = to the L from one of the base angles on
the opposite side.

6. If the point be taken in the base produced, prove that the
difference of the Ls on the equal sides is = to the 1 from one of
the base angles on the opposite side; and show that, having
regard to the convention respecting the signs plus and minus, this
theorem is a case of the last.

7. If the base BC of a A be produced to D, the Z between the
bisectors of the £s ABC, ACD = half £ BAC.

8. The bisectors of the three internal angles of a A are con-
current.

9. Any two external bisectors and the third internal bisector of
the angles of a A are concurrent.

10. The quadrilaterals formed either by the four external or the
four internal bisectors of the angles of any quadrilateral have their
opposite £s = two right £s.

c
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11. Draw a right line || to the base of a A, so that

(1). Sum of lower segments of sides shall be = to a given line.
(2). Their difference shall be = to a given line.
(3). The || shall be = sum of lower segments.

(4). The || shall be = difference of lower segments.

12. If two lines be respectively L to two others, the Z between
the former is = to the £ between the latter.

13. If two lines be respectively || to two others, the Z between
the former is = to the £ between the latter.

14. The A formed by the three bisectors of the external angles
of a A is such that the lines joining its vertices to the Zs of the
original A will be its Ls.

15. From two points on opposite sides of a given line it is
required to draw two lines to a point in the line, so that their
difference will be a maximum.

16. State the converse of Prop. xvii,
17. Give a direct proof of Prop. xix.

18. Given the lengths of the bisectors of the three sides of a A:
construct it.

19. If from any point 1s be drawn to the three sides of a A,
prove that the sum of the squares of three alternate segments of
the sides = the sum of squares of the three remaining segments.

20. Prove the following theorem, and infer from it Prop.xlvii. :
If CQ, CP be s described on the sides CA, CB of a A, and if
the sides | to CA, CB be produced to meet in R, and RC joined,
a [ described on AB with sides = and || to RC shall be = to the
sum of the s CQ, CP.

21. If a square be inscribed in a A, the rectangle under its side
and the sum of base and altitude = twice the area of the A.

22. If a square be escribed to a A, the rectangle under its
side and the difference of the base and altitude = twice the area
of the A.

23. Given the difference between the diagonal and side of a
square : construct it.

24. The sum of the squares of lines joining any point in the
plane of a rectangle to one pair of opposite angular points = sum
of the squares of the lines drawn to the two remaining angular
points.

25. If two lines be given in position, the locus of a point equi-
distant from them is a right line.

26. Inthe same case the locus of a point, the sum or the differ-
ence of whose distances from there is given, is a right line.
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27. Given the sum of the perimeter and altitude of an equi-
lateral A: construct it.

28. Given the sum of the diagonal and two sides of a square:
construct it.

29. From the extremities of the base £s of an isosceles A
right lines are drawn L to the sides, prove that the base £s of the
A are each = half the Z between the Ls.

30. The line joining the middle point of the hypotenuse of a
right-angled triangle to the right angle is = half the hypotenuse.

31l. The lines joining the feet of the Ls of a A form an in-
scribed A whose perimeter is a minimum,

32. If from the extremities A, B of the base of a A ABC Ls
AD, BE be drawn to the opposite sides, prove that

AB2=AC. AE + BC. BD.

33. If A, B, C, D, &c., be any number () of points on a line,
and O their centre of mean position ; then, if P be any other point
on the line,

AP + BP + CP + DP + &e. = #0P.

34. If O, O be the centres of mean position for two systems ot
collinear points, A, B, C, D, &c., A,” B, C,’ D,” &c., each system
having the same number (#) of points ; then

700’ = AA’ 4+ BB’ 4+ CC’ 4+ DD’ + &e.

35. If G be the point of intersection of the bisectors of the
Ls A, B of a A, right-angled at C, and GD a 1 on AB; then,
the rectangle AD . DB = area of the A.

36, The sides AB, AC of a A are bisected in D, E; CD, BE
intersect in F': prove A BFC = quadrilateral ADFE.

37. If lines be drawn from a fixed point to all the points of the
circumference of a given ©, the locus of all their points of bisec-
tion is a ©.

38. Show by drawing || lines how to construct a A = to any
given rectilineal figure.

39. ABCD is a (3: show that if B be joined to the middle
point of CD, and D to the middle point of AB, the joining lines
will trisect AC.

40, The equilateral A described on the hypotenuse of a right-
angled A =sum of equilateral As described on the sides.

41. If squares be described on the sides of any A, and the
adjacent corners joined, the three As thus formed are equal.

c 2
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42. If AB, CD be opposite sides of a CJ, P any point in its
plane; then A PBC = sum or difference of the As CDP, ACP,
according as P is outside or between the lines AC and BD.

43. If equilateral As be described on the sides of a right-angled
A whose hypotenuse is given in magnitude and position, the locus
of the middle point of the line joining their vertices is a ©.

44, IfCDbea A on the base AB of a right-angled A ABC, and
if E, F be the centres of the Os inscribed in the As ACD, BCD
and if EG, FH be lines through E and F || to CD, meetmg AC
BC in G, H then CG = CH.

45. If A, B, C, D, &ec., be any system of collinear points, O
their mean centre for the system of multiples a, 3, ¢, d, &c.; then,
if P be any other point in the line,

(@+b+c+d+&e) OP=a.AP+5.BP+ec. CP+d. DP + &e.

46. If O, O" be the mean centres of the two systems of points
A B,C,D, &, A, B, ¢’y D', &c., on the same line L, for a
¢common system ‘of mult1p1es a, b , dy &c.; then

(@+b+e+d+ &) 00’ =a.AA'+5.BB +¢.CC'+4d.00" + &e.
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SECTION 1.
Apprrronat ProrosiTrons.

Prop. 1.—If ABC be an isosceles triangle, whose equal
sides are AC, BC ; and if CD be a line drawn from C to any
pomt D in the base AB ;
then AD . DB=BC*~CDx 0

Dem.—Let fall the L
CE ; then AB is bisected
in E and divided un- B D

equally in D ; A B
therefore AD.DB + ED? = EB?;
adding to each side EC%; '
therefore AD .DB + CD?=BC?*; (I. xlvii,
therefore AD . DB = BC* - CD>

Cor.—If the point be in the base produced, we shall
have AD . BD = CD? - CB% If we consider that DB
changes its sign when D passes through B, we see
that this case is included in the last.

"Prop. 2.—If ABC e any triangle, D the middle point
of AB, then AC* + BC?* = 2AD? + 2DC-

C




22 A SEQUEL TO EUCLID.

Dem.—Let fall the L EC.
AC*= AD*+DC*+ 2AD .DE;  (xii.)
B(C?* = BD?> + DC?> - 2DB . DE. (xiii.)
Hence, by addition, since AD = DB,
AC? + BC? = 2AD? + 2DCA

This is a simple case of a very general Prop., which we shall
prove, on the properties of the centre of mean position for any
system of points and any system of multiples. The Props. ix.
and x. of the Second Book are particular cases of this Prop., viz.,
when the point C is in the line AB or the line AB produced.

Cor.—If the base of a A be given, both in magnitude
and position, and the sum of the squares of the sides
in magnitude, the locus of the vertex is a ©.

Prop. 3.—The sum of the squares of the diagonals of a
parallelogram vs equal to the B
sum of the squares of its four
sides.

Dem.—Let ABCD bethe
2. Draw CE || to BD; A D
produce AD to meet CE.

Now, AD = BC (xxxiv.), and DE=BC; ... AD=DE;
hence (2) AC? + CE? = 2AD? + 2DC?; but CE? = BD2

.. AC* £ BD? = 2AD? + 2DC? = sum of squares of the
four sides of the parallelogram.

Prop. 4.—The sum of the B
squares of the four sides of a
quadrilateral vs equal tothe sum
of the squares of its diagonals
plus four times the square of the a
line joining the middle points
of the diagonals. 'D

Dem.—Let ABCD be the
quadrilateral, E, F the middle points of the diagonals.

Now, in the A ABD, AB*+ AD*=2AF?+2FB%,  (2)
and in the A BCD, BC? + CD?* = 2CF? + 2FB*; (2)
therefore AB*+BC?+CD? +DA%*=2(AF* + CF?) + 4FB?

= 4AE?+ 4EF? +4FDB*= AC* +BD? + 4ETF*,

C

E
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Prop. 5.—Three times the sum of the squares of the
stdes of a triangle vs equal to four times the sum of the
squares of the lines bisecting the sides of the triangle.

Dem.—Let D, E, F be the middle points of the sides.

Then AB?+ AC?=2BD?*+ 2DA?%; (2)
therefore = 2AB?+2AC* =4BD?+ 4DA2

that is 2AB* + 2AC? = BC? + 4DA2

Similarly 2BC?+2BA% = CA? 4+ 4EB?;

and 9CA? 4 2CB? = AB? 4 4FC2.

Hence 3(AB? + BC? + CA?) = 4(AD?*+ BE? + CF?).

Cor. If G be the point of intersection of the bisec-
tors of the sides, SAG =2AD ; hence 9AG*=4AD?;

. 3(AB* +BC*+ CA?) = 9(AG* + BG*+ CG?);
(AB®+BC* + CA?) = 3(AG*+ BG* + CG?).

Prop. 6.—The rectangle contained by the sum and
difference of two sides of a triangle s equal to twice the
rectangle contained by the base, and the tntercept between
the middle point of the base and the foot of the perpends-
cular from the vertical angle on the base (see Fig., Prop. 2).

Let CE be the L and D the middle point of the
base AB.

Then AC?* = AE? + EC?,
and BC? = BE? + EC2
therefore, AC?>*-BC? = AE?* - EB?;
or (AC+BC)(AC- BC)=(AE + EB)(AE - EB).

Now, AE +EB =AB, and AE-EB=2ED;
therefore (AC+BC)(AC-BC)=2AB. ED.

Prop. 7.—If A, B, C, D be four points taken in order on
@ right line, then AB.CD B C D
+BC.AD=AC.BD. ’ ’ ‘ Y

Dem.—Let AB=a, BC=25, CD =¢; then AB.CD
+BC.AD=ac+ b(a+b+¢)=(a+b)(b+¢)=AC . BD.

This theorem, which is due to Euler, is one of the
most important in Elementary Geometry. It may be
written in a more symmetrical form by making use
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of the convention regarding plus and minus : thus, since
+ AC = - CA, we get

AB.CD + BC.AD =-CA.BD,
or
AB.CD + BC.AD + CA.BD =0.

Prop. 8.—1If perpendiculars be drawn from the angular
pomnts of a square to any line, the sum of the squares of

the perpendiculars from one pair of c

opposite angles exceeds twice the

rectangle of the perpendiculars from B

the other pair of opposite angles by 0

the area of the square. 2 D
Dem. — Let ABCD be the c

square, L the line; let fall the &l -A F

ls AM, BN, CP, DQ, on L: @

through A draw EF | to L. Now, 3 q

since the Z BAD is right, the sum

of the £Zs BAE, DAF = one right £, and .:. =to the

sum of the Zs BAE, ABE; .. Z ABE = DAF, and

LE=F,and AB=AD; .. AE = DF.

Again, put AM =a, BE =58, DF =¢. The four s
can be expressed in terms of @, b, ¢. For BN =a + b,
DQ =a + ¢; and since O is the middle point both of
AC and BD, we have BN + DQ =AM + CP, each being
= twice the Lfrom O. Hence (¢+d) + (a + ¢)=a+CP;
therefore CP=(a+0+ec).

Now, BN*+DQ*-2AM.CP=(a+b8)?+(a+c)*
—2a(a+b+¢)=0+ & =BE*+ DI%,
=BE?*+ EA? = BA? = area of square.

Prop. 9.—If the base AB
of a triangle be dwided in D,
so that m AD = n DB ; then
mAC? + nBC? = mAD?+ nBD?

+ (m + n) CDA
Dem.—Let fall the L CE;
A D E B
then

mAC? = m(AD? + DC?* + 2AD . DE); (xii.)
nBC? = n (BD* + DC* - 2DB . DE). (xiii.)
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Now, since mAD =»DB, we have
m(2AD .DE) = »(2DB . DE).
Hence, by addition, the rectangles disappear, and we get
mAC? + nBC? = mAD? + nBD? + (m + »n) CDA,
Cor.—1If the point D be in the line AB produced,
and if mAD = #»BD, we shall have

mAC? - nBC? = mAD? — nDB? + (m — n)CD~.

This case is included in the last, if we consider that
DB changes sign when the point D passes through B.

Prop. 10.—If A, B, C, D, &c., be any system of n
points, O their centre of mean position, P any other
point, the sum of the squares of the distances of the points
A, B, C, D, &c., from P exceeds the sum of the squares
of their distances from O by nOP?,

Dem.—For the sake of simplicity, let us take four
points, A, B, C, D. The method of proof is perfectly
general, and can be extended to any number of points.
Let M be the middle point of AB ; join MC, and divide
it in NC, so that MN
=4 NC; join ND, and
divide in O, so that NO
=31 0D ; then O is the
centre of mean position
of the four points A, B,
C, D.

Now, applying the
theorem of the last
article to the several
As APB, MPC, NPD, we have

AP? + BP?* = AM? + MB?+ 2MP?;
2MP? + CP? = 2MN? + NC? + 3NP?;
3NP? + DP? = 3NO? + OD? + 40P2,
Hence, by addition, and omitting terms that cancel on
both sides, we get
AP? + BP? + CP? + DP* = AM? + MB?
+ 2MN? + NC* + 3NO? + OD? + 40F2,
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Now, if the point P coincide with O, OP vanishes, and
we have
AO? + BO? + CO* + DO? = AM? + MB?
+ 2MN? + NC* + 3NO? + OD?;
therefore, AP?+ BP? 4+ CP? + DP?
exceeds  AO? + BO?® + CO* + DO? by 40P%.

Cor.—1f O be the point of intersection of bisectors
of the sides of a A, and P any other point; then

AP? + BP?2 + CP? = AO?% + BO? + CO®? + 30P?:

for the point of intersection of the bisectors of the sides
is the centre of mean position.

Prop. 11.—T%e last Proposition may be generalized
thus: if A, B, C, D, &c., be any system of points, O their
centre of mean position for any system of multiples a, b,
¢, d, &c., then

a . AP?+56.BP?*+¢.CP* + d. DP? &ec.,
exceeds @.AO*+b.B0O?+¢.CO* +d.DO0% &c.,
by (¢ +b+c+d, &e.) OP2

The foregoing proof may evidently be applied to this
Proposition. The following is another proof from
Townsend’s Modern Geometry :—

From the points A, B, C, D, &c., let fall 1s AA/,
BB, CC’, DD, &c., on the line OP ; then it is easy to
see that O is the centre of mean position for the points
A’', B, C', D', and the system of multiples g, 4, ¢, &, &ec.

Now we have by Props. xii., xiii., Book 11.,

AP?= A0+ OP? + 2A'0 . OP;
BP? = BO? + OP* 4 2B'O . OP
CP?* = CO* + OP? + 200 . OP;
DP?=DO0O? + OP? + 2D'O . OP, & ; ;

therefore, multiplying by @, b, ¢, d, and adding, and
remembering that

6. A'0 +5.B'0 +¢.C0 + d. DO + &c. = 0 (see I, 18),
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we get

@.AP?+5.BP? + ¢.CP? + 4. DP?, &e.,
=a.A0%+ 5.BO*+¢.CO* + d.D0O? + &c.,
+(@+b+c+d, &c.)OP2

This Proposition evidently includes the last.

Cor.1.—The locus of a point, the sum of the squares
of whose distances from any number of given points,
multiplied respectively by any system of constants
a, b, ¢, d, is a circle, whose centre is the centre of
mean pos1t10n of the given points for the system of
multiples a, b, ¢, d.

Cor. 2.—The sum of the squares for any system of
multiples will be a minimum when the lines are drawn
to the centre of mean position.

Prop. 12.—From the Propositions vi. and ix. ¢¢ follows
that, of a line is divided into any two parts, the rectangle
of the parts is a maximum, and the sum of thevr squares
18 a menvmum, when the parts are equal.

Cor.—If a line be divided into any number of parts,
the continued product of all the parts is a maximum,
and the sum of their squares is a minimum when they
are all equal. For if we make any two of the parts
unequal, we diminish the continued product, and we
increase the sum of the squares.

SECTION II.

ExERrcrses,

1. The second and third Propositions of the Second Book are
gpecial cases of the First.

2. Prove the fourth Proposition by the second and third.
3. Prove the sixth by the fifth, and the tenth by the ninth.
4, If the £ Cof a A ACB be % of two right £, prove
AB*=AC? + CB>- AC . CB.
5. If C be % of two right Zs, prove
AB*=AC” + CB* 4+ AC. CB,
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6. Ina quadiilateral the sum of the squares of two opposite
sides, together with the sum of the squares of the diagonals, is equal
to the sum of the squares of the two remaining sides, together with
four times the square of the line joining their middle points.

7. Divide a given line AB in C, so that the rectangle under BC
and a given line may be equal to the square of AC.

8. Being given the rectangle contained by two lines, and the
difference of their squares: construct them.

9. Produce a given line AB to C, so that AC. CB is equal to the
square of another given line,

10. If a line AB be divided in C, so that AB . BC = AC?, prove
AB? + BC? = 3AC?, and (AB + BC)? = 5ACz.

11. In the fig. of Prop. xi. prove that—

1). The lines GB, DF, AK, are parallel.
he square of the diameter of the © about the A FHK

I
CH=
2 R

he square of the diameter of the © about the A FHD

he square of the diameter of the © about the A AHD

.NH L4

(6). If the lines EB, CH intersect in J, AJ is 1 to CH.

12. If ABC be an isosceles A, and DE be || to the base BC,
and BE joined, BE? — CE* = BC . DE.

13. If squares be described on the three sides of any A, and
the adjacent angular points of the squares joined, the sum of the
squares of the three joining lines is equal to three times the sum
of the squares of the sides of the triangle.

14. Given the base AB of a A, both in position and magmtude,
and mAC? — nBC?: find the locus of C.

156, If from a fixed point P two lines PA, PB, at right angles
to each other, cut a given © in the points A, B, the locus of the
middle point of AB isa ©.

16. If CD be any line | to the diameter A B of a semicircle, and
if P be any point in AB, then

CP? + PD2= AP? + PB2,

17. If O be the mean centre of a system of pomts A, B, C, D,
&c., for a system of multiples a, 9, ¢, d, &c. ; then, if L and M
be any {wo | lines,

S(@. ALY -3 (2. AM?) = 3 (4) . (OLe = OM2).
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SECTION 1.
AppiTioNAn ProPosiTIONS.

Prop. 1.—The two tangents drawn to a cirele from any
external point are equal. P

Dem.—Let PA, PB be the tan-
gents, O the centre of the ©®. Join
OA, OP, OB ; then A

OP? = OA? + AP?,
OP? = OB + BP;

but OA? = OB?; .-. AP? = BP?, and
AP = BP.

Prop. 2.—If two circles touch at a point P, and from
P any two lines PAB, PCD be
drawn, cutting the circles in E
the points A, B, C, D, the lines
AC, BD joining the points of
section are parallel.

Dem.—At P draw the
common tangent PE to both

P

Os; then B
£LEPA=PCA; (xxxii)
Z EPB =PDB.

Hence £ PCA=PDB, and ACis | to BD. (I. xxmg
Cor.—If the angle APC be a right angle, AC an
BD will be diameters of the ®s, and then we have the
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following ¢mportant theorem. The lines drawn from
the point of contact of two touching circles to the ex-
tremities of any diameter of one of them, will meet
the other in points which will be the extremities of a
parallel diameter.

Prop. 3.——If two circles touch at P, and any line PAB
cut both circles in A and B, the tangents at A and B are
purallel.

Dem.——Let the tangents at A and B meet the tan-

gents at P in the points E and F.
Now, since AE =EP (1), the £ APE=PAE. In

like manner, the £ BPF = PBF; .. £ PAE = PBF,
This Prop. may be inferred from (2), by supposing
the lines PAB, PCD to approach each other indefinitely ;
Prop. 4.—1If two circles touch each other at any point
P, and any line cut the circles in
wngle APB = CPD.
Dem.—Draw a tangent PE
= CPD.
Prop. 5.—If a circle touch a semicircle wn D and s
. . E
pendicular to the diameter at P D~
the square on PE ¢s equal to /\
twice the rectangle contained | \
Dem.—Completethecircle, A =) B
and produce EP to meet it
centres ; then the line CF will
pass through D. Let it meet

and AR is | to BF.

then AC and BD will be tangents.

the points A, B, C, D; then the E 3

o i[.t}g]?B =PCB; (xxxii.) AMD
Z EPA = PDA.

Hence, by subtraction, Z APB

diameter wn P, and PE be per-

by the radve of the circles.

again in G. LetC and F be the

the outside circle again in H.
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Now, EF .FG = DF . FH (xxxv.), and PF? = DF2
Hence, by addition, making use of II. v., and II. iii.,
EP? = DF . DH = twice rectangle contained by the
radii.

Prop. 6.—If a circle PGD touch a circle ABC in D
and a chord AB in P, and if C
EF be perpendicular to AB
at 1ts maddle point, and at G
the side opposite to that of p
the circle PGD, the rectangle
contarned by EF and the dia-
meter of thecircle PGDisequal A /B
to the rectangle AP . PB. P

Dem.—Let PG be at
right Zs to AB, then PG
is the diameter of the © H\F
PGD. Join DG, DP, and
produce them to meet the © ABC in C and F; then CF is
the diameter of the ® ABC, and is || to PG (2); ... CF
is L to AB; hence it bisects AB in E (iii.). Through
F draw FH || to AB, and produce GP to meet it in H.

Now,.since the Zs H and D are right Zs, a semicircle
described on GF will passthrough the points D and H.

Hence HP.PG=FP.PD=AP. PB; (xxXV.)
but HP =EF; ... EF. PG = AP . PB.

This Prop. and its Demonstration will hold true when
the Os are external to each other.

Cor. If AB be the diameter of the ® ABC, this
Prop. reduces to the last.

Prop. 7.— 7o draw a common tangent to two ctrcles.

Let Pbethecentre
of the greater ©, Q
the centre of the less,
with P as centre, and
a radius = to the dif-
ference of the radii
of the two ©s: de-
scribe the © IGH;
from Q draw a tangent to this ©, touching it at H.

=
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Join PH, and produce it to meet the circumference of
the larger © in E. Draw QF || to PE. Join EF,
which will be the common tangent required.

Dem.—The lines HE and QF are, from the construc-
tion, equal ; and since they are ||, the fig. HEFQ is a c=;
.».the Z PEF = PHQ =right angle; .-. EF is a tangent
at E; and since Z EFQ = EHQ = right angle, EF is a
tangent at F. The tangent EF is called a direct com-
mon tangent.

If with P as centre, and a radius equal to the sum
of the radii of the two given ®s, we shall describe a
®, we shall have a common tangent which will pass
between the ®s, and one which is called a transverse
common tangent.

Prop. 8.—If a line passing through the centres of two
circles cut them wn the points A, B, C, D, respectively ;
then the square of their direct common tangent vs equal
to the rectangle AC . BD.

Dem.— We have (seelast fig.) AT=CQ; to each add
IC, and we get AC = 1Q. In like manner, BD = GQ.
Hence AC. BD =1Q. QG = EF2,

Cor. 1.—-If the two ©s touch, the square of their
common tangent is equal to the rectangle contained by
their diameters.

Cor. 2.—The square of the transverse common tan-
gent of the two Os = AD . BC.

Cor. 3.—If ABC be g G
a semicircle, PE a L
to AB from any point Q B
P, CQD a © touch- 5

ing PE, the semicircle
ACB, and the semi-
circle on PB; then, if A P , B
QR be the diameter
of CQD, AB . QR = EP2

Dem. PB . QR = PQ3, (Cor. 1)

AP.QR =EP? - PQ?; (6)

therefore, by addition, AB.QR = EP2

Cor. 4.—If two Os be described to touch an ordi-
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nate of a semicircle, the semicircle itself and the semi-
circles on the segments of the diameter, they will be
equal to one another. '

Prop. 9.—1In equiangular triangles the rectangles under
the non-corresponding sides about
equal angles are equal to one another.

C
B

Dem.—Let the equiangular As '
be ABO, DCO, and let them be
placed so that the equal Zs at O
may be vertically opposite, and
that the non-corresponding sides
AO, CO may bein one right line, D
then the non-corresponding sides
BO, OD shall be in one right line. Now, since the
£ ABD = ACD, the four points A, B, C, D are con-

cyclic (in the circumference of the same ©). Hence
the rectangle AO . OC = rectangle BO.OD. (xxxv.)

Prop. 10.—T%he rectangle contained by the perpendi-
culars from any point O in the cor-
cumference of a circle on two tan-
gents AC, BC, v equal to the square
of the perpendicular from the same
point on their chord of contact AB.

Dem.—Let the Lsbe OD, OE,
OF. Join OA, OB, EF, DF. Now,
since the Zs ODB, OFB, are right,
the quadrilateral ODBF is in-
scribed in a ©. In like manner,
the quadrilateral OEAF is in-
scribed in a ©. Again, since BC
is a tangent, the Z DBO = BAO
(xxxii.) ; but DBO=DFO (xxi.);
and FAO=FEO; .. £ DFO=FEO. Inlikemanner,
£ ODF = EFO; hence the As ODF, FEO are equi-
angular, and .'. the rectangles contained by the non-
corresponding sides about the equal Zs DOF, FOE,
are equal (9). Hence OD . OE = OF=

Prop. 11.—If from any point O vn the circumference of
a circle perpendiculars be drawn to the four sides, and o

D

C
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the diagonals of an inseribed quadrilateral, the rectangle
contained by the perpendiculars on either pair of opposite
sides 1s equal to the
rectangle contained by F
the perpendiculars on
the diagonals.

Dem.—Let OE, OF
be the L s on the oppo-
site stides AB, CD; OG,
OH, the Lls on the
diagonals. Join EG,
FH, OA, OD. Now,
as in thelast Prop., we
see that the quadrila-
terals AEOG, DFOH,
are inscribed in Os.
Hence Z OEG = OAG,
and OHF = ODF. Again, since AODC is a quadri-
lateral in a ©, the Z OAC + ODC = two right Zs
(xxii.) = ODC + ODF; ... the £ OAC=0ODF. Hence
the £ OEG = OHF. In like manner, the Z OGE
= OFH. Hence the 4s OEG, OHF are equiangular,
and the rectangle OE . OF = the rectangle OG . OH.

Cor. 1.—The rectangle contained by the Ls on one
pair of opposite sides is equal to the rectangle contained
by the L s on the other pair of opposite sides. This may
be proved directly, or it follows at once from the theorem
in the text.

Cor. 2.—If we suppose the points A, B, to become
consecutive, and also the points C, D, then AB, CD
become tangents; and from the theorem of this Article
we may infer the theorem of Prop. 10.

Prop 12.—The feet D, K, ¥ of the three perpendiculars
let fall on the sides of @ triangle ABC, from any point P in
the circumference of the circumscribed circle, are collinear.

Dem.—Join PA, PB, DF, EF. Asin the Demonstra-
~tions of the two last Propositions, we see that the qua-
drilaterals PBDF, PFAE ‘are inscribed in Os; .. the
LsPBD, PFD are =two right Z s (xxii.), and Zs PBD,

B
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PAC, are = two right Zs (xxii.); .. £ PFD =PAC;
and since PFAE is a quadri- E

lateral in a circle, the Z EAP P
= EFP; ... PFD + PFE=PAC

+ PAE = two right Zs. Hence

the points D, F, E, are collinear. F

Cor. 1.—If the feet of the
1ls drawn from any point P
to the sides of the A ABC be

collinear, the locus of P is the B /o
© described about the triangle.

Cor. 2.—If four lines be given, a point can be found
such, that the feet of the

four _Ls from 1t on the lines

willbe collinear. Forlet the
four lines be AB, AC, DB,

/@
DF. These lines form four # G
As. Letthe ®Os described

about two of the As—say

AFE, CDE—intersectin P ; D
then it is evident that the 5

feet of the Ls from P on
the four lines will be collinear,

Cor. 3.—The ©s described about the As ABC, DBF,
each passes through the point P. This follows because
the feet of the L s from P on the sides of these As are
collinear.

A Y

Prop. 13.—If the perpendiculars of a triangle be pro-
duced to meet the circumference of o
the circumseribed circle, the parts of ‘
the perpendiculars intercepted be-
tween their point of intersection and
the circumference are bisected by the
sides of the triangle.

Let AD, CF intersectin O; pro- F /B

duce CF tomeet the ® in G; ' then

OF = FG. ' (}
Dem.—-TheZ AOF = COD (I.xv.) and AFO = CDO,

D2
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each being right; ... FAO = OCD; but OCD = GAF
(xxi.); .- FAO = FAG, and AFO = AFG, each being
right, and AF common. Hence OF = FG.

Prop. 14.—The line joiming any point P, vn the cir-
cumference of a circle, to the point of vntersection of the
perpendiculars of an inscribed triangle, is bisected by the
line of collinearity of the
Seet of the perpendiculars
from P on the sides of the 5 ¢
triangle.

Let P be the point; PH,
PL two of the Ls from
P on the sides ; thus HL
is the line of collinearity
of the feet of the A s from ‘
P on the sides of the A, H E F B
Let CF be the A from C
on AB; produce CF to
&, and make OF = FG; G
then O is the point of

intersection of the A s of the A. Join OP, intersecting
HLin I: itisrequired to prove that OP is bisected in I.

Dem.—Join AP, PG, and let PG intersect HL in K,
and AB in E. Join OE. Now, since APLH is a quadri-
lateral in a ©, the Z PHK = PAC = PGC = HPK ;
.. PK = KH. Hence KH = KE, and PK = KE.
Again, since OF = F@&, and FE common, Z GEF = OEF
but GEF = KEH = KHE; .. £Z OEF = KHE; ... OE
is || to KH; and since EP is bisected in K, OP is bi-
sected in I.

Cor.—If X, Y, Z, W be the points of intersection
of the As of the four As AFE, CDE, ABC, DBF
(see fig., Cor. 2, Prop. 12), then X, Y, Z, W are col-
linear. For let L, denote the line of colhneanty of the
feet of the Ls from P on the sides of the four As.
Join PX, PY, PZ, PW. Then, since L joins the
points of bisection of the sides of the A PXY, the
line XY is | to L. Similarly, YZ, ZW are each || to
L. Hence XY, YZ, ZW form one continuous line.
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Prop. 15.—Through one of the points of intersection of
two gwen circles to draw a line, the sum of whose segments
intercepted by the circles
shall be a maximum.

Analysis.—Let the Os
intersect in the points P,
R, and let APB be any
line through P. From
0, 0/, the centres of the
©s, let fall the As OC,
0'D, and draw O'E || to
AB. Now, it is evident
that AB = 20D = 20’E; and that the semicircle de:
scribed on OO’ as diameter will pass through E. Hence
it follows that if AB is a maximum, the chord O'E
will coincide with OQ’. Therefore AB must be || to
the line joining the centres of the Os.

Cor. 1.—If it were required to draw through P a
line such that the sum of the segments AP, PB may be
equal to a given line, we have only to describe a ©
from O’ as centre, with a line equal half the given line
as radius ; and the place where this © intersects the ©
on OO” as diameter will determine the point E; and
then through P draw a | to O'E.

Der.—4d triangle vs said to be given in species when
its angles are gwen.

Prop. 16.—1vo describe a triangle of given species
whose sides shall pass through three gwen points, and
whose area shall be a mazximum.

Analysis.—Let A, B, C be the given points, DEF
the required A ; then, since th» triangle DEF is given
in species, the Zs D, E, F are given, and the lines AB,
BC, CA are given by hypothesis; ... the ©Os about the
As ABF, BCD, CAE are given. These three Os will
intersect in a common point. For, let the two first in-
tersect in O. Join AO, BO, CO; then ZAFB + AOB =
two rightZs; and BDC + BOC = tworight £s; ..theZs
AFB, BDC, AOB, COB = four right £Zs, and the £s
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AOB, BOC, COA = four right Zs; .. the £ COA
= AFB + BDC : to each D

add the Z CEA, and we
have the £Z COA + CEA
= sum of the three Zs of
the A DEF, thatis=two
right Zs; ... the qua-
drilateral AECO is in-
scribedin a ©®. Hencethe |,
three ©Os pass through
a common point, which
is a given point.

Again, since the area
of the A DEF is a maxi-
mum, each of its sides is a maximum. Hence (15) we
have to draw through the point A a line || to the line
joining the centres of the ©s ABF, CEA ; that is, a
line L to AO, and join its extremities E, F to the
points C, B, respectively.

Cor.—1If instead of the maximum A we require to
describe a A whose sides will be equal to three given
lines, the method of solving the question can be inferred
from the corollary to the last Proposition.

Prop. 17.—76 describe tn a given triangle DEF (see
last fig.) a triangle given in species whose area shall be
MInIIMUm. ‘

Analysis.—Let ABC be the inscribed A ; describe s
about the three As ABF, BCD, CAE; then these ©Og
will have a common point: let it be O. We prove this
to be a given point as follows: The £ FOE exceeds
the Z FDE by the sum of the Zs DFO, DEO ; that is,
by the sum of the Zs BAO, CAO. Hence the Z FOE
= FDE + BAC; ... the £ FOE is given. In like
manner, the Z EOD is given. Hence the point O will
be the point of intersection of two given Os, and is
.. given; and, since E and F are given points, the
£ OFE is given; .. the £ OBA is given. In like
manner, the Z OAB is given; .. & OAB is given
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in species. Now, since the A ABC is a minimum, the
side AB is a minimum}; .. OA is a minimum; and
since O is a given point, OA must be L to EF. Hence
the method of inseribing the minimum A has been
found.

Cor.—From the foregoing analysis the method is
obvious of inscribing in a given A another A whose
sides shall be respectively equal to three given right
lines.

Prop. 18.—If ABC be a triangle, and CD a perpen-
dicular to AB; then if AE = DB, ¢ 15 required to prove
that AB 4s the minimum
line that can be drawn
through B, meeting the two
fized tines AC, BC.

Dem.—Describe a ©
about the A ABC; pro-
duce CD to meet it in L,

A ALH /b
and erect EK L to AB. JEXO [
Join AK, BK. Through ¥ \\ //
B draw any other line FG; | e L

draw KO L to FG, and b

produce it to meet AB in H ; through H draw JI || to
FG. Join JK, 1K, CK, KL. Now, since AE=DB, it
is evident that EK = DL. Hence KL is | to AB;
.. the Z KLC = ADC, and is consequently a right Z ;
.. KC is the diameter of the © ; ... the £ KBC is
right, and the £ KHI is right; ... KHIB is a quadri-
lateral inscribed in a circle; .-. the £ KIH = KBA.
In like manner, the Z KJH = KAB; .. the As IJK
and BAK are equiangular; and since IK is greater
than KB (the £ IBK being right), it follows that 1J is
greater than AB ; but FG is evidently greater than 1J ;
‘. much more is FG greater than AB. Hence AB is
the minimum line that can be drawn through E.

1f in the foregoing tig. the line BA receive an infinitely small
change of position, namely, B along BC, and A along AC; then
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it is plain the motions of B and A would be the same as if the
A AKB got an infinitely small turn round the point K, which
remains fixed : on this account the point K is called the centre of
instantaneous rotation for the line AB.

This Proposition admits of another demonstration, as
follows :—Through the points A, B draw the lines AM,
BM | to BC, AC; then ME is ev1dently 1 to AB; let
fall the L MN on FG s join AG, MG ; then the A FMG
is plainly greater than A AGM ; but AAGM =A ABM;
... & FGM is greater than A ABM, and its L MN is
less than ME, the L of A AMB; hence the base FG
is greater than the base AB.

Prop. 19.—1f OC, OD be any two lines, AB any arc
of a circle, or of any other curve concave to O 5 then, of all
the tangents which can be drawn to AB, that whose inter-
cept s bisected at the point of contact cuts off the minimum
triangle.

Dem.—Let CD be bisected at P, and let EF be any
other tangent. Then through P draw GH || to EF;
then, since CD is bisected in P, the A cut off by CD
is less than the A
cut off by GH
(I.19); butthe A D
cut off by GH is ‘
less than the A __F
cut off by EF, B
Hence the A cut
off by CD is less P
than the A cut off
by EF.

Cor. 1.—Of all O A‘ C G B
triangles described
about a given circle, the equilateral triangle is a
minimum.

=

Cor. 2.—Of all polygons having a given number of
sides described about a given ©, the regular polygon
is a minimum.
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Prop. 20.—1f ABC be a circle, AB a diameter, PD «
Sized line perpendicular to A
AB; then if ACP be any |
line cutting the circle vn C
and the line PD wn P, the
rectangle under AP and AC
18 constant.

Dem.—Since AB is the
diameter of the ©, the
A ACB is right (xxx1)

. BCP is rlght and BDP ©
is r1ght *. the figure BDPC is a quadrilateral inseribed
in a @, and, consequently, the rectangle AP . AC
= rectangle AB . AD = constant.

Cor. 1.—This Prop. holds A
true when the line PD cuts the
©, asin the diagram : the value ,
of the constant will, in this G
case, be = AE? Hence we

have the following :— E\Qyﬁ‘ F
Cor. 2.—If A be the middle ¢

point of the arc EF, AC any B

chord cutting the line EF in P; then AP . AC = AE2
On account of its importance, we shall give an inde-

pendent proof of this Prop. Thus: join EC, and sup-

pose a © described about the A EPC ; then the £ FEA

= ECA, because they stand on equal arcs AF, AE.

Hence AE touches the © EPC (Xxxu ); . the rect-

angle AP . AC = AE?,

Cor. 3.—If A be a fixed point (see two last figs.),
PD a fixed line, and if any variable point P in PD be
joined to A, and a point C taken on AP, so that the
rectangle AP . AC = constant—say R*—then, by the
converse of this Prop., the locus of the point C is a O.

Drr.—The pownt C vs called the inverse of the point P,
the © ABC the inverse of the line PD, the fixed point A
the centre, and the constant R the radius of inversion.

We shall give more on the subject of inversion in
our addition to Book VI.
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Prop. 21.—1If from the centre of a circle a perpendicular
be let fall on any line GD,
and from D, the foot of the ¥/
perpendicular, and from any
other point G tn GD two tan-
gents DE, GF be drawn to the
circle, then GF?* = GD? 4+ DE2. E

Dem.—Let C be the centre
of the ®. Join CG, CE, CF. © D
Then

GF?*=GC*-CF*=GD*+D(C?*- CF?

= GD?+DE?+ EC? - CF? = GD? + DE2,

Prop. 22.—70 describe a circle having its centre at a
given point, and cutting o
gwen curcle orthogonally
(at right angles).

Let A be the given
point, BED the given ©.
From A draw AB,touch-
ing the © BED (xvii.)
at B; and from A as cen-
tre, and AB as radius,
describe the © BFD: this © will cut BED orthogo-
nally.

Dem.—Let C be the centre of BED. Join CB ; then,
because AB is a tangent to the circle BED, CB is at right
Zs to AB (xviii.); .*. CB touches the © BDF. Now,
since AB, CB are tangents to the ©s BDE, BDF, these
lines coincide with the Os for an indefinitely short
distance (a tangent to a © has two consecutive points
common with the ©); and, since the lines intersect

at right Zs, the Os cut at right Zs; that is, or-
thogonally. |

Cor. 1.—The ©s cut also orthogonally at D.
Cor. 2.—When two Os cut orthogonally, the square

of the distance between their centres is equal to the
sum of the squares of their radii,
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Prop. 23.—If in the line joining the centres of two
circles a point D be found,
such that the tangents DE,
DE' from ¢ to the circles
are equal, and if through g
D a line DG be drawn
perpendicular to the line
Joining the centres, then
the tangents from any
other point & tn DG to T
the circles will be equal.

Dem.—Let GF, GF’ be the tangents. Now, by
hypothesis, DE* = DE’2, To each add DG?, and we have
GD? + DE? = GD? + DE”,
or GF? = GF*; ... GF = GTF'.
Drr.—The line GD ¢s called the radical axis of the
two circles ; and two points 1, I, taken on the line through

the centres, so that DI = DI' = DE = DE/, are called the
limating points.

Cor. 1.—Any circle whose centre is on the radical
axis, and which cuts one of the given ©Os orthogonally,
will also cut the other orthogonally, and will pass
through the two limiting points.

Cor, 2.—If there be a system of three Os, their
radical axes taken in pairs are concurrent. For if
tangents be drawn to the ©Os from the point of inter-
section of two of the radical axes, the three tangents
will be equal. Hence the third radical axis passes
through this point.

Der.—The point of concurrence of the three radical
axes 18 called the radical centre of the circles.

Cor. 3.—The © whose centre is the radical centre
of three given Os, and]which cuts one of them or-
thogonally, cuts the other two orthogonally.
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Prop. 24.—The difference between the squares of the
tangents, from any povnt P to two circles, is equal to twice
the rectangle contain-
ed by the perpendi-
cular from P on the
radical axis and the
distance between the
centres of the cireles,

Dem.—Let C, C/,
be the centres, O the

middle point of CC’,
DE the radical axis.
Let fall the Ls PE, PG. Now,
CP* - C'P* =2CC’, OG (11., 6)

CF?* - C'F2?= CD?- (C'D?
because DE is the radical axis
= 2CC’. OD.
Hence, by subtraction,

PF? - PF* = 2CC'. DG = 2CC’' . EP,

This is the fundamental Prop. in the theory of coaxal
circles. For more on this subject, see Book VI.,
Section V.

Der.—1If on any radius of a circle two points be taken,
one wnternally and the other externally, so that the rect-
angle contained by their distances from the centre is equal
to the square of the radius ; then a line drawn perpends-
cular to the radius through either point s called the
polar of the other point, which us
called, in relation to this perpendi-
cular, vts pole. Thus, let O be the
centre, and let OA . OP = radius®;
then, if AX, PY be perpendiculars
to the line OP, PY s called the
polar of A, and A the pole of PY.
Simaelarly, AX vs the polar of P, and
P the pole of AX.,

Y

~.

X

ot>\*ri
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Prop. 25.—If A and B be two points, such that the
polar of A passes through B, |

then the polar of B passes
through A.

Dem.—Let the polar of
A betheline PB; then PB
is L to CP (C being the
centre). Join CB, and let
fall the L. AQ on CB.
Then, since the £s P and
Q are right Zs, the qua-
drilateral APBQ is inscribed in a ® 3 ... CQ . CB
= CA . CP = radius®; .. AQ is the polar of B.

Cor.—In PB take any other point D. Join CD, and
let fall the perpendicular AR on CD. Then AQ, AR are
the polars of the points B and D, and we see that the line
BD, which joins the points B and D, is the polar of the
point A ; the intersection of AQ, AR, the polars of
B and D. Hence we have the following important
theorem :—Tke line of connexion of any two points s
the polar of the point of intersection of thewr polars;
or, again: The point of wntersection of any two lines 1s
the pole of the line of comnexion of their poles.

Der.—Two points, such as A and B, which possess the
property that the polar of esther passes through the other,
are called conjugate points with respect to the circle, and
their polars are called conjugate lines.

Prop. 6.—1If two circles cut orthogonally, the extre-

maties of any diameter of either are conjugate points with
respect to the other.

Let the Os be ABF and
CED, cutting orthogonally in
the points A, B; let CD
be any diameter of the ©
CED; Cand D are conjugate

points with respect to the
O ABF.
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Dem.—Let O be the centre of the ® ABF. Join
OC, intersecting the © CED in E. Join ED, and pro-
duce to F. Join OA. Now, because the ©Os intersect
orthogonally, OA is a tangent to the ©® CED. Hence
OC.OE = OA?; that is, OC . OE = square of radius of
the © ABF; and, since the Z CED is a right angle,
being in a semicircle, the line ED is the polar of C.

Hence C and D are conjugate points with respect to the
O ABF.

Prop. 27.—If A and B be two points, and if from A
we draw a perpendicular AP to ,

the polar of B, and from B a
perpendicular BQ to the polar of p
A ; then, if C be the centre of the ,

circle, the rectangle CA . BQ B Q\
= CB. AP (Salmon). Y

D

Dem.—Let fall the 1s AY, C X A |
BX, on the lines CE, CD. /

Now, since X and Y are right
angles, the semicircle on AB
passes through the points X, Y.

Therefore CA.CX=CB.CY;
and CA .CD =CB. CE,

because each = radius®; .*. we get, by subtraction,

CA.DX=CB.EY;
or CA.BQ =CB. AP.

Prop. 28.—The locus of the intersection of tangents to
a circle, at the extremities of a chord
which passes through a giwen point, vs B E
the polar of the poirnt.

Dem.—Let CD be the chord, A o
the given point, CE, DE the tan-
gents. Join OA, and let fall the
1 EB on OA produced. Join OC, D
OD. Now, since EC = ED, and 0
EO common, and OC = OD, the £
CEO = DEO. Again, since CE
= DE, and EF common, and £Z CEF
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= DEF; ... the Z EFC = EFD. Hence each is right.
Now, since the &A OCE is right-angled at C, and CF
perpendicular to OE, OF . OE = OC?®; but since the
quadrilateral AFEB has the opposite angles B and F
right angles, it is inscribed in a ®©. The rectangle
OF .OE =0A.OB; but OF.OE = 0C?; ... OA. OB
= OC? = radius?; .. BE is the polar of A, and this is
the locus of the point K.

Cor. 1.—If from every point in a given line tan-
gents be drawn to a given circle, the chord of contact
passes through the pole of the given line.

Cor. 2.—If from any given point two tangents be
drawn to a given circle, the chord of contact is the
polar of the given point.

Prop. 29.—The older geometers devoted much time
to the solution of problems which required the con-
struction of triangles under certain conditions. Three
independent data are required for each problem. We
give here a few specimens of the modes of investigation
employed in such questions, and we shall give some addi-
tional ones under the Sixth Book.

(1). Giventhe base of atriangle
the vertical angle, and the sum of
the sides: construct ut.

Analysis.—Let ABC be the G
A 5 produce AC to D, and make
CD = CB; then AD = sum of
sides, and is given; and the & B
Z ADB=half the £ ACB, and is given. Hence we have
the following method of construction :—On the base AB
describe a segment of a © containing an Z = half the
given vertical Z, and from the centre A, with a distance
equal to the sum of the sides as radius, describe a O
cutting this segment in D. Join AD, DB, and make
the Z DBC = ADB; then ABC is the A required.

(2). Given the vertical angle of a triangle, and the seg-
ments tnto which the line bisecting it divides the base :
construct 1.
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Analysis.—Let ABC be the A, CD the line bisect-
ing the vertical Z. Then AD, DB .

and the Z ACB are given. NOW,

since AD, DB are given, AB is

given; and since AB and the ZACB

O
are given, the O ACB is given DV
(xxxiii.); and since CD bisects the /
£ ACB, we have arc AE = EB;
. E

. E is a given point, and D is a
given point. Hence the line ED is given in position,
and therefore the point C is given.

(3). Gaven the base, the vertical angle, and the rectangle
of the sides, construct the triangle.

Analysis.—Let ABC be the A o
let fall the L CD; draw the dia- '
meter CE ; join AE. Now the

£ CEA = OBA (xxi.), and CAE
is right, belng in a semicircle

(xxx1.); ... =4£ CDB. Hence the & D B

Ds CAE, CDB are equiangular ; \L/

.. rectangle AC . CB = rectangle

CE.CD(9); but rectangle AC.CB L

is given ; .. rectangle CE . CD is given ; and since the

base and vertical Z are given, the © ACB is given ;
. the diameter CE is given; ... CD is given; and there-

fore the line drawn through C| to AB is given in

position. Hence the point C is given.

The method of construction is obvious.
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SECTION II.

ExERCISES.

1. The line joining the centres of two ©Os bisects their common
chord perpendicularly.

2. If AB, CD be two | chords in a ©, the arc AC = BD.

3. If two Os be concentric, all tangents to the inner © which
are terminated by the outer © are equal to one another.

4. If two Ls AD, BE of a A intersect in O, AO . OD -
=BO . OE.

5. If O be the intersection of the Lsofa A, the Os described
about the three As AOB, BOC, COA are equal to one another.

6. If equilateral As be described on the three sides of any A,
the Os described about these equilateral As pass through a com-
mon point,

7. The lines joining the vertices of the original A to the oppo-
site vertices of the equilateral As are concurrent.

8. The centres of the three Os in question 6 are the angulae
points of another equilateral A. This theorem will hold true if
the equilateral As on the sides of the original A be turned in-
wards.

9. The sum of the squares of the sides of the two new equi-
lateral As in the last question is equal to the sum of the squares
of the sides of the original triangle.

10. Find the locus of the points of bisection of a system of
chords which pass through a fixed point.

11. If two chords of a © intersect at right angles, the sum of the
squares of their four segments equal the square of the diameter.

12. If from any fixed point C a line CD be drawn to any point
D in the circumference of a given ©, and a line DE be drawn L
to CD, meeting the © again in E, the line EF drawn through
E || to CD will pass through a fixed point.

13. Given the base of a A and the vertical Z, prove that the
sum of the squares of the sides is a maximum or a minimum
when the A is isosceles, according as the vertical £ is acute or
obtuse.

14, Describe the maximum rectangle in a given segment of
a circle.

15. Through a given point inside a © draw a chord which
shall be divided as in Euclid, Prop. XI., Book II.

E
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16. Given the base of a A and the vertical £, what is the
locus—(1) of the intersection of the Ls; (2) of the bisectors of
the base angles ?

17. Of all As inscribed in a given ©, the equilateral A is a
maximum,

18, The square of the third diagonal of a quadrilateral in-
scribed in a O is equal to the sum of the squares of tangents to
the © from its extremities.

19. The ©, whose diameter is the third diagonal of a quadri-
lateral inscribed in another ©, cuts the latter orthogonally.

20. If from any point in the circumference of a © three lines
be drawn to the angular points of an inscribed equilateral A, one
of these lines is equal to the sum of the other two.

21. If the feet of the L of a A be joined, the A thus formed
will have its angles bisected by the Ls of the original triangle.

22, If all the sides of a quadrilateral or polygon, except one, be
given in magnitude and order, the area will be a maximum, when
the remaining side is the diameter of a semicircle passing through
all the vertices.

23. The area will be the same in whatever order the sides are
placed.

24. If two quadrilaterals or polygons have their sides equal,
each to each, and if one be inscribed in a ©, it will be greater
than the other.

25. If from any point P without a © a secant be drawn cut-
ting the © in the points A, B; then if C be the middle point of
the polar of P, the £ ACB is bisected by the polar of P.

26. If OPP' be any line cutting a ©,J, inthe points PP’; then
if two Os passing through O touch J in the points P, P, respec-
tively, the difference between their diameters is equal to the dia-
meter of J.

27. Given the base, the difference of the base £s, and the sum
or difference of the sides of a A, construct it.

28. Given the base, the vertical Z, and the bisector of the
vertical £ of a A, construct it.

29. Draw a right line through the point of intersection of two
©s, so that the sum or the difference of the squares of the inter-
eepted segments shall be given.

30. If an arc of a O be divided into two equal, and into two
unequal parts, the rectangle contained by the chords of the un-
equal parts, together with the square of the chord of the arc be-
tween the points of section, is equal to the square of the chord of
half the arc.
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31. If A, B, C, D be four points, ranged in order on a straight
line, find on the same line a point O, such that the rectangle
OA . OD shall be equal to the rectangle OB . OC.

32. In the same case find the locus of a point P if the £ APB
equal £ CPD.

33. Given two points A, B, anda © X, find in X a point C,
so thatthe £ ACB may be either a maximum or a minimum.

34. The bisectors of the Zs, at the extremities of the third
diagonal of a quadrilateral inscribed in & © are L to each other.

35. If the base and the sum of the sides of a A be given, the
rectangle contained by the L sfrom the extremities of the base on
the bisector of the external vertical £ is given.

86. If any hexagon be inscribed in a ©, the sum of the three
alternate £s is equal to the sum of the three remaining angles.

37. A line of given length MN slides between two fixed
lines OM, ON ; then, if MP, NP be L to OM, ON, the locus
of P is a circle.

38. State the theorem corresponding to 35 for the internal
bisector of the vertical angle.

39. If AB, AC, AD be two adjacent sides and the diagonal of
a O, and if a © passing through A cut these lines in the points
P, Q, R, then

AB. AP+ AC.AQ =AD. AR.

40. Draw a chord CD of a semicircle || to a diameter AB, so as
to subtend a right £ at a given point P in AB (see Exercise 16,
Book II.)

41. Find a point in the circumference of a given O, such that
the lines joining it to two fixed points in the circumference may
make a given intercept on a given chord of the circle.

42. In a given O describe a A whose three sides shall pass
through three given points.

43. If through any point O three lines be drawn respectively ||
to the three sides of a A, intersecting the sides in the points
A, A, B, B, C, C', then the sum of the rectangles AO . OA’,
BO . OB', ¢o . 00" is equal to the rectangle contained by the
segments of the chord of the circumscribed © which passes
through O.

44. The lines drawn from the centre of the circle described
about a A to the angular points are L to the sides of the A
formed by joining the feet of the Ls of the original triangle.

E 2
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45, If a © touch a semicircle and two ordinates to its diameter,
the rectangle under the remote segments of the diameter is equal
to the square of the A from the centre of the © on the diameter
of the semicircle.

46. If AB be the diameter of a semicircle, and AC, BD two
chords intersecting in O, the © about the A OCD intersects the
semicircle orthogonally.

47. If the sum or difference of the tangents from a variable
point to two Os be equal to the part of the common tangent of
the two Os between the points of contact, the locus of the point
is a right line.

48. If pairs of common tangents be drawn to three ©s, and if
one triad of common tangents be concurrent, the other triad will
also be concurrent.

49. The distance between the feet of L s from any point in the
circumference of a © on two fixed radii is equal to the 1 from
the extremity of either of these radii on the other.
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SECTION I.

AppITroNAL PROPOSITIONS.

Prop. 1.—If a circle be inscribed in a triangle, the
distances from the angular points of the triangle to the
points of contact on the sides are respectively equal to the
remainders that are left, when the lengths of the sides are
taken separately from their half sum.

Dem.—Let ABC be the A, A
D, E, F, the points of contact.
Now, since the tangents from an
external point are equal, we have
AE =AF, BD=BF, CD =CE.
Hence AE + BC = AB + CE B
= half sum of the three sides o
BC, CA, AB; and denoting these
gides by the letters g, b, ¢, re-
spectively, and half their sum &
by s, we have

AE +a=s
therefore AE=s-a.
In like manner BD=s-06; CE=s5-o.
Cor. 1.—If r denote the radius of the inscribed ©,
the area of the triangle = 7s.
For, let O be the centre of the inscribed ©, then we

have
BC.r =224 BOC,

CA.r=2A COA,
AB.r =2 A AOB;
therefore (BC+ CA+AB)r=2 A ABC;
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that is, 2sr =2 A ABC;
therefore sr = A ABC, (a)

Cor. 2.—1If the © touch the side BC externally, and
the sides AB, AC produced; that

is, if it be an escribed ©, and if o
the points of contact be denoted 1
by D', E, F', it may be proved E
in the same manner that AR /%
= A = s; B = BF' = s - ¢; c Lo/l
CD' = CE' = s — b. E.
These Propositions, though sim- \
ple, are very important. - P
Cor. 3.—If 7’ denote the radius O
of the escribed ©, which touches

the side BC (@) externally,
r' (s—a) = & ABC.

Dem.— EO0' .AC=2 A A0C;
that is r.b=2.AA0C.
In like manner r.c=2.0A0B,
and v .a =2 BOC.
Hence r'b+c-a)=2 2L ABC;
that is r'.2(s—-a)=2 A ABC;
therefore 7. (s-a)= A ABC. (B)

Cor. 4.—The rectangle » . #'= (s = &) (s - ¢).

Dem.—Since CO bisects the Z ACB, and CO’ bisects
the £ BCE/, CO is at right Zs to CO’s .. the Z ECO
+ E'CO’ = a right £ ; and £Z ECO + COE = one right
Z; .. E'CO’ = COE. Hence the As E'CO’, EOC are
equiangular ; and, therefore,

EO0" . EO=EC. CE; (IIL. 9.)
that is r.r'=(s=-0)(s - o). (v)
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Cor. 5.—If we denote the area of the A ABC by N,
we shall have

N=+s(s-a)(s=0)(s-0).
For, by equations (a) and (8), we have
rs =N, and 7' (s — a) =
Therefore, multiplying and substituting from (y), we

get
Ne=s(s—a)(s-0)(s~¢);
therefore N =+/s5(s—a)(s—0) (s — ¢).
Cor. 6.— N =/7.¢" .0". 0",

where 7", """ denote the radii of the escribed circles,
which touch the sides 4, ¢, externally.

Cor. 7.—1f the A ABC be right-angled, having the
angle C right,

r=s—c;r=s-b;1r"=s-a; "=
Prop. R.—If from any point perpendiculars be let fall
on the sides of o regular polygon of n

svdes, their sum s equal to n times the D
radius of the inscribed circle.

Dem.—Let the given polygon be, & C
say a pentagon ABCDE, and P the
given point, and the Lsfrom P on
the sides AB, BC, &c., be denoted
by 21, P2, s, &c., and let the com- A » B
mon length of the sides of the poly-
gon be &3 then

2 A APB =sp,

2 A BPC = sp,;

2 A CPD = 8P3
&e., &ec.;

therefore, by addition, twice the pentagon
=8 (P1 + P2 + P + Pu + Ps).

Again, if we suppose O to be the centre of the in-
scribed circle, and R its radius, we get, evidently,

2 A AOB = Rs;
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but the pentagon = 5 A AOB ; therefore

twice pentagon = 5Rs ;
therefore  s(p, + p, + ps + 94 + p5) = 5Rs.
Hence P1+ P2+ Ps + Py + ps = 5R.

Prop. 8.—If a regular polygon of n sides be described
about a circle, the sum of the perpendiculars from the
points of contact on any tangent to the circle equal nR.

Dem.—Let A, B, C, D, E, &c., be the points of con-
tact of the sides of the polygon with the ©, L any
tangent to the ©, and P its point of contact. Now,
the Ls from the points A, B, C, &c., on L, are respec-
tively equal to the Ls from P on the tangents at the
same points ; but the sum of the L s from P on the tan-
gents at the points A, B, C, &c., = R (2). Hence the
sum of the Ls from the points A, B, C, &c., on L=#»R.

Cor. 1.—The sum of the s from the angular
points of an inscribed polygon of # sides upon any line
equal # times the L from the centre on the same line.

Cor. 2.—The centre of mean position of the angular
points of a regular polygon is the centre of its circum-
scribed circle.

For, since there are # points, the sum of the Ls
from these points on any line equal » times the L from
their centre of mean position on the line (I., 17);
therefore the L from the centre of the circumscribed ©
on any line is equal to the L from the centre of mean
position on the same line ; and, consequently, these
centres must coincide.

Cor. 3.—The sum of the L s from the angular points
of an inscribed polygon on any diameter is zero ; or, in
other words, the sum of the _L.s on one side of the di-
ameter is equal to the sum of the Ls on the other side.

Prop. 4.—If a reqular polygon of n sides be vnscribed
in a circle, whose radvus is R, and if P be any point whose
distance from the centre of the circle is R', then the sum
of the squares of all the lines from P tothe angular points
of the polygon is equal to n (R* + R?).
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Dem.—Let O be the centre of the ®, then O is the
mean centre of the angular points ; hence (I1I., 10) the
sum of the squares of the lines drawn from P to the
angular points exceeds the sum of the squares of the
lines drawn from O by »OP? that is by »R"?; but all
the lines drawn from O to the angular points are equal
to one another, each being the radius. Hence the
sum of their squares is »R?. Hence the Proposition
is proved.

Cor. 1.—If the point P be in the circumference of
the ©, we have the following theorem :—Z%e sum of
the squares of the lines drawn from any point in the cir-
cumference of a circle to the angular points of an inscribed
polygon is equal to 2nR?.

The following is an independent proof of this theo-
rem :—It is seen at once, if we denote the Ls from the
angular points on the tangent at P by p,, p,, &c., that

2R . p, = AP?;
2R . pz BP?;
2R . p; = CP?, ' &e.
Hence
2R (o1 42 +ps + &c.) = AP? + BP? + P2, &e. ;
or 2R .nR = AP?+ BP?+ CP?, &c.;

therefore the sum of the squares of all the lines from
P = 2nR2

Cor. 2.—The sum of the squares of all the lines of
connexion of the angular points of a regular poly-
gon of # sides, inscribed in a © whose radius is R, is
7* R?,

This follows from supposing the point P to coincide
with each angular point in succession, and adding all
the results, and taking half, because each line occurs
twice.

Prop. 5.—If O be the point of intersection of the three
perpendiculars AD, BE, CF of a triangle ABC, and f
G, H, I be the middle points of the sides of the triangle,
and K, L, M the middle points of the lines OA, OB, OC ;
then the nine points D, E, F; G, H,1; K, L, M, are ia
the circumference of a circle.
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Dem.—Join HK, HG, IK, IG ; then, because AO is
bisected in K, and AC in H, HK is | to CO. 1In like
manner, HG is || to AB. Hence the Z GHK is equal
to the £ between CO and AB ; .-. it is a right Z; conse-
quently, the © described on GK as diameter passes
through H. In like manner, it passes through I; and
since the £ KDG@ is right, it passes through D ; .-. the

A

C

pircle through the three points G, H, I, passes through
the two points D, K. In like manner, it may be
proved that it passes through the pairs of points E, L;
F, M. . Hence it passes through the nine points.

DEr.—The circle through the middle points of the sides
of a triangle is called, on account of the property we have
Just proved, ¢ The Nine-points Circle of the Triangle.”’

Prop. 6.—7v draw the fourth common tangent to the
two escribed circles of a plane triangle, which touch the base
produced, without deseribing those circles.

Con.—From B, one of the extremities of the base,
let fall a 1 BG on the external bisector AI of the
vertical £ of the A ABC; produce BG and AT to meet
the sides CA, CB of the A in the points Hand I; then
the line joining the points H and I is the fourth com-
mon tangent.

Dem.—The As BGA, HGA have the side AG com-
mon, and the £s adjacent to this side in the two As
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equal each to each; hence AH = AB. Again the As
AHI, ABI have the sides AH, AI and the included £
in the one equal to the two sides AB, AI and the in-
cluded Z in the other; ... the £ HIA = BIA.

Now, bisect the Z ABI by the line BO, and it is
evident, by letting fall Ls on the four sides of the
quadrilateral ABIH from the point O, that the four 1s
are equal to one another. Hence the ©, having O as
centre, and any of these Ls as radius, will be inscribed
in the quadrilateral ; ... HI is a tangent to the escribed
©, which touches AB externally. In like manner, it
may be proved that HI touches the escribed ©, which
touches AC externally. Hence HI is the fourth com-
mon tangent to these two circles,

Cor. 1.—If D be the middle point of the base BC,
the ©, whose centre is D and whose radius is DG, is
orthogonal to the two escribed ©Os which touch BC
produced.

For, let P be the point of contact of the escribed O,
which touches AB externally, then

PD=CP-CD=%(e+b+c)—%a=2%(+0¢);
and since BH is bisected in G, and BC in D,
DG =3CH=3(AB+AC)=3%(b+0);

therefore the ©, whose centreis D and radius DG, will
cut orthogonally the © which touches at P.
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Cor. 2.—Let DG cut AB in M, and HI in K, and
from A let fall the 1L AL, then the quadrilateral
LMKI is inscribed in a circle.

For, since the £Zs ALB, AGB are right, ALBG 1is
a quadrilateral in a ©, and M is the centre of the © ;
.*. ML = MB, and £Z MLB = MBL. Again, Z MKI
= AHI = ABI; .. MKI + MLI = ABI + MBL = two
right Zs. Hence MKIL is a quadrilateral inscribed
in a circle.

Prop. 7.—The ¢ Nine-points Circle’ is the inverse of
the fourth common tangent to the two escribed circles which
touch the base produced, with respect to the circle whose
centre 18 at the middle point of the base, and which cuts
these circles orthogonally.

Dem.—The £ DML (see fig., last Prop.) = twice
DGL (I1I. xx.); and the Z HIL = twice AIL; but
DML = HIL, since MKIL is a quadrilateral in a © ;
.. the Z DGL = GIL. Hence, if a © be described
about the A GIL it will touch the line GD (III. xxxii.);
.. DL . DI = DG?*; .. the point Lis the inverse of the
point I, with respect to the ©® whose centre is D and
radius DG. Again, since MKIL is a quadrilateral in a
®,DM .DK =DL. DI, and, ... = DG? Hence the point
M is the inverse of K, and .*. the © described through
the points DLM is the inverse of the line HI (I1I. 20);
that is, the ¢ Nine-points Circle” is the inverse of the
fourth common tangent, with respect to the © whose
~centre is the middle point of the base, and whose radius
is equal to half the sum of the two remaining sides.
Cor. 1.—In like manner, it may be proved that the
¢¢ Nine-points Circle ”’ is the inverse of the fourth com-
mon tangent to the inscribed © and the escribed ©,
which touches the base externally, with respect to the
©® whose centre is the middle point of the base, and
whose radius is = to half the difference of the remain-
ing sides.
Cor. 2.-—The ¢ Nine-points Circle’’ touches the in-
scribed and the escribed circles of the triangle.
For, since it is the inverse of the fourth common
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tangent to the two escribed ©s which touch the base
produced, with respect to the © whose centre is D,
and which cuts these Os orthogonally ; if we join D to
the points of contact of the fourth common tangent,
the points where the joining lines meet these ©Os again
will be the inverses of the points of contact. Hence
they will be common both to the ‘¢ Nine-points Circle ”’
and the escribed Os; ... the ¢ Nine-points Circle?”
touches these escribed ®s in these points; and in a
similar way the points of contact with the inscribed ©
and the escribed © which touch the base externally
may be found.

Cor. 3.—Since the ¢ Nine-points Circle ’’ of a plane
A is also the ‘¢ Nine-points Circle” of each of the
three As into which it is divided by the lines drawn
from the intersection of its L s to the angular points,
we see that the ¢¢ Nine-points Circle ”’ touches also the
inscribed and escribed circles of each of these triangles.

Prop. 8.—The following Propositions, in connexion
with the circle described about a triangle, are very im-
portant :—-

(1). The lines which join the extremities of the diameter,
which is perpendicular to the base of a triangle, to the ver-
tical angle, are the internal and external bisectors of the
vertical angle.

~

J

H

E
D
Dem.—Let DE be the diameter L to BC. Join AD,
AE. Produce AE to meet CBin I. Now, from the
construction, we have the arc CD = the arc BD. Hence

the £ CAD =DAB; .. ADis theinternal bisector of the
Z CAB. Again, since DE is the diameter of the O,
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the Z DAE is right; .. the £ DAE = DAH ; and
from these, taking away the equal £s CAD, DAB, we
have the Z CAE=BAH ; .. JAH = BAH. Hence
AH is the external bisector.

(2). If from D a perpendicular be let fall on AC, the
segments AR, GC into which it divides AC are respectively
the half sum and the half difference of the sides AB, AC.

Dem.—Join CD, GF. Draw FH | to AC. Since the
Zs CGD, CFD are right, the figure CGFD is a qua-
drilateral in a ©O. Hence the £ AGF = CDE
(ITI., xxii.) = CAE (III., xxi.); .. GF 1is || to AE.
Hence AHFG is a == ; and AG = FH = % sum of AB,
AC (1., 11, Cor. 1). Again, GC = AC - AG = AC
-1 (AB + AC) =% (AC - AB).

(3). If from E a perpendicular EQ' be drawn to AC,
CG’ and AG' are respectively the half sum and the half
difference of AC, AB.

This may be proved like the last.

(4). Through A draw AL perpendicular to DE. The
rectangle DL . EF s equal to the square of half the sum of
the stdes AC, AB.

Dem.—The As ALD, EFI have evidently the Zs
at D and I equal, and the right Zs at L and F are
equal. Hence the As are equiangular; ... DL . EF
= AL .FI=FK. FI =the square of half the sum of the
sides (Prop. 7).

(6). In like manner it may be proved that EL . FD
18 equal to the square of half the difference of AC, AB.

Prop. 9.—1If a, b, ¢ denote, as in Prop. 1, the lengths
of the sides of the triangle ABC, then
the centre of the inscribed circle will
be the centre of mean position of its
angular points for the system of mul-
tiples a, b, c.

Dem.—Let O be the centre of
the inscribed ©. Join CO; and on
CO produced let fall the 1s AL,
BM. Now, the &s ACL, BCM have the ZACL=BCM;
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and the Z ALC = BMC. Hence they are equiangular

therefore BC.AL=AC.BM; (IIL. 9)
or a.AL=5%.BM. (a)

Now, if we introduce the signs + and —, since the Ls
AL, BM fall on different sides of CL, they must be
affected with contrary signs; .. the equation (a) ex-
presses that ¢ times the L from A on CO + & times the
1 from B on CO = 0; and since the L from C on CO
is evidently = 0, we have the sum of ¢ times per-
pendicular from A ; & times perpendicular from B;
¢ times perpendicular from C, on the line CO = 0.
Hence the line CO passes through the centre of mean
position for the system of multiples @, 8, ¢. In like
manner, AO passes through the centre of mean posi-
tion. And since a point which lies on each of two
lines must be their point of intersection, O must be
th% centre of mean position for the system of multiples
a, b, c. |

Cor. 1.—If O/, O, 0" be the centres of the escribed
Os, O’ is the centre of mean position for the system of
multiples — @, + b, + ¢; O” for the system + @, =8, +¢:
and O for the system + @, + 5, — ¢.
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SECTION II,

ExERCISES,

1. The square of the side of an equilateral A inscribed ina ©
equal three times the square of the radius.

2. The square described about a © equal twice the inscribed
square,

3. The inscribed hexagon equal twice the inscribed equi-
lateral triangle.

4. In the construction of IV., x., if F be the second point in
which the © ACD intersects the © BDE, and if we join AF, DF,
the A ADF has each of its base Zs double the vertical Z. The
same property holds for the As ACF, BCD.

5. The square of the side of a hexagon inscribed ina ©, together
with the square of the side of a decagon, is equal to the square of
the side of a pentagon.

6. Any diagonal of a pentagon is divided by a consecutive
diagonal into two parts, such that the rectangle contained by the
whole and one part is equal to the square of the other part.

7. Divide an £ of an equilateral A into five equal parts.
8. Inscribe a © in a given sector of a circle.

9. The locus of the centre of the © inscribed in a A, whose
base and vertical £ are given, is a circle.

10. If tangents be drawn to a © at the angular points of an
inscribed regular polygon of any number of sides, they will form
a circumscribed regular polygon.

11. The line joining the centres of the inscribed and circum-
scribed Os subtends at any of the angular points of a A an £
equal to half the difference of the remaining angles.

12. Inscribe an equilateral A in a given square.

13. The six lines of connexion of the centres of the inscribed
and escribed Os of a plane A are bisected by the circumference
of the circumscribed circle.

14. Describe a regular octagon in a given square.

15. A regular polygon of any number of sides has one © in-
seribed in it, and another circumscribed about it, and the two ©Os
are concentric.
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16. If O, O0’, 0, O'’", be the centres of the inscribed and
escribed Os of a plane A, then O is the mean centre of the points
0’, 07, 0", for the system of multiples (s — &), (s — &), (s — ¢).

17. In the same case, O’ is the mean centre of the points
0, 0”, 0", for the system of multiples s, s — &, s — ¢, and cor-
responding properties hold for the points O, 0"’ .

18. If » be the radius of the © inscribed in a A, and p1, p2the
radii of two Os touching the circumscribed ©, and also touching
each other at the centre of the inscribed © ; then

2 1 1
— = — + _—
7 pL p2

19. If », 71, 72, 73 be theradii of the inscribed and escribed Os

of a plane A, and R the radius of the circumscribed © ; then

71+ 72 +r3 =2 =4R.
20. ™ the same case,

1 1
+ =+ =
()

1
- .
73

1
r M

21. In a given O inscribe a A, so that two of its sides may
pass through given points, and that the third side may be a
maximum.

22. What theorem analogous to 18 holds for escribed Os?

23. Draw from the vertical £ of an obtuse-angled A a line
to a point in the base, such that its square will be equal to the
rectangle contained by the segments of the base.

24. If the line AD, bisecting the vertical £ A of the A ABC,
meets the base BC in D, and the circumscribed © in E, then the
line CE is a tangent to the © described about the A ADC.

25. The sum of the squares of the 1Ls from the angular points
of a regular polygon inscribed in a © upon any diameter of the
© is equal to half » times the square of the radius.

26. Given the base and vertical £ of a A, find the locus of
the centre of the © which passes through the centres of the three
escribed circles.

27. If a © touch the arcs AC, BC, and the line AB in the
construction of Euclid (I. i.), prove its radius equal to § of AB.

28. Given the base and the vertical £ of a A, find the locus
of the centre of its ‘* Nine-point Circle.”?
L
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29. If from any point in the circumference of a © 1s be let
fall on the sides of a circumscribed regular polygon, the sum
of their squares is equal to § » times the square of the radius.

30. The internal and external bisectors of the /s of the A,
formed by joining the middle points of the sides of another A,
are the six radical axes of the inscribed and escribed ©Os of the
latter.

31. The © described about a A touches the sixteen circles in-
scribed and escribed to the four As formed by joining the centres
of the inscribed and escribed circles of the original triangle.

32. If O, O’ have the same meaning as in question 16, then
AO.A0'=AB. AC.

34. Given the base and the vertical £ ofa A, find the locus
of the centre of a © passing through the centre of the inscribed
circle, and the centres of any two escribed circles.
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SECTION 1.
AppiTioNAn, PROPOSITIONS.

Prop. 1.—If two triangles have a common base, but
different vertices, they are to one another as the segments
wnto which the line joiming the A
vertices 18 divided by the common
base or base produced.

Let the two As be AOB, AOC,
having the base AO common ;
let AO cut the line BC, joining
the vertices in A’; then B N o

AOB: AOC:: BA': A'C.
Dem.—The AABA’: ACA’ : : BA’ : A'C;

and OBA’: OCA’:: BA': A'C;
therefore

ABA’'-0OBA’: ACA'-0CA’:: BA’: A'C;
or AOB: AOC::BA': A'C.

Prop. 2.—If three concurrent lines AO, BO, CO, drawn
from the angular points of a triangle, meet the opposite
sides in the points A', B', C', the product of the three
ratios

BA’ CB' AC . .y
o' TR op s vty
F 2
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Dem.—From the last Proposition, we have

BA’ AOB.
A'C  AOC’
CB  BOC
B’A BOA’
AC"  AOC
C'B  BOC’
Hence, multiplying out, we get the product equal to

unity.
Cor. This may be written

AB'.BC'.CA’=A'B.B'C. C'A.

The symmetry of this expression is apparent. Ex-
pressed in words, it gives the product of three alter-
nate segments of the sides equal to the product of the
three remaining segments.

Prop. 38.—If two parallel lines be intersected by three
concurrent transversals, the seqgments intercepted by the
transversals on the parallels are
proportional.

Let the ||s be AB, A'B’, and the
transversals CA, CD, CB; then

AD:DB :: A'D': D'B.

Dem, — The triangles ADC, A
A’'D'C are equiangular ;
therefore AD:DC :: A'D': D'C.

In like manner, DC:DB:: D'C : D'B’;
therefore ez aequali AD: DB :: A'D’': D'B'.

Cor.—If from the points D, D' we draw two Ls
DE, D'E’ to AC, and two Ls DF, D’F’ to BC; then

DE :DF :: D'E': D'F.

C
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Prop. 4.—1If the sides of a triangle ABC be cut by any
transversal, in the points A/, By, C'; then the product of
the three ratios

AW BO' CA :
BC’ CA’ AB
v8 equal to unity.

Dem. — From the
points A, B, C let fall
the Ls p/, p”, "’ on the g C N
transversal ; then, by si- |

milar As the three ratios are respectively = -12,—,,
pp P

and the product of these is evidently equal unity.
Hence the proposition is proved.

Observation.—If we introduce the signs plus and minus,
in this Proposition, it is evident that one of the three ratios must
be negative. And when the transversal cuts all the sides of the
triangle ex .ornally, all three will be negative. Ience their
product will, in all cases, be equal to negative unity.

Cor. 1.—If A’, B’, €' be three points on the sides of
a triangle, either all external, or two internal and one
external, such that the product of the three ratios

AR BC' CA'

B'C’ CA’ A'B
is equal to negative unity, then the three points are col-
linear.

Cor. 2.—The three external bisectors of the angles
of a triangle meet the sides in three points, which are
collinear,

For, let the meeting points be A’, B/, (', and we
have the ratios

BA' OB AC'_ . . BA CB AC
ACY BA? OB T O TUMS e BA OB

respectively ; and, therefore, their produce is unity.

Prop. 5.—1In any triangle, the rectangle contained by
two sides is equal to the rectangle contained by the perpen-
decular on the third side and the diameter of the curcums=
seribed circle.
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Let ABC be the A, AD the L, AE the diameter of
the ©; then AB.AC =AE.AD.

Dem.—Since AE is the diameter, A
the £ ABE is right, and ADC is
right; .. ABE = ADC; and AEB
= ACD (III., xxi.); therefore the
As ABE and ADC are equiangular; B ' G
and AB : AE :: AD : AC (iv.). \u
Hence AB.AC=AE.AD. E

Cor.—1f a, b, ¢ denote the three
sides of a triangle, and R theradius of the circumseribed

circle, then the area of the triangle = %.
For, let AD be denoted by p, we have (5)
2R = be;
therefore 2ap R = abe,
2 4R’
abe

that is, area of triangle = in

Prop. 6.—If a figure of any even number of sides be
wnscribed in a circle, the continued product of the perpen-
dieulars let fall from any point .
wn the circumference on the odd
stdes 18 equal to the continued _
product of the perpendiculars B o
on the even sides. '

‘We shall prove this Pro-
position for the case of a
hexagon, and then it will

be evident that the proof is A\‘/F
O

general.

Let ABCDEF be the hexa-
gon, O the point, and let the Ls from O on the lines
AB, BC. .. FA, be denoted by a, B, v, 6, ¢, $; let D
denote the diameter of the ©, and let the lengths of
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the six lines OA, OB ... OF be denoted by ¢, m, n, p,
¢, r; then we have Da =Im; Dy =np; De=qr;

therefore D3aye = Imnpgr.
In like manner, D3 B3¢ = Imnpgr ;
therefore aye = 3. (Q.E.D.)

Cor. 1.—The six points A, B, C, D, E, F may be
taken in any order of sequence, and the Proposition
will hold; or, in other words, if we draw all the
diagonals of the hexagon, and take any three lines,
such as AC, BD, EF, which terminate in the six points
A, B, C, D, E, F, then the continuous product of the
1 s on them will be equal to the continuous product of
the Ls on any other three lines also terminating in the
six points.

Cor. 2.—When the figureinscribed in the circle con-
tains only four sides, this Proposition is the theorem
proved (III., 11.)

Cor. 3.—1f we suppose two of the angular points to
become infinitely near; then the line joining these
points, if produced, will become a tangent to the circle,
and we shall in this way have a theorem that will be
true for a polygon of an odd number of sides.

Cor. 4.—1If perpendiculars be let fall from any point
in the circumference of a.circle on the sides of an in-
scribed triangle, their continued product is equal to the
continued product of the perpendiculars from the same
point on the tangents to the circle at the angular points.

Prop. 7.— Giwen, in magnitude and position, the base
BC of a triangle and the
ratio BA : AC of the E
stdes, 1t 18 required to
find the locus of its A
vertex A.

Bisect the internal g

and the external verti- D\ ¢ o© E
cal angles by the lines |
AD, AE. Now, BA :

AC:: BD:DC (IIL.);
but the ratio BA : AC is given (Hyp.); therefore the
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ratio BD : DC is given, and BC is given (Hyp.); ..
point D is given. In like manner the point E is gmen
Again, the angle DAE is evidently equal half the sum
of the angles BAC, CAF. Hence DAE is right, and the
circle described on the line DE as diameter will pass
through A, and will be the required locus.

Cor. 1.—The circle described about the triangle ABC
will cut the circle DAE orthogonally.

For, let O be the centre of the © DAE. Join AO;
then the angle DAO = ADO, that is, DAC + CAO
= BAD + ABO; but BAD = DAC; .. CAO = ABO;
.. AO touches the ©® described about the A BAC.
Hence the ©s cut orthogonally.

Cor. 2.—Any circle passing through the points B, C,
is cut orthogonally by the circle DAE.

Cor. 3.—If we consider each side of the triangle as
base in succession, the three circles which are the loci
of the vertices have two points common.

Prop. 8.—1If through O, the intersection of the diago-
nals of a quadrilateral ABCD,
a line OH be drawn parallel
to one of the sides AB, meeting
the opposite side CD in G, and
the third diagonal vn H, OH
18 busected in G.

Dem.——Produce HO to
meet AD in I, and let it
meet BC 1in J.

Now IJ:JH :: AB:
and O :JG :: AB:
therefore 10 :GH :: AB :
but AB: BF :: I0 : OG; .. OG = GH.

Cor.—GR0O is a mean proportional between GJ and
GI.
Prop. 9.—1If a triangle given tn species have one angu-

lar point fized, and of a second angular point moves along
a given line, the third will also move along a given line.
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Tet ABC be the A which is given in species; let
the point A be fixed; the point B move along a given
line BD : it isrequired to find the
locus of C. ¢

From A let fall the 1. AD on
BD; on AD describe a A ADE E
equiangular to the A ABC ; then B
the A ADE is given in position ; |
.. Eis a given point. Join EC.
Now, since the As ADE, ABC
are equiangular, we have

AD:AE:: AB: AC;
therefore AD:AB:: AE: AC:

and the angle DAB is evidently =EAC. Hencethe As
DAB, EAC are equiangular ; ... the angle ADB=AEC.
Hence the angle AECis right, and the line EC is given
in position; .:. the locus of C is a right line.

Cor.——By an obvious modification of the foregoing
demonstration we can prove the following theorem:—
If a A be given in species, and have one angular point
given in position ; then if a second angular point move
along a given ©, the locus of the third angular point
is a circle.

Prop. 10.—1If O be the centre of the inscribed circle of
the triangle ABC, then AO?* : AB.AC::s-a:s.

Dem.—Let O’bethe centre A
of the escribed © touching
BC externally; let fall the
1s OD, O'E. Join OB, OC,
OB, O’C. Now, the Zs Q
0’BO, O'CO are evidently
right Zs; ... OBO'C is a
quadrilateral inscribed in a
circle, and Z BO’O = BCO
= ACO; and BAO' = OAC. ¢
Hence the triangles O’'BA and
COA are equiangular; ... O’A:
BA :: AC: AO; ... OA,OA =AB ., AC, Ience

°/

A
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OA?: AB. AC:: 0A2: O'A.OA :: OA : O'A:: AD:
AE; but AD=s -4, and AE =s;

therefore OA?: AB.AC::(s-a):s

OA* OB s 0cC?

Cor. 1.— 7 + p o = 1.
2 -—
For OA _ 8 a.
be 8
2 -
In like manner, OB =2 b,
ca 8
0C* s—-e¢
and ab 5 °?
therefore, by addition,
0A* OB s 0c* 1

Ge T ca ab
Cor. 2.—If O', 0”, 0" be the centres of the escribed

circles, OB 02 O'A?
+ -—
ca ab be
Prop. 11.—If r, R be the radii of the inscribed and

circumsersbed circles of a plane triangle, § the distance be-
tween thewr centres ; then
r r
Ris R-s-
Dem.—Let O, P be the cen-
tres of the ©Os. Join CP, and

let 1t meet the circumscribed
® in D. Join DO, and pro-

duce to meet the circumscribed
©®© in E. Join EB, OP, PF, 0
PB, BD. Since P isthe centre

of the inscribed ©, CP bisects
the £ ACB; ... the arc AD &
= the arc DB. Hence the £
ABD = DCB (III., 21); and
because PB bisects the £ ABC,
the £ PBA = PBC; ... the Z PBD = PCB + PBC
=DPB; ... DP = DB,

=-1, &c.

1.
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Again, the As DEB, PCF are equiangular ; be-
cause the angles DEB and PCF are equal, being in the
same segment, and the angles DBE and PFC are right.
Hence DE : DB:: CP : PF (iv.); ... DE.PF=DB. PC
=DP . PC.

Now, since the triangle OCD is isosceles, DP . PC
=00 - 0OP*(11,,1.);

therefore DE . PF = 0C* - OP?%;
that is, 2Rr = R? - &%;

r r
therefore 7 + 7rs =1,

Cor. 1.—=1If +', ", """ denote the radii of the escribed
©s, and &, §", 8" the distances of their centres from
the centre of the circumscribed ©, we get in like
manner

r' 7'
R TRy "

Cor. 2.—If O'T', O"T”, O"T" be the tangents from
the points O’, 0", 0" to the circumscribed © ; then
2Ry = 0'T'?, &c.
Cor. 3.—If through O we describe a ©, touching
the circumscribed ©, v
and touching the dia-

meter of 1it, which
passes through P, this

-1, &ec.

O will be equal to the R a

inscribed © ; and simi- R

lar Propositions hold P C

for circles passing 0 9
through the points O’, _ A < 7
OI/, OHI. A P Q' 4

Prop. 12. — If two
triangles be such that the
lines joining correspond-
ing vertices are concur- X
rent, then the points of
intersection of the corresponding sides are collinear.
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Let ABC, A’B'C’ be the two As, having the lines
joining their corresponding vertices meeting in a
point O: it is required to prove that the three points
X, Y, Z, which are the intersections of corresponding
sides, are collinear.

Dem.—From A, B, C let fall three pairs of 1Ls on
the sides of the A A’B’C’; and from O let fall three Ls
'y p”y p""" on the sides B'C/, A/, A'B'.

Now we have, from Cor., Prop. 3,

AP __27”’ BQ _ Z?' OR B "
AP —_29”’ BQ/ "pm’ CR’ “1_97’

Hence the product of the ratios,

AP BQ CR . ¢
AP” BQ® CRT Y
Again we have, independent of sign, (IV.)

AZ_AP BX _BQ (Y _CR
ZB  BQ” XC CR” AY AP”"

Hence the product of the three ratios

AZ BX C(CY
ZB’ X(C YA

is equal to the product of the three ratios

AP BQ OR
BQ” COR” AP

and, therefore, equal to unity. Hence, by Cor., Prop. 4,
the points X, Y, Z are collinear.

Cor.—If two As be such that the points of inter-
section of corresponding sides are collinear, then the
lines joining corresponding vertices are concurrent.
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Observation.—Triangles whose corresponding vertices lie on
concurrent lines have received different names from geometers.
SarmMoN and PoNcELET call such triangles Zomologous. These
writers call the point O the centre of homology ; and the line XYZ
the axis of homology. TownsexD and CrLEBscH call them tri-
angles in perspective ; and the point O, and the line XYZ the
centre and the axis of perspective.

Prop. 13.— When three triangles are two by two in
perspective, and have the same axis of perspective, their
three centres of perspective are collvnear.

5"
5’
m"
a’ c
c’ c”
<
4
B A ) C

Let abe, a'b'¢’, o''b" ¢ be the three As whose corre-
sponding sides are concurrent in the collinear points
A, B, C. Now let us consider the two As ad’a”, bb’b”
formed by joining the corresponding vertices a, o/, a”,
b, b', b, and we see that the lines abd, a'd’, a"b" jommg
correspondmg vertices are concurrent the1r centre of
perspective being C. Hence the intersections of their
corresponding sides are collinear; but the intersections
of the corresponding sides of these As are the centres
of perspective of the As abe, a'0’¢’, o”0"¢”. Hence the
Proposition is proved.

Cor.—The three As ad'a’, 60’0, cc’¢” have the same
axis of perspective; and their centres of perspective
are the points A, B, C. Hence the centres of perspec-
tive of this triad of As lie on the axis of perspective
of the system abe, a'd'¢’, a"'8"¢”, and conversely.
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Prop. 14.— When three triangles which are two by two
i perspective have the same centre of homology, their three
azes of homology are concurrent.

rn
»n 7 r
(¢4
A
mwy r
0
CZ'
c' c
& 7
) K
6' 5 re
0O b
n'

71:

Let abe, a'b'¢’, a"'b"¢” be three As, having the point
'O as a common centre of perspective. Now, let us
consider the two As formed by the two systems of
lines ab, a't’, a"’0"; and ac, a'c’, a''¢” ; these two As are
in perspective, the line Oaa’'a” being their axis of
perspective. Hence the line joining their correspond-
ing vertices are concurrent, which proves the Pro-
position.

Cor.—The two systems of As, viz., that formed by
the lines ab, a'0’, a'b" 5 be, b'¢’, b"'¢"; ca, o', ¢'a"”; and
the system abe, @'b'¢/, @’ 8" ¢"”, have corresponding pro-
perties—namely, the three axes of perspective of either
system meet in the centre of perspective of the other
system.

Prop. 15.—We shall conclude this section with the
solution of a few Problems :—
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To descrobe o rectangle of given area, whose four
szdes shall pass through four given points.

Analysis.—Let ABCD be , Q1 3

the required rectangle; E, F, \

G, H the four given pomts I H
Through E draw EI | to AD; g| - )

and through H draw HJ | to

AB, and HO L to EG; and p B C

draw JK 1L to HO produced.

Now it is evident that the As EIG, JHK, are equi-
angular ; .*. the rectangle EI . JH = EG . HK; but
El . JH = area of rectangle, and is given; .°. the rect-
angle EG . HK is given, and EG is given; ... HK is
given. Hence the line KJ is given in position ; and
since the angle FJH is right, the semicircle described
on HF will pass through J, and is given in position.
Hence the point J, being the intersection of a given
line and a given ©, is given in position ; therefore the
line FJ is given in position.

(2). Grven the base of a triangle, the perpendicular, and
the sum of the sides, to construct ot.

Analysis.—Let ABC be the A, CP the 1 ; and let
DE be the diameter of the cir-

cumscribed ©, which is L to 5 o
AB; draw CH | to AB. H
Now the rectangle DH . EG is
equal to the square of half sum yd
of the sides (IV., 8); ... DH.EG F
is given ; and DG . GE = square

of GB, and is given. Hence o/ p /B
the ratio of DH.GE : DG. GE _
is- given; .*. the ratio of DH

: DG is given. Hence the ratio b

of GH : DG is given; but GH is = to the L, and is
given ; hence DG is given; then, if AB be given in
position, the point D is given ; .. the © ADB is given
in position, and CH at a given distance from AB is
given in position. Hence the point C is given in posi-
tion.
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The method of construction derived from this ana-
lysis is evident.

Cor.—If the base, the perpendicular, and the diffe-
rence of the sides be given, a slight modification of the
foregoing analysis will give the solution.

3). Gven the base of a triangle, the vertical angle, and
the bisector of the vertical angle, to construct the triangle.

Analysis.—Let ABC be the required A, and let the
base AB be given in position; then, since AB is given
in position and magnitude, and the £ ACB is given in

magnitude, the circumscribed ©

is given in position. Let CD, C
the bisector of the vertical £,

meet the circumscribed © in E,

then Eis a given point. Hence

EB 1s given in magnitude. A\% R

Now ED . EC = EB* (I1L,,
20, Cor. 2); .. the rectangle
ED . EC is given, and CD is
given (Hyp.). Hence ED, EC
are each given, and the @ descnbed from E as centre,
with EC as radius, is given in position. Hence the point
C is given, and the method of construction is evident.
Cor.—From the foregoing we may infer the method
of solving the Problem : Given the base, vertical angle,
and external bisector of the vertical angle.

(4). Gwen the base of a triangle, the dwferenoe of the
base angles, and the difference of

the sides, to construct it.

Analysis.—Let ABC be the

required A; then the rect-

angle EF . GD = thke square of

half the difference of the sides

(IV., 8); ... EF.GDis given;

and EF.FD = FB? is given. \ w
: EF . FD is given. Hence

the ratio of FD : GD is given.

Hence the ratio of EF . GD
Again, the Z CED = half the difference of the base £ s,
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and is given; and DCE is a right £Z; ... A DCE is
given in species, and CGD is equiangular to DCE;
.. CGD 1is given in species; .*. the ratios of GD : DC
and of DC:DE are given. Hence the ratio of FD : DE
is given; therefore the ratio of DF :FE is given, and
their rectangle is given. Hence DF and FE are each
given. Hence the Proposition is solved.

Cor.—In a like manner we may solve the Problem :
(iven the base, the difference of the base angles, and
the sum of the sides to construct the triangle.

5). Tb construct a quadrilateral of given species whose
. g g L
Jour sides shall pass through four given povnts.

»
¥

Analysis.—Let ABCD be the required quadrilateral,
P, Q, R, S the four given points. Let E, F be the ex-
tremities of the third diagonal. Now, let us consider
the A ADF; it isevidently given in species, and PQR

G
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is an inscribed triangle given in species. Hence, if M
be the point of intersection of circles described about
the As PAQ, QDR, the A MAD is given in species.-—
See Demonstration of (I1I., 17).

In like manner, if N be the point of intersection of
the Os about the As QAP, PBS, the A ABN is given
in species. Hence the ratios AM: AD and AN: AB
are given ; but the ratio of AB to AD is given, because
the figure ABCD is given in species. Hence the ratio
of AM: AN is given; and M, N are given points;
therefore the locus of A is a circle (7); and where this
circle intersects the circle PAQ is a given point. Hence
A is given.

Cor.—A suitable modification of the foregoing, and
making use of (III., 16), will enable us to solve the
cognate Problem—To describe a quadrilateral of given
species whose four vertices shall be on four given
lines.

(6). Given the base of a triangle, the difference of the
base angles, and the rectangle of the sides, construct it.

(7). Given the base of a triangle, the vertical angle, and
the ratio of the sum of the sides to the altitude: construct
et.

SECTION II.

CENTRES OF SIMILITUDE.

Der.—1If the line joining the centres of two circles be
diwvided vnternally and externally in the ratio of the rade
of the circles, the points of division are called, respectively,
the internal and the external centre of similitude of the
two cureles.

From the Definitions it follows that the point of
contact of two circles which touch externally is an in-
ternal centre of similitude of the two circles; and the
point of contact of two circles, one of which touches
another nternally, is an external centre of similitude.
Also, since a right line may be regarded as an infinitely
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large circle, whose centre is at infinity in the direction
perpendicular to the line, the centres of similitude of a
line and a circle are the two extremities of the diameter
of the circle which is perpendicular to the line.

Prop. 1.—The direct common tangent of two circles
passes through their external centre of similitude.

Dem.—Let O, O’ p
be the centres of the .
Os; P, P’ the points P
of contact of the 0 o n
common tangent;
and let PP’ and OO’ U U
produced meet in T ;
then, by similar As,

OT:0T:: 0P : 07T,

Hence the line OO’ is divided externally in T in the
ratio of the radii of the circles; and therefore T is the
external centre of similitude.

Cor. 1.—It may be proved, in like manner, that the
transverse common tangent passes through the internal
centre of similitude.

Cor. 2.—The line joining the extremities of parallel
radii of two ©Os passes through their external centre of
similitude, if they are turned in the same direction;
and through their internal centre, if they are turned
in opposite directions.

Cor. 8.—The two radii of one © drawn to its points
of intersection, with any line passing through either
centre of similitude, are respectively | to the two
radil of the other ©® drawn to its intersections with
the same line.

Cor. 4.—All lines passing through a centre of
pimilitude of two s are cut in the same ratio by
the Os.

Prop. 2.—If through a centre of simelitude of two cireles
we draw a secant cutting one of them tn the points R, R/,

and the other in the corresponding points S, S'; then
G 2
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the rectangles OR . OF, OR'.OS are constant and
equal.

g
Dem.—Let @, & de- S g

note the radii of the

circles ; then we have 0

(Cor. 3, Prop. 2), \//
a:b::08:0R;

therefore : 0S.0%: OR.O¥;

but OS . OS’=square of the tangent from O to the circle
whose radius is @, and is therefore constant. Hence,
since the three first terms of the proportion are con-
stant, the fourth term is constant.

In like manner, it may be proved that OR' . OS is a
fourth proportional to @, & and OS . OS’; .. OR'. OS
is constant.

Prop. 8.—The sux centres of similitude of three circles
lie three by three on four lines, called axes of similvtude
of the circles.

Dem.—Let the radii of the Os be denoted by a, b, ¢,
their centres by A, B, C; the external centres of simi-
litude by A’, B, C’ and their internal centres by
A", B, C”. N oW, by Definition,

AC __a,
¢B b
BA' 6_
A'C ~  o?
B _ ¢
BA &

Hence the product of the three ratios on the right is
negative unity; and therefore the points A/, B’, €’ are
collinear ( Cor. 1, Prop. 4).
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Again, let us consider the system of points A/, B”,
C’. We have, as before,

AC’__ @
053
BAH— -b_'
AC T ¢?
CB"_o
B"A  a

Hence the product of the ratios in this case also is
negative unity ; and ... A”, B”, C' are collinear ; and
the same holds for A/, B”, C”; A”, B/, C”. Hence the
collinearity of centres of similitude will be one exter-
nal and two internal, or three external centres of
similitude.

Cor. 1.—If a variable © touch two fixed ©s, the
line joining the points of contact passes through a
fixed point, namely—a centre of similitude of the two
©s; for the points of contact are centres of similitude.

Cor. 2.—1If a variable © touch two fixed ©s, the
tangent drawn to it from the centre of similitude
through which the chord of contact passes is constant.

Prop. 4.—If two circles touch two others, the radical
axvs of evther pavr passes through a centre of similitude of
the other pair.

Dem.— Let the two

©®s X, Y touch the

two©Os W,V;1letR, R’ .

be their points of con- NN

tact with W, and S, &’ °> 0
with V. Now, con- Y

sider the three ©s

X, W, Y; R, R are

internal centres of si-

militude. Hence the

line RR’ passes through the external centre of simili-
tude of X and Y.
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In like manner, the line S8 passes through the
same centre of similitude. Hence the point O, where
these lines meet, will be the external centre of simili-
tude of X and Y; and ... the rectangle OR . OR’
= 0OS . OY (Prop. 2); ... tangent from O to W = tan-
gent from O to V, hence the radical axis of W and V
passes through O.

Der.—The circle on the interval, between the centres of
simulitude of two circles as diameter, vs called thevr cvrele
of similitude.

Prop. 5.—The circle of similitude of two circles vs the
locus of the vertex of a triangle whose base ts the interval

between the centres of the circles, and the ratio of the sides
that of thewr radur.

Dem.—When the base and the ratio of the sides are
given, the locus of the vertex (see Prop. 7, Section I)
is the © whose diameter is the interval between the
points in which the base is divided in the given ratio
internally and externally; that is, in the present case,

the ©® of similitude.

Cor. 1.—If from any point in the © of similitude of
two given Os lines be drawn to their centres, these
lines are proportional to the radii of the two given ©s.

Cor. 2.—1If, from any point in the © of similitude of
two given Os, pairs of tangents be drawn to both ©s,
the angle between one pair is equal to the angle between
the other pair.

This follows at once from Cor. 1.

Cor. 3.—The three ©Os of similitude of three given
©s taken in pairs are coaxal.

For, let P, P’ be the points of intersection of two
of the ©Os of similitude, then it is evident that the
lines drawn from either of these points to the centres
of the three given ©Os are proportional to the radii of
the given ©Os. Hence the third © of similitude must
pass through the points P, P’. Hence the ®Os are
coaxal.

Cor. 4.—The centres of the three Os of similitude
of three given s taken in pairs are collinear.
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SECTION III.
TrrorY 0F HARMONIC SECTION.

Der. — If a line AB be divided internally vn the
pownt C, and ex- o ¢ B
ternally —on  the '—
point D, so that the ratvo AC : CB = - ratio AD : DB;
the pomts C and D are called harmonic conjugates to
the points A, B.

Since the segments AC, CB are measured in the same
direction, the ratio AC : CB is positive; and AD, DB
being measured in opposite directions, their ratio is
negative. This explains why we say AC : CB=- AD
: DB. We shall, however, usually omit the sign minus,
unless when there is special reason for retaining it.

Cor.—The centres of similitude of two given circles
are harmonic conjugates, with respect to their centres.

D

Prop. 1.—1If C and D be harmonic conjugates to A and
B, and if AB be bisected in O, then OB is a geometric
mean betiween OC and OD.

Dem.— AC:CB:: AD: DB;
AC-CB AC+CB_ AD-DB AD+DB
2 ) 2 "t 2 ) 2 ?

or OC:0B:: OB : OD.

Hence OB is a geometric mean between OC and OD.

Prop. 8.—1If C and D be harmonic conjugates to A and
B, the circles described on AB and CD as diameters inter-
sect each other orthogonally. P

Dem.—Let the Os inter-
sect in P, bisect AB in O; A o/ [c 1B D

join OP; then, by Prop. 2,
we have 0C.O0D =0B*= OP=.
Hence OP is a tangent to the

circle CPD, and therefore the ©Os cut orthocronally
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Cor. 1.—Any © passing through the points C and
D will be cut orthogonally by the ® described on AB
as diameter.

Cor. 2.—The points C and D are inverse points with
respect to the @ described on AB as diameter.

Der.—If C and D be harmonic conjugates to A. and B,
A B s called @ harmonic mean between AC and AD.

Observation.—This coincides with the the algebraic Defini-
tion of Aarmonic mean.

For AC, AB, AD being three magnitudes, we have
AC:CB:: AD: BD;
therefore AC:AD:: CB : BD;

that is, the 1st is to the 3rd as the difference between
the 1st and 2nd is to the difference between the 2nd
and 3rd, which is the algebraic Definition.

Cor.—In the same way it can be seen that DC is a
harmonic mean between DA and DB.

Prop. 8.—The Arithmetic mean vs to the Geometric
mean as the Geometric mean is to the Harmonic mean.

Dem.—Upon AB as diameter describe a @ ; erect
EF at right angles to AB through C; draw tangents to
the © at E, F, meeting in D;

B
then, since the A OED is right-
angled at E, and EC is L to o

0D, we have OC . OD = OF? A < B >p
= OB? Hence, by Prop. 1, C /
and D are harmonic conjugates 4

to A and B. Again, from the ¥

same A, we have OD : DE : : DE: DC; but OD =
+ (DA + DB) = arithmetic mean between DA and DB;
and DE is the geometric mean and DC the harmonic
mean between DA and DB.

Cor.—The reciprocals of the three magnitudes DA,
DO, DB are respectively DB, DC, DA, with respect to
DE?; but DA, DO, DB are in arithmetical progression,
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Hence the reciprocals of lines in arithmetical progression
are in harmonical progression.

Prop. 4.—Any line cutting a circle, and passing through
a fized point, is cut harmonically by the circle, the point,
and the polar of the point.

Let D be the point, EF its polar, DGH a lme cut-
ting the ® in the points G and H, and the polar of D

in the point J; then the H
points J, D will be har- E
monic conjugates to H and J
G.
Dem.—Let O be the cen- 0 £ D
tre of the ®; from O let
fall the L OK on HD; then, /
since K and C are right Zs, 7

OKJC is a quadrilateral in a

®; .. 0D.DC=KD.DJ; butOD.DC=DE?; ... KD.DJ
= DE2. Hence KD : DE:: DE : DJ; and since KD,
DE are respectively the arithmetic mean and the
geometric mean between DG and DH, DJ (Prop. 3.)
will be the harmonic mean between DG and DH.

The following is the proof usually given of this
Proposition :—Join OH, OG, CH, CG. Now OD . DC
=DE?*=DH . DG; ... the quadrilateral HOCG 1is in-
scribed in a (D ; .-. the angle OCH = OGH ; and DCG
= OHD; but OGH = OHD; ... OCH = DCG. Hence
HCJ = GCJ ; hence CJ and CD are the internal and
external bisectors of the vertical angle GCH of the
triangle GCH ; therefore the points J and D are har-
monic conjugates to the points H and G. Q. E. D.

Cor. 1.—1f through a fixed point D any line be
drawn cutting the ® in the points G and H, and if
DJ be a harmonic mean between DG and DH, the
locus of J is the polar of D.

Cor. 2.—In the same case, if DK be the arithmetic
mean between DG and DH, the locus of K is a ©,
namely, the © described on OD as diameter, for the
£ OKD is right,
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Prop. 5.—1If ABC be a triangle, CE a line through
the vertex parallel to the base AB; then any transversal
through D, the middle of AB, will meet CE wn a point, which
will be the harmonic conjugate
of D, with respect to the points p E
wn which 1t meets the sides of
the triangle.

Dem.—From the similar
As FCE, FAD we have A B
EF : FD :: CE : AD; but
AD=DB; . EF : FD:: CE

: DB.

Again, from the similar
As CEG, BDG, we have F
CE:DB:: EG:GD;

therefore EF : D :: EG : GD. Q.E.D.

Ders.—If we join the points C, D (see last diagram),
the system of four lines CA, CD, CB, CE us called a har-
monte pencil; each of the four lines is called ray ; the
pownt C s called the vertex of the pencil s the altemate
rays CD, CE are said to be harmonic conjugates with
respect to the rays CA, CB. We shall denote such a
pencil by the notation (C . FDGE), where C s the vertex;
CF, CD, CG, CE the rays.

Prop. 6.—If @ line AB be cut harmonically in C and D,
and a harmonic pencil (O . ABCD) formed by joining the
points A, B, C, D to any
point O ; then, if through C,
a parallel to OD, the ray
conjugate to OC be drawn,
meeting OA, OB i G and H,
GH well be bisected in C.

Dem.—
OD:CH::DB: BC;
and OD : GC :: DA : AC;
but DB : BC :: DA : AC; &
OD:CH:; OD ;: GC, Hence GC = CH.
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Cor.—Any transversal A’B'C'D’ cutting a harmonic
pencil is cut harmonically.

For, through (' draw G'H’ | to GH; then, by
Prop. 8, Section I., G'C’: C’H' :: GC: CH; ... G'C’
= 0'H’. Hence A’B'C'D’ is cut harmonically.

Prop.'7.—The line joining the intersection of two oppo-
stte sides of a quadrilateral with the intersection of uts
diagonals forms, with the third diagonal, a par of rays,
which are harmonic conjugates with these sides.

Let ABCD be the quadrila-
teral whose two sides AD, BC
meet in F ; then the line FO,
and the third diagonal FE,
form a pair of conjugate rays
with FA and FB.

Dem.—Through O draw OH
|| to AD; meet BC in @G, and
the third diagonalin H. Then
OG = GH (Prop. 8, Section I.). Hence the pencil

(F . AOBE) is harmonic. In like manner the pencil
(E . AODT) is harmonie.

Prop. 8. — If four collinear points form a harmonie

system, their four polars with respect to any cirele form
a harmonic pencil.

Let A, C, B, D be the four points, P the pole of
their line of collinearity with respect to the © X ; let
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O be the centre of X. Join OA, OB, OC, OD, and let
fall the Ls PA’, PB’, PC/, PD’ on these lines; then,
by Prop. 25, Section I., Book III., PA’, PB/, PC/, PD’
are the polars of the points A, B, C, D ; and since the
angles at A/, C/, B/, D’ are right, the © described on OP
as diameter will pass through these points ; and since the
system A, B, C, D is harmonic, the pencil (O . ABCD)
is harmonic ; but the angles between the rays OA, OB,
OC, OD are respectively equal to the angles between
the rays PA’, PB’, PC’, PD’ (I1l., xxi.). Hence the
pencil (P . A'B C’D’) is harmonic.

Der.—Four points in a circle which connect with any
Jifth point vn the circumference by four lines, forming a
harmonic pencil, are called a harmonie sg/stem of points
on the circle.

Prop. 9.—If from any point two tangents be drawn
to a circle, the points of contact and the points of intersec-
tion of any secant from the same point form a harmonic
system of points. Q

Dem.—Let Q be the point, QA,
QB tangents, QCD the secant;
take any point P in the circumfe-
rence of the ©, and join PA, PC, , E \p
PB, PD; then, since AB is the
polar of Q, the points E, Q are
harmonic conjugates to C and D ;

.. the pencil (A . QCED) is har- p
monic; but the pencil (P . ACBD)

is equal to the pencil (A . QCED),
for the angles between the rays of one equal the angles
between the rays of the other ; therefore the pencil
(P . ACBD) is harmonic. Hence A, C, B, D form a
harmonic system of points.

Cor. 1.—1f four points on a O form a harmonic
system, the line joining either pair of conjugates
passes through the pole of the line joining the other
pair.

Cor. 2.—1f the angular points of a quadrilateral
inscribed ina © form a harmonic system, the rectangle

D
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contained by one pair of opposite sides is equal to the
rectangle contained by the other pair.

Prop. 10.—If through any point O two lines be drawn
cutting a circle wn four points, then jovning these points
both directly and transversely ; and if the direct lines meet
wn P and the transverse lines meet in Q, the line PQ will
be the polar of the point O.

P

Dem.—Join OP ; then the pencil (P. OAEB) is har-
monic (Prop. 7); ... the points O, E are harmonic
conjugates to the points A, B. Hence the polar of O
passes through E (Prop. 4). In like manner, the
polar of O passes through F; ... the line PQ, which

passes through the points E and F, is the polar of O.
Q. E.D.

Cor.1.—If we join the points O and Q, it may be
proved in like manner that OQ is the polar of P.

Cor. 2.—Since PQ is the polar of O, and 0Q the
polar of P, then ( Cor. 1, Prop. 16, Section 1., Book IIT.)
OP is the polar of Q.

Der.—Triangles such as OPQ, which possess the pro-
perty that each side 1s the polar of the opposite angular
point with respect to a gwen circle, are called self-con-
Jugate triamgles with respect to the circle. Again, if we
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consider the four points A, B, C, D, they are joined by
three pavrs of lines, which intersect in the three points
0, P, Q respectively ; then, on account of the harmonic
properties of the quadrilateral ABCD and the triangle
OPQ, 7 propose to call OPQ the harmonic triangle of the
quadrilateral.

Prop. 11.—If a quadrilateral be inscribed wn a circle,
and at vts angular points four tangents be drawn, the six
pownts of intersection of Lhese four tangents lie tn pairs on
the sides of the harmonic triangle of the inscribed quadii-
lateral.

Dem.—Let the tangents at A and B meet in K (see
fig., last Prop.); then the polar of the point K passes
through O. Hence the polar of O passes through K;
therefore the point K lies on PQ. In like manner,
the tangents at C and D meet on PQ. Hence the Pro-
position is proved.

Cor. 1.—Let the tangents at B and C meet in L, at
Cand Din M, at Aand D in N; then the quadrilateral
KLMN will have the lines KM (PQ) and LN (0OQ) as
diagonals ; therefore the point Q is the intersection of
its diagonals. Hence we have the following theorem : —
If & quadrilateral be nscribed in @ circle, and tangents be
drawn at ts angular points, forming a circumscribed
quadrilateral, the diagonals of the two quadrilaterals are
concurrent, and form a harmonic pencil.

Cor. 2.—The tangents at the points B and D meet
on OP, and so do the tangents at the points A and C.
Hence the line OPisthe third diagonal of the quadrila-
teral KLMN ; and the extremities of the third diagonal
are the poles of the lines BD, AC. Now, since the lines
BD, AC are harmonic conjugates to the lines QP, QO,
the poles of these four lines form a harmonic system
of points. IHence we have the following theorem :—
If tangents be drawn at the angular points of an inscribed
quadrilateral, forming a circumseribed quadrilateral, the
third diagonals of these two quadrilaterals are coincident,
and the extremities of one Gre harmonic conjugates to
the extremities of the other.
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SECTION IV.

TaEFoRY oF INVERSION.#*

Der.—1If X be a circle, O vts centre, P and Q two points
on any radius, such that the rectangle OP . OQ = square
of the radvus, then P and Q are called inverse points
with respect to the circle. Q

If one of the points, say Q, de-
scribe any curve, a circle for in-
stance, the other point P will
describe the inverse curve.

‘We have already given in Boolk \

II1., Section I., Prop. 20, the in- ’X
version of a right line; in Book I'V.,

Section I., Prop. 7, one of its most important appli-
cations. This section will give a systematic account
of this method of transformation, one of the most
elegant in Geometry.

Prop. 1.— The inverse of a circle is either a line or a
circle, according as the centre of inversion vs on the cir-
cumference of the circle or not on the circumference.

Dem.— We have proved the first case in Book III. ;
the second is proved as R
follows :—Let Y be the P
© to be inverted, O the 9
centre of inversion ; take
any point P in Y; join O D
OP, and make OP . 0Q
= constant (square of ra-
dius of inversion); then
Q is the inverse of P: it is required to find the locus of
Q. Let OP produced, if necessary, meet the © Y again

* This method, one of the most important in the whole range of
Geometry, is the joint discovery of Doctors Stubbs and Ingram,
Fellows of Trinity College, Dublin (see the Transactions of the
Dublin Philosophical Society, 1842). The mnext writer that
employed it is Sir William Thomson, who by its aid gave geo-
metrical proofs of some of thefnost difficult propositions in the
Mathematical Theory of Electricity (see Clerk Maxwell on
¢ Electricity,” Vol. I., Chapter x1).
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at R ; then the rectangle OP . OR = square of tangent
from O (III.xxxvi.), and .'. = constant, and OP . OQ
is constant (hyp.); ... the ratio of OP . OR : OP . OQ
is constant : hence the ratio of OR : OQ is constant.
Let C be the centre of Y; join OC, CR, and draw QD
| to CR. Now OR :0Q :: CR: QD; .-. the ratio of
CR : QD is constant, and CR is constant; ... QD is
constant. In like manner OD is constant; ... D is a
given point; ... the locus of Q is a ©, whose centre
is the given point D, and whose radius is DQ.

Cor. 1.—The centre of inversion O is the centre of
similitude of the original circle Y, and its inverse.

Cor. 2.—The circle Y, its inverse, and the circle of
inversion are coaxal. For if the © Y be cut in any
point by the © of inversion, the © inverse to Y will
pass through that point.

Prop. 8.—1If two circles, or a line and a circle, touch
each other, their inverses will also touch each other.

Dem.—Iftwo ©Os, or a line and a ® touch each other,
they have two consecutive points common ; hence their
inverses will have two consecutive points common, and
therefore they touch each other.

Prop. 8.—If two circles, or a line and a cvrcle, intersect
each other, their angle of intersection is equal to the angle
of intersection of their inverses.

Dem.—Let PQ, PS be
parts of two s inter-
secting in P ; let O be the
centre of inversion. Join
OP; let Q and S be two
points on the ©Os very
near P. Join 0Q, OS, PQ,
PS; and let R, U, V be
the inverses of the points
P, Q, S. Join UR, VR,
and produce OP to X.
Now, from the construc-
tion, U and V are points O
on the inverses of the ©s PQ, PS. And since the rect-
angle OP . OR = rectangle 0Q . OU, the quadrilateral
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RPQU is inscribed in a ©; .. the Z ORU = 0QP;
and when Q is infinitely near P, the £ OQP = QPX;
.. the Z ORU is ultimately = QPX. In like manner,
the Z ORYV is ultimately equal to the Z SPX; .-. the
Z URV is ultimately equal to the £ QPS. Now
QP, SP are ultimately tangents to their respective
circles, and .*. the Z QPS is their angle of intersection,
and URV is the angle of intersection of the inverses
of the circles. Hence the Proposition is proved.

Prop. 4 —Any two circles can be tnverted wnto them-

selves.
A e
v , Q
A P D

o

Dem.—Take any point O in the radical axis of the
two ©Os; and from O draw two lines OPP’, 0QQ/,
cutting the ©s in the points P, P/, Q, Q'; then the
rectangle OP . OP’ = the rectangle OQ . OQ’ = square of
tangent from O to either of the circles, and ... equal
to the square of the radius of the circle whose centre
1s O, and which cuts both circles orthogonally. Hence
the points P/, Q' are the inverses of the points P and
Q with respect to the orthogonal circle ; and therefore
while the points P, Q@ move along their respective
circles, their inverses, the points P/, @, move along
other parts of the same circles,

H
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Cor. 1.—The circle of self-inversion of a given circle
cuts it orthogonally. |

Cor. 2.—Any three circles can be inverted into them-
selves, their circle of self-inversion being the circle
which cuts the three circles orthogonally.

Cor. 3.—If two circles be inverted into themselves,
the line joining their centres, namely ABCD, will be
inverted into a circle cutting both orthogonally; for
the line ABCD cuts the two circles orthogonally.

Cor. 4.—Any circle cutting two circles orthogonally
may be regarded as the inverse of the line passing
through their centres.

Cor. 5.—If ABCD be the line passing through the
centres of two circles, and A’B’C'D’ any circle cutting
them orthogonally ; then the points A’, B’, (!, D’ being
respectively the inverses of the points A, B, C, D, the
four lines AA’, BB/, CC’, DD’ will be concurrent.

Cor. 6.——Any three circles can be inverted into three
circles whose centres are collinear.

Prop. 5.—Any two circles can be tnverted wnto two
equal cvreles.

Dem.—Let X, Y be the original Os, » and #’ their
radii; let V, W be the in-
verse Os, p and p’ their
radii; and let O be the
centre of inversion, and T,
T’ the tangents from O to
X and Y, and R the radius
of the circle of inversion.
Then, from the Demonstra-
tion of Prop. 1, we have

r:p ::T? : R?;
i pl i T RA
Hence, since p = p/, we have

rir o T% . T?y

.. the ratio of T? : T" is given; and, consequently, the
ratio of T : 1" is given. Hence if a point be found,
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such that the tangents drawn from it to the two Os
X, Y will be in the ratio of the square roots of their
radii, and if X, Y, be inverted from that point, their
inverses will be equal. It will be seen, in the next
Section, that the locus of O is a circle coaxal with X
and Y.

Cor. 1.—Any three circles can be inverted into three
equal circles.

Cor. 2.—Hence can be inferred a method of de-
scribing a circle to touch any three circles.

Cor. 3.—If any two circles be the inverses of two
others, then any circle touching three out of the four
circles will also touch the fourth.

Cor. 4.—1If any two points be the inverses of two
other points, the four points are concyeclic.

Prop. 6.—If A and B be any two points, O a centre
of wnversion ; and of the inverses of A, B be the points
A, B, and p, ¢, the perpendiculars from O on the lines
AB, A'B’; then AB : A'B' :: p : p'.

Dem.—Since O is the centre of inversion, we have

OA . OA’= OB . OB/;
therefore QA : OB :: OB’ : OA’.

And the angle O is common to thetwo As AOB, A'OB’;
.*. the As are equiangular. Hence the Proposition is
proved.

Prop. 7.—If A, B, C... L be any number of col-
linear points, we have

AB+BC+CD..+LA=0.

(Since LA is measured backwards, it is regarded as
negative.) Now, let p be the L from any point O on
the line AL and, dividing by p, we have

AB BC CD LA
A+ —=0.

+ + —.
D D VY D
Let the whole be inverted from O; and, denoting the
H 2
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inverses of the points A, B, C... L by A/, B/, C'.
L/, we have from the last Article the following general
theorem :—If a polygon A'B'C’'...L' of any number
of sides be inscribed tn @ circle, and if from any point
in 1ts circumference perpendiculars be let fall on the sides
of the polygon ; then the sum of the quotients obtained by
dividing the length of each side by its perpendicular s
%ero.

Cor. 1.—Since one of the Ls must fall externally
on its side of the polygon, while the other Ls fall in-
ternally, this L must have a contrary sign to the re-
mainder. Hence the Proposition may be stated thus:—
The length of the side on which the perpendicular falls
externally, divided by its perpendicular, is equal to the sum
of the quotients arising by dwiding each of the remaining
sudes by 1ts perpendicular.

Cor. 2.—Let there be only three sides, and let the
1ls be a, B, v; then, if a, b, ¢ denote the lengths of
the sides, &c.,

= 0.

91&

mw
~<|Q

Prop. 8.—If A, B, C, D be four collinear points, A’,
B, C', D' the four pomts smverse to them ; then

AC.BD A'C.BD

AB.CD A'B.(CD"

Dem.—Let O be the centre of inversion, and p the
1 from O on the line ABCD; and let the Ls from O
on the lines A’D’, A’'C’, B'D', C'D’ be denoted by a, f,
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¥, 8. Then, by Prop. 6, we have the following equali-
ties :—

AC=A’C[;°p;
BD:B’D;°p;
AB__:A'B;.p;
0D=C’Dé.p

Hence multiplying, and remembering that the rectangle

By is equal to the rectangle ad (see Prop. 11, Section I.,
Book II1.), we get

AC.BD _ A'C'.BD
AB.CD ~ AB.CD"

009’.1.—
AC.BD: AB.CD: AD. BC

:: A'C’ .B'D': A’B’. C'D': A'D". B'C.

Cor. 2.—If the points A, B, C, D form a harmonic
system, the points A’, B, C', D’ form a harmonic system.
In other words, the inverse of a harmonic system of
points forms a harmonic system.

Cor. 3.—If AB = BC; then the points A’, B/, C/, O
form a harmonic system of points.

Prop. 9.—1If two circles be snwerted into two others, the
square of the common tangent of the first pair, divided by
the rectangle contarned by thewr diameters, is equal to the
square of the common tangent of the second pair, dwided
by the rectangle contained by their diameters,
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Déem.—Let X, Y be the original ®s, X/, Y’ their
inverse ®s, ABCD the line through the centres of X
and Y, and let the inverse of the line ABCD be the ©
A'B'C'D’; then, since the line ABCD cuts orthogonally
the ©s X, Y, itsinverse, the © A’B'C’'D’, cuts orthogo-
nally the ®s X, Y. Let abed be the line through the

centres of the ®s X/, Y’y then abed cuts the Os X,
Y’ orthogonally; hence the ® A’B’C’'D’ is the inverse
of the line abed with respect to a @ of inversion, which
inverts the ®s X', Y’ into themselves (see Prop. 4,
Cor. 8). Hence, by Prop. 8, each of the ratios

AC .BD ac.bd

AB.CD’ 4b.cd
is equal to the ratio
A'C’.BD
A'B. CD’
AC.BD ac.bd
AB.CD ~ab.od

The numerators of these fractions are equal respectively

therefore
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to the squares of the common tangents of the pairs of
circles X, Y; X', Y’ (see Prop. 8, Section I., Book III).
Hence the Propos1t1on »

is proved.

Cor. 1.—If C,, C,,
(s, &c., be a series of
circles, touching two
parallel lines, and also
touching each other; !
then it is evident, by makmg the diagram, that the
square of the divect “common tangent of any two of
these circles, such as C,, C,, ;,, which are separated by
(n ~ 1) circles, is = #* times the rectangle contained by
their diameters. Hence, by inversion and by the theo-
rem of this Article, we have the following theorem :—
If A and B be any two semicircles in contact with each
other, and also tn contact with another semicirele, on
whose drameter they are described ; and if circles C,, Cy, Cq
be described, touching them as wn the diagram, the L
from the centre of C, on the line AB = n times the
dvameter of C,, where n denotes any of the natural num-
bers 1, 2, 8, &e.

This theorem will immediately follow by completing
the semicircles, and describing another system of circles
on the other s1de equal to the system C,, C;, C;, &c., and
similarly placed.*

Prop. 10.—1If four circles be all touched by the same
corcle; then, denoting by 12, the common tangent of the

1st and 2nd, &e.,
12.34+ 14, 23=13. 24.
Dem.—Let A, B, C, D be four points taken in order

on a right line ; then, by Prop. 7, Section 1., Book II.,
we have

AB.CD +BC.AD=AC. BD.

Now, let four arbitrary circles touch the line at the

* The theorem of this Cor. is due to Pappus. See Steiner's
Gesammelte Werke, Band 1., Seite 47.
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points A, B, C, D, and let their diameters be 9, &, 8",
&3 then we have

AB.CD N BC.AD AC.BD
V3 TS ST B A . 5
and by the last Proposition each of the fractions of this

equation remains unaltered by inversion. Hence, if the
diameters of the inverse circles be denoted by 4, &', d",d"”,

and their common tangents by 12, &c., we get

12. 34 23 . 41 13.24
— — = .
VaAd . ST AT SA7E NS A
Hence 12.34 +23 .14 =13 . 24.%

Cor. 1.—If four arbitrary circles touch a given circle
at a harmonic system of points; then

12. 34 =23 . 14.

Cor. 2.—The theorem of this Proposition may be
written in the form

12.84+23.14+31.24=0;

and in this form it proves at once the property of the
‘“ Nine-points Circle.” For, taking the ®s 1, 2, 3, 4
to be the inscribed and escribed Os of the A, and re-
membering that when Os touch a line on different
sides, we are, in the application of the foregoing theo-
rem, to use transverse common tangents. Hence,
making use of the results of Prop. 1, Section I., Book

IV., we get
12.34+23.14+31.24
=0 -F+F-a*+a*—-02=0.
Hence the Os 1, 2, 3, 4, are all touched by a fifth ©.

This theorem is due to Feuerbach. The following
simple proof of this now celebrated theorem was pub-

* This extension of Ptolemy’s Theorem first appeared in a
Paper of mine in the Proceedings of the Royal Irish Academy, 1866,
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lished by me in the Quarterly Journal for February,
1861 :(—

“If ABC be a plane triangle, the circle passing through

the feet of dts perpendiculars touches its vnscribed and
escribed circles.”’

E

[we]
N

I G
Q

Dem.—Let the inscribed and escribed Gs be de-
noted by O, O/, O”, O, the circumsecribed ® by X,
and the ® through feot of Ls by 3. Now, if P be
the intersection of Ls, and if the lower segments of
1s be produced to meet X, the portions intercepted
between P and X are bisected by the sides of ABC
(Prop. 13, Section I., Book IIL.). Hence 3 passes
through the points of bisection, and therefore P is the
external centre of similitude of X and 3.

Let DE be the diameter of X, which bisects BC.
Join PD, PE, and bisect them in G and H; then 3
must pass through the points G and H ; and since GH
is || to DE, GH must be the diameter of 3 ; and since 3
passes through F, the middle point of BC (see Prop. 5,
Section I., Book IV) the £ GFH is right. Agam
if from the point D three Ls be let fall on the sides of
ABC, their feet are collinear, and the line of colli-
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nearity evidently is L to AD and it bisects PD (see
Prop. 14, Section I., Book III1.). Hence FG is the line
of collinearity, and FG is L to AD. Let M be the
point of contact of O with BC; join GM, and let fall
the L HS. Now, since FM is a tangent to O, if from
N we draw another tangent to O, we have FM? = FN?
+ square of tangent from N (Prop. 21, Section I.,
Book IIIL.); but FM = % (AB - AC). Hence FM?
=FR . FI (Prop. 8, Cor. 5, Section I., Book IV.)
=FK . FN; ... square of tangent from N = FN . NK.
Again, let GT be the tangent from & to O ; then GT?
= square of tangent from N + GN?=FN . NK + GN:
= GI2% Hence the © whose centre is G and radius
GF will cut the circle O orthogonally; and ... that ©
will invert the circle O into itself, and the same ©
will invert the line BCinto 3, ; and since BC touches O,
their inverses will touch (Prop. 2). Hence 3 touches
O, and it is evident that S is the point of contact.

In like manner, if M’ be the point of contact of O’
with BC, and if we join GM/', and let fall the L HS’
on GM/, S’ will be the point of contact of 3 with O’.

Cor.—The circle on FR as diameter cuts the circles
O, O’ orthogonally.

Prop. 11.—Dr, Harr’s ExTENsioN oF FEUERBACH’S
TarorenM :—If the three sides of a plane triangle be ro-
placed by three circles, then the circles touching these, which
correspond to the inscribed and escribed curcles of a plane
triangle, are all touched by another circle.

Dem.—Let the direct common tangents be denoted,

as in PlOp 11, by 12, &c., and the transverse by 12/,
&ec., and supposmg the signs to correspond to a & Whose
s1des are in order of magnitude @, 4, ¢; then we have,
because the side @ is touched by the ® 1 on one side,
and by the ©Os 2, 3, 4 on the other side,

12" .84 + 14/ .23 =13 . 24;
12/ .84+ 24’ . 13 =23 . 14;
13’ .24 + 34’ .12 = 23 . 14.
Hence 14’ , 23 +34'.12=24".13;
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showing that the four circles are all touched by a circle
having the circle 4 on one side, and the other three
circles on the other. This proof of Dr. Hart’s ex-
tension of Feuerbach’s theorem was published by me in
the Proceedings of the Royal Irish Academy in the year
1866.

Prop. 12.—1If two circles X, Y be so related that a
triangle may be inscribed tn X and described about Y, the
wwerse of X with respect oY is the ¢ Nine-points Circle”
of {foe triangle formed by joining the points of contact
on Y.

Dem.—Let ABC be the A
inscribed in X and described
about Y ; and A’B'C’ the A
formed by joining the points
of contact on Y.

Let O, O’ be the centres E\
of X and Y. Join O’A, inter-
secting B’C’ in D ; then, evi-
dently, D is the inverse of
the point A with respect to
Y, and D is the middle point of B’C’. In like manner,
the inverses of the points B and C are the middle
points C'A’ and A’B’; .-. the inverse of the ® X, which
passes through the points A, B, C with respect to Y,
is the © which passes through the middle points of
B'C, C’A’, A’B/, that is the ‘‘ Nine-points Circle’ of the
triangle A’B'C'.

Cor. 1.—1If two ©Os X, Y be so related that a A in-
scribed in X may be described about Y, the © in-
scribed in the A, formed by joining the points on Y,
touches a fixed circle, namely, the inverse of X with
respect to Y.

Cor. 2.—In the same case, if tangents be drawn to
X at the points A, B, C, forming a new A A”B"C",
the © described about A”B”C” touches a fixed circle.

Cor. 8.—Join 00, and produce to meet the © X in
the points E and F, and let it meet the inverse of X
with respect to Y in the points P and Q; then PQ is
the diameter of the ‘‘ Nine-points Circle” of the A
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A'B'CY, and is .. =to the radius of Y. Now, let the
radii of X and Y be R, », and let the distance OO’ be-
tween their centres be denoted by ; then we have,
because P is the inverse of E, and Q of F,

/ 7‘2 / — 7.2 .
OF=giy Y9-now
but OP+0Q=PQ=r;
7'2 ,’-2
therefore TS + Ros 7.
1 1 1

Hence

—

R+ tR-s T

a result already proved by a different method (see
Prop. 11, Section I.).

Prop. 13.—If a wvariable chord of & circle subtend @
right angle at a fized point, the locus of its pole vs a circle.

G
Dem.—Let X be the given circle, AB the variable
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chord which subtends a right Z at a fixed point P ;
AE, BE tangents at A and B, then E is the pole of
AB: it is required to find the locus of E. Let O be
the centre of X. Join OE, intersecting AB in I; then,
denoting the radius of X by #, we have OI* + AI*=+%;
but AI = IP, since the Z APB is right; .. OI* + IP?
=¢?; .*.in the A OIP there are given the base OP in
magnitude and position, and the sum of the squares of
OI, IP in magnitude. Hence the locus of the point I
is a © (Prop. 2, Cor., Book II.). Let this be the ©
INR. Again, since the Z OAE is right, and AT is L
to OE, we have OI . OE = OA? = #%, Hence the point
E is the inverse of the point I with respect to the ©
X ; and since the locus of I is a ©, the locus of E will
be a circle (see Prop. 1).

Prop. 14.—If two circles, whose radiv are R, r, and
distance between their centres O, be such that a quadri-
lateral inscribed in one is corcumscribed about the other ;
then

1 1

RTo7 " (R-o)

Dem.—Produce AP, BP (see last fig.) to meet the
® X again in the points C and D ; then, since the
chords AD, DC, CB subtend right Zs at P, the poles
of these chords, viz., the points H, G, F, will be points
on the locus of E; then, denoting that locus by Y, we
see that the quadrilateral EFGH is inscribed in Y and
circumscribed about X. Let Q be the centreof Y ; then
radius of Y = R, and OQ =48. Now, since N is a point
on the locus of I (see Dem. of last Prop.), ON? + PN?
= #?; but PN = OR; ... ON?+ OR?=#% Again, let
0OQ produced meet Y in the points L and M; then
L and M are the inverses of the points N and R with
respect to X. Hence

ON . OL = #2; thatis ON. (R + 8) = #?;

7.2
R+ &

1
=;.—i'

therefore ON =
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72
R -5’

but we have proved ON? + OR? = 72;

In like manner, OR =

rt rt .
therefore T + e r*;
1 1 1

or

®+oF  @-op

This Proposition is an important one in the Theory of
Elliptic Functions (see Durége, Zheorie der Elliptischen
Functionen, p.185). Our proof is as simple and elemen-
tary as could be desired. For another proof, by R. F.
Davis, M.A., see Educational Tymes (reprint), vol. xxxii.

Prop. 15.—1If ABC be a plane triangle, AD, BE, CF ts
perpendiculars, O their point of intersection, then the four
cireleswhose centresare A, B, C, 0, c
and the squares of whose radiv are
respectwely equal to the rectangles
AO.AD, BO.BE, CO.CF, E
OA..OD, are mutually orthogonal. D

"Dem.—AQO . AD + BO . BE O
=AF . AB + BF . BA = AB~
Hence the sum of the squares 7 B
of the radii of the ©s whose ‘
centres are the points A, B = AB?; .. these Os cut
orthogonally. Similarly the ©s whose centres are C
and A cut orthogonally. _

Again, let us consider the fourth ©, whose centre is
the point O, and the square of whose radius is = to the
rectangle OA . OD. Now, since OA and OD are mea-
sured in opposite directions, they have contrary signs;
.*. the rectangle OA . OD is negative, and the ® has a
radius whose square is negative; hence it is imaginary ;
but, notwithstanding this, it fulfils the condition of in-
tersecting the other ©s orthogonally. For AO . AD +
OA.OD = AO.AD - AO.OD = AO?; that is, the
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sum of the squares of the radii of the circles whose
centres are at the points A, O = AO% Hence these
circles cut orthogonally.

Observation.—In this Demonstration we have made the A
acute-angled, and the imaginary © is the one whose centre is at
the intersection of the s, and the three others are real; but if
the A had an obtuse angle, the imaginary © would be the one
whose centre is at the obtuse angle.

Prop. 16.—-If four circles be mutually orthogonal, and
of any figure be tnverted with respect to each of the four
circles vn succession, the fourth inversion will coincide with
the original figure. .

Dem.,—1It will plainly be
sufficient to prove this Pro
position for a single point,
for the general Proposition
will then follow. Let the
centres of the four Os be
the angular points A, B,
Cofa A, and O the inter-
section of its Ls: the A F B
squares of the radii will
be AB.AF, BA.BF, - &

CO . OF, CF.CO. Now P

let P be the point we operate on, and let P’ be its in-
verse with respect to the © A, and P” the inverse of
P’ with respectto the © B. Join PO and CP meeting
in P, Now, since P’ is the inverse of P with respect
to the © A, the square of whose radius is AB . AF,
we have AB . AF = AP . AP’ ... the A AFP is equi-
angular to the A AP'B; ... £ AFP = AP’B: in like
manner the Z BFP” = AP'B, .. the As AFP, BP"F
are equiangular, .*. rectangle AF . FB = PF . FP”,
Again, because O is the intersection of the Ls of the
A ABC, AF.FB = CF.OF. Hence CF.OF =
PF . FP”, and the Zs CFP and OFP” are equal, since
the Zs AFP and BFP"are equal ; .*. the As P"FOard
CFP are equiangular, and the Zs OP”F and PCF are
equal ; hence the four points C, P”, F, P/ are concyclic;

c.
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.. rectangle OP”. OP"" = rectangle OC . OF ; the point
P is the inverse of P” with respect to the ® whose
centre is O, and the square of whose radius is the
negative quantity OC . OF, Again, the Z OFP
= PYFO = OP"P, .-. the four points O, F, P, P
are concyclic; .*. CP . CP"" = CO . CF, and the point P
is the inverse of P/ with respect to the © whose centre
is C, and the square of whose radius is the rectangle
CF .CO. Hence the Proposition is proved.

The foregoing theorem is important in the Theory
of Elliptic Functions, as on it depends the reduction of
the rectification of Bicircular and Sphero-Quartics to
Elliptic Integrals (see Phil. Trans., vol. 167, Part ii.,
““On a New Form of Tangential Equation”)

The following elegant proof, which has been com-
municated to the author by W. S. M‘Cay, F.T.C.D,,
depends ‘on the principle (Miscellaneous Exercises,
No. 60), that a circle and two inverse points invert into
a circle and two inverse points.

Invert the four orthogonal circles from an intersec-
tion of two of them and we get a circle (radius R), two
rectangular diameters, and an imaginary concentric

circle (radius Z2 v/-1). Suc-
cessive inversions with respect
to these two circles turn P into
Q (OP=-0Q); and successive

P
reflexions in the two diameters C 0 R

bring Q back to P.

This theorem can be extend-
ed to surfaces, thus: “If five
spheres be mutually orthogonal,
and if any surface be inverted
with respect to each of the five spheres in succession,
the fifth inversion will coincide with the original
surface.”

Q
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SECTION Y.

Coaxar CImcLES.

In Book III., Section I., Prop. 24, we have proved
the following theorem :— . P
< If from any pownt P tan- LN\
gents be drawn to two circles,
the difference of their squares
18 equal twice the rectangle

contained by the perpendicu- 3 >
lar let fall from P on the U U

radical axis and the distance
between thewr centres.”’

The following special cases of this theorem are
deserving of notice :—

(1). Let P be on the circumferenceof one of the circles,
and we have—If from any point P tn the circumference
of ome circle a tangent be drawn to another circle, the-
square of the tangent is equal twice the rectangle con-
tained by the distance between their centres and the per-
pendicular from P on the radical axis.

(2). Let the circle to which the tangent is drawn be
one of the limiting points, then the square of the line
drawn from one of the limiting points to any point of a
circle of a coaxal system varies as the perpendicular from
that point on the radical axis.

(3). If X, Y, Z be three coaxal circles, the tangents
drawn from any pownt of Z to X and Y are tn a given
ratio.

(4). If tangents drawn from a variable point P to two
gwen circles X and Y have a given ratio, the locus of P s
a cirele coazal with X and Y.

(5). The circle of stmilitude of two given circles 4s
coaxal with the two oireles.
I
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(6). If A and B be the points of contact, upon two
crcles X and Y, of tangents drawn from any pownt of
their circle of similitude, then the tangent from A to Y
18 equal to the tangent from B to X.

Prop. 2.—Two circles being given, 1t 18 required to
describe a system of circles coaxal with them.

Con.—If the circles have real points of intersection,
the problem is solved by describing circles through
these points and any third point taken arbitrarily.

If the given circles have not real points of intersec-
tion, we proceed as follows:—

Let X and Y be the given Os, P and Q their
centres : draw AB, the radical axis of X and Y, inter-
secting PQ in O: from O draw two tangents OC, OD

A

P L 0 L R Q

to X and Y ; then OC =0D, and the © described with
O as centre and OD as radius will cut the two ©Os X
and Y orthogonally. Now take any point E in this
orthogonal ®, and draw the tangent ER meeting the
line PQ in R: from R as centre, and RE as radius,
describe a © Z; then Z will be coaxal with X and Y.
For the line ER being a tangent to the ©® CDE, the
Z OER is right, ... OE is a tangent to Z; and since
OD = OE, the tangents from O to the ©s Y and Z are
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equal : hence OA is the radical axis of Y and Z; .-. the
three ©s X, Y, Z are coaxal. In like manner, we can
get another circle coaxal with X and Y by taking any
other point in the ©® CDE, and drawing a tangent, and
repeating the same construction as with the © Z. In
this way we evidently get two infinite systems of circles
coaxal with X and Y, namely, one system at each side
of the radical axis. The smallest circle of each system is
a point, namely, the point at each side of the radical
axis in which the line joining the centres of X and Y
cuts the © CDE. These are the limiting points, and in
this point of view we see that each limiting point is to be
regarded as an infinitely small circle. The two infinite
systems of circles are to be regarded as one coaxal sys-
tem, the circles of which range from infinitely large to
infinitely small—the radical axis being the infinitely
large circle, and the limiting points the infinitely
small.

Cor. 1.—No circle of a system with real limiting
points can have its centre between the limiting points.

Cor. 2.—The centres of the circles of a coaxal system
are collinear.

Cor. 38.—The circle described on the distance between
the limiting points as diameter cuts all the circles of the
system orthogonally.

Cor. 4.—Every circle passing through the limiting
points cuts all the circles of the system orthogo-
nally.

Cor. 5.-—The limiting points are inverse points with
respect to each circle of the system.

Cor. 6.—The polar of either limiting point, with
respect to every circle of the system, passes through
the other, and is perpendicular to the line of collinearity
of their centres. '

- Prop. 3.—If two circles X and Y cut orthogonally, the
polar with respect to X of any point A in Y passes
through B, the pownt diametrically opposite to A.

12
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This is Prop. 26, Book III., Section I. The follow-

ing are important deductions:—

Cor. 1.—The circle
described on the line
jolning a point A to any
point B in its polar, /
with respect to a given
circle, cuts that circle
orthogonally.

Cor. 2.—The inter-
section of the Ls of the
A formed by a pair of
conjugate points A, B,
with respect to a given circle and its centre O, is the
pole of the line AB.

Cor. 3.—The polars of any point A with respect to
a coaxal system are concurrent. For, through A and
through the limiting points describea © : this ( Cor. 4,
Prop. 2) will cut all the ©s orthogonally, and the
polars of A with respect to all the ©Os of the system
will pass through the point diametrically opposite to
A on this orthogonal © ; hence they are concurrent.

Cor. 4.—If the polars of a variable point with respect
to three given Os be concurrent, the locus of the point
is the © which cuts the three given ©Os orthogonally.

Prop. 4.—1If X, X,, Xs, &c., be a system of coaxal
circles, and if Y be any other cvrcle, then the radical axes
of the pairs of circles Xy, Y; Xy, Y; X, Y, &c., are
concurrent.

Dem.—The two first meet on the radical axis of X,
X, ; the second and third on the radical axis of X,,
X,; but this, by hypothesis, is the radical axis of X,,
Xz, hence the Proposition is evident.

Prop. 5.—1f two circles cut two other circles orthogo-
nally, the radical axis of esther pair is the line jovning the
centres of the other pavr.

Dem.—Let X, Y be one pair cutting W, V, the other
pair, orthogonally ; then, since X cuts W and V ortho-
gonally, the tangents drawn from the centre of X to W
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and V are equal; hence the radical axis of W and V passes
through the centre of X. In like manner the radical
axis of W and V passes

through the centre of

Y ; ... thelinejoining

the centres of the Os

X and Y is the radical

axis of the ©s W and A

V. In the same way

it can be shown that

the line joining the

centres of W and V is

the radical axis of X and Y.

Cor. 1.—If one pair of the ©s, such as W and 'V, do
not intersect, the other pair, X, Y, will intersect, because
they must pass through the limiting points of W and V.

Cor. 2.—Coaxal ©s maybe divided into two classes—
one system not intersecting each other in real points,
but having real limiting points; the other system in-
tersecting in real points, and having imaginary limiting
points.

Cor. 3.—1f a system of circles be cut orthogonally by
two circles they are coaxal.

Cor. 4.~-If four circles be mutually orthogonal, the
six lines joining their centres, two by two, are also their
radical axes, taken two by two.

Prop. 6.—If a system of concentric circles be tnverted
Jrom any arbitrary point, the tnerse circles will form a
coaxal system.

Dem.—Let O be the centre of inversion, and P the
common centre of the concentric system. Through P
draw any two lines : these lines will cut the concentric
system orthogonally, and therefore their inverses, which
will be two circles passing through the point O and
through the inverse of P, will cut the inverse of the
concentric system orthogonally; hence the inverse of
the concentric system will be a coaxal system (Prop. 5,
Cor. 3).

007".) 1.—The limiting points will be the centre of
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inversion, and the inverse of the common centre of
the original system.

Cor. 2.—If a variable circle touch two concentric
circles, it will cut any other circle concentric with them
at a constant angle. Hence, by inversion, if a variable
circle touch two circles of a coaxal system, it will cut
any other circle of the system at a constant angle.

Cor. 3.—1f a variable circle touch two fixed circles,
its radius has a constant ratio to the perpendicular from
its centre on the radical axis of the two circles, for it
cuts the radical axis at a constant angle.

Cor. 4.—The inverse of a system of concurrent lines
is a system of coaxal ©Os intersecting in two real points.

Cor. 5.—If a system of coaxal circles having real
limiting points be inverted from either limiting point,
they will invert into a concentric system of circles.

Cor. 6.—If a coaxal system of either species be in-
verted from any arbitrary point, it inverts into another
system of the same species.

Prop. 7.—If a variable circle touch two fixed circles,
ots radvus has a constant ratio to the perpendicular from
ots centre on the radical axss.

Dem,—This is Cor. 3 of the last Proposition ; but it
is true universally, and
not only as proved there
for the case where the ©
cuts the radical axis. On
account of its importance
we give an independent
proof here. Let the cen-
tres of the fixed ©Osbe O,
O/, and that of the variable
® 0”. Join 00’, and pro-
duce it to meet the fixed
Os in the points C, C':
upon CC’ describe a © :
let O be its centre: let fall the Ls O”A, O”'B on the
radical axis: let D be the point of contact of O” with
O; then the lines CD and 0’0" will meet in the centre

k A B
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of similitude of the ©Os 0”, 0"’; but this centre is a
point on the radical axis of the circles 0, O’ (see Prop. 4,
Section II.). Hence the point E is on the radical axis,
and, by similar triangles,

O"A:0"B::0"E: O"E: : radius of O” : radius of 0",
‘. radius of O”: O”A : : radius of O’/: 0"'B;

but the two last terms of this proportion are constant,
*. radius of O’ : O”A in a constant ratio.

Prop. 8.—If a chord of ome circle be a tangent to
another, the angle which the chord subtends at either limvt-
ing point 1s bisected by the line drawn :
Sfrom that limiting point to the point
of contact.

Let CF be the chord, K the point
of contact, E one of the limiting
points : the angle CEF is bisected by
EK. For since the limiting point
E is coaxal with the circles O, O’ we
have, by Prop. 1. (3),

CE:CK::FE:FK;
. EC:EF :: KC : KF.

Hence the angle CEF is bisected (VI. iii).

In like manner, if G be the other limiting point, the
angle CGF is bisected by GK.

Cor. 1.—If the circles were external to cach other,
and the figure constructed, it would be found that the
angles bisected would be the supplements of the angles
CEF, CGF.

Cor. 2.—If a common tangent be drawn to two
circles, lines drawn from the points of contact to either
limiting point are perpendicular to each other; for
they are the internal and external bisectors of an angle.

Cor. 3.—If three circles be coaxal, a common tan-
gent to two of them will intersect the third in points
which are harmonic conjugates to the points of contact ;
for the pencil from either limiting point will be a har-
monic pencil.
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Cor. 4.—1f a circle be described about the triangle
CEF, its envelope will be a circle concentric with the
circle whose centre is O
that is, with the circle
whose chord is CF.

(When a line or circle
moves according to any grven
law, the curve which 4t
touches vn all its positions
18 called 1ts envelope.)

Produce EX till it meets
the circumference in D;
then because the £ CEF
is bisected by ED, the arc
CDF is bisected in D ; hence the line OG, which joins
the centres of the circles, passes through D and is L to
CF; .. OKis | to OD; ... O'K: OD:: EOQO': EO;
hence the ratio of O’'K : OD is given ; but O’K is given ;
therefore OD is given, and the ® whose centre is O
and radius OD is given in position, and the © CEF
touches it in D ; hence the Proposition is proved.

Prop. 9.—1If a system of coaxal circles have two real
points of intersection, all
lines drawn through either
pont are divided propor-
tionally by the circles.

Let A, B be the points of
intersection of the coaxal
system: through A draw
two lines intersecting the
circles again in the two
systems of points C, D, E;
¢, D/, E'; then

CD:DE::CD': D'E.

Dem.—Join the points C, D, E, ¢/, D’, E' to B; then
the As BCD, BC'D’ are evidently equiangular, as are
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also the triangles BDE, BD’E’; hence
CD:DB::(C'D’': D'B;
DB:DE::D'B: D'F;
therefore, ex aequals,
CD:DE:: CD': D'E’.

Cor. 1.—1If two lines be divided proportionally, the
circles passing through their point of intersection and
through pairs of homologous points are coaxal.

Cor. 2.—If from the point B perpendiculars be
drawn to the lines joining homologous points, the feet
of these perpendiculars are collinear. For each lies on
the line joining the feet of the perpendiculars from B
on the lines AC, AC’.

Cor. 3.—The circles described about the triangles
formed by the lines joining any three pairs of homolo-
gous points all pass through B.

Cor. 4.—The intersection of the perpendiculars of
all the triangles formed by the lines joining homolo-
gous points are collinear.

Cor. 5.—Any two lines joining homologous points
are divided proportionally by the remaining lines of
the system.

Prop. 10.—70 describe a circle touching three given
cireles.

Analysis.—Let X, Y, Z be the three given Os,
ABC, A'B'C' two Os which it is required to describe
touching the three given Os; then, by Cor. 2, Prop. 4,
Section IV., the © DEF, which cuts X, Y, Z orthogo-
nally, will be the © of inversion of ABC, A’B’C’, and
the three ©s ABC, DEF, A’B’C’ will be coaxal ( Cor. 2,
Prop. 1, Section IV)

Now, consider the © X, and the three ©Os ABC,
DEF, A’B'(’; the radical axes of X and these ©s are
concurrent (Prop. 4); but two of the radical axes are
tangents at A, A/, and the third is the common chord
of X and the orthogonal ©® DEF'; let P be their point
of concurrence. Again, from Prop. 4, Section II., it
follows that the axis of similitude of X, Y, Z is the
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radical axis of the ©s ABC, A’B’C’; but since PA =PA’,
being tangents to X, the point P is on this radical axis.
Hence P is the point of intersection of two given lines,
namely, the axis of similitude of X, Y, Z, and the
chord common to X and the orthogonal © DEF; ... P
is a given point; hence A, A’, the points of contact of the
tangents from P to X, are given. Similarly, the points

B
Y
E B
< D
B!
A
/N
D'
CV
C
P

B, B’; C, C’ are given points. And we have the follow-
ing construction, viz. : Describe the orthogonal circle of
X, Y, Z, and draw the three chords of intersection of this
circle with X, Y, Z respectively ; and from the points
where these chords meet the axvs of svmilitude of X, Y, Z
draw pavrs of tangents to X, Y, Z ; then the two circles
described through these six points of contact will be tan-
gential to X, Y, Z.

Cor. 1.—NSince there are four axes of similitude of
X,Y, Z, we shall have eight circles tangential to X, Y, Z.

Cor. 2.—1f we suppose one of the circles to reduce to
a point, we have the problem: ¢ 7o describe a circle
touching two given circles, and passing through a given
pomt.”’”  And if two of the circles reduce to points, we
have the problem : ¢ 7o describe a circle touching a given
circle, and passing through two given points.”
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The foregoing construction holds for each case, the
first of which admits of four solutions, and the second
of two.

Cor. 3.—Similarly, we may suppose one of the circles
to open out into a line, and we have the problem: ¢ 7o
describe a circle touching a line and two giwen circles”
and if two circles open out into lines, the problem:
““ To describe a curcle touching two given lines and a circle.”’
The foregoing construction extends to these cases also,
and like observations apply to the remaining cases,
namely, when one of the circles reduces to a point, and
one opens out into a line, &c. Since our construction
embraces all cases, except where the three circles be-
come three points or open out into three lines, it would
appear to be the most general construction yet given
for the solution of this celebrated problem.

Another Method—Analysis.—Let O, 0/, 0” be the

centres of the ©s X, Y, Z, and let AR, BR be the
radical axis of the pairs of -
Os XY, YZ, respectively,
and let O’ be the centre of
the required © W: from
0" let fall the Ls O”A,
O”B; join R to C, the
point of contact of W with
Z, and produce it to meet
O”D drawn || to O"’R. Now,
because W touches the ©s
X, Y, its radius O”’C has a
givenratio to O”’A (Prop.7).
Similarly, O"’C has a given
ratio O’B; ... O”A has a
given ratio to O”’B; hence
the line O"R is given in position, and the ratio of
O”R:0"B is given; ... the ratio of O”R : 0"C is
given; hence the ratio of O”D: O0”C is given; .*. D is
a given point and R is a given point; .. the line RD is
given in position; hence C is a given point. Similarly,
the other points of contact are given,
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Observation.—This method, though arrived at by the theory
of coaxal circles, is virtually the same as Newton’s 16th Lemma.
It is, however, somewhat simpler, as it does not employ conic sec-
tions, as is done in the Principia. When I discovered it several
years ago, I was not aware to what an extent I had been antici-
pated.

Prop. 11.—If X, Y be two circles, AB, A'B’ two chords
of X which are tangents to Y ;
then of the perpendiculars from
A, A’ on the radical axis be de-
noted by p, m, and the perpendy-
culars from B, B’ by p', o/,

AA :BB ::/p++/=
s/ P 4
Dem.—Let O, O’ be the cen-

tres of the circles ; then, by (1),
Prop, 1,

AD=4,/2.00.p, AD=,/2.00.7;
. AD + A'D' =4/2. 00 (v/p +/ 7).
But AD + A'D’ is easily seen to be = AC + A'C;
o AC+ A'C = 4/2.00 (/7 + /7).
In like manner,

BC + B'C=4/2.00" (/¢ ++/7).

Hence, = _ _ _
AC+AC:BC+BC::n/p+ /w9 +4/7.

Now, since the triangles AA’C, BB'C are equiangular,
we have

AC + A'C: BC +B'C:: AA’: BB/;
oo AN BB /D TP+

This theorem is very important, besides leading toan
immediate proof of Poncelet’s Theorem. 1f we suppose
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the chords AB, A'B’ to be indefinitely near, we can in-
fer from it a remarkable property of the motion of a
particle in a vertical circle, and also a method of repre-
senting the amplitude of Elliptic Integrals of the First
kind by coaxal circles.*

- Prop. 12.—Poxcerer’s THEOREM.—If 08 wariable poly-
gon of any number of sides be inseribed in a circle of a
coazal system, and of all the sides but one in every position
touch fized circles of the system, that one also in every

‘position touches another fixzed circle of the system.

It will be sufficient to prove this Theorem for the
case of a triangle, because from this simple case it is
easy to see that the Theorem for a polygon of any num-
ber of sides is an immediate consequence.

Let ABC be a A inscribed in a © of the system,
A’B’C’ another position of the A, and let the sides AB,
A’B’ be tangents to one © of the system, BC, B’C’ tan-
gents to another © ; then it is required to prove that
CA, C'A’ will be tangents to a third © of the system.

Dem.—Let the perpendiculars from A, B, C on the
radical axis be denoted by p, »’, »”, and the perpendi-
culars from A’, B’, C' by =, «’, =" ; then, by Prop. 11,
we have

AA :BB ::/p ++/7 /P +4/7,

and BB :CC ::a/ P+ /7 /P +4/a";

VAN CC i p + S ST
Hence AC, A’C are tangents to another circle of the

system,

The foregoing proof of this celebrated theorem was
given by me in 1858 in a letter to the Rev. R. Towns-
end, F.T.C.D: It is virtually the same as Dr. Hart’s

proof, published in 1857 in the Quarterly Journal of
Mathematics, of which I was not aware at the time.

* The method of representing the amplitude of Klliptic Inte-
grals by coaxal circles was first given by Jacobi, Crelle’s Journal,
Band. ITI. Theorem 11 affords a very simple proof of this appli-
cation. See Educational Times, Vol 111., Reprint, page 42.
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Dr. HarT’s Proor.—This proof depends on the fol-
lowing Lemma (see ﬁg ., Prop. 11) :—1If a quadrilateral
AA'BB’ be inscribed in a circle X, and if the diagonals
AB, A’'B’ touch a circle Y of a system coaxal with X,
then the sides A, A’ touch another circle of the same
system, and the four points of contact D, D’, E, E’ are
collinear.

This proposition is evident from the similar triangles
AED, B'E'D’, and the similar triangles EA'D’, E'BD ;
and the equality of the ratios AE:AD, B'E’': B'D,
A’E: A'D, BE: BD.

The first part of this theorem also follows at once
from Prop. 11.

Now, to prove Poncelet’s theorem :-——Let ABC, A’B'C’
be two positions of the variable A, and let, as before,
AB, A'B’ be tangents to one © of the system, BC, B'C’
tangents to another © ; then CA, C'A’ shall be tangents
to a third © of the system. For, join AA’, BB/, CC'.
Then, since AB, A'B’ are tangents toa © of the system,
AA’, BB’ are, by the lemma, tangents to another © of
the system; and since BC, B'C’ are tangents to a © of
the system, BB/, CC’ are tangents toa © of the system ;

-.AA’, BB, CC’ are tangents to a © of the system;
and since AA’ CC’ touch a © of the system, by the
lemma, AC, A’C touch a ®© of the system; hence the
Proposition is proved, and we see that the two proofs
are substantially identical.

SECTION VI.
THEORY 0F ANHARMONIC SECTION.

Der.—4 system of four collinear points A, B, C, D
make, as vs known, six segments; these may be armngea}’
m tkree pairs, each containing the four letters—rthus,

AB, CD; BC, AD; CA, BD.
Where the last letter wn each couple is D, and the first
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seqments in the three couples are respectwely AB, BC,
CA, exactly corresponding to the sides of a triangle ABC,
taken in order. Now, if we take the rectangles formed by
these three pairs of segments, the sz quotients oblained
by dvviding each rectangle by the two remavning ones are
called the sixz anharmonie ratios of the four points A, B,
C, D. Thus these siz functions are |

AB.CD BC.AD CA.BD
BC.AD' CA.BD’ AB.CD’

and their reciprocals

BC.AD CA.BD AB.CD
AB.CD’ BC.AD’ CA.BD°

1t is usual to call any one of these stz functions the anhar-
monic ratio of the fowr pownts A, B, C, D.

Prop. 1.—If (0. ABCD) be a pencil of four rays
passing through the four points
A, B, C, D; and if through
any of these poz’nts B we draw
a line parallel to a ray passing
through any of the other points,
and cuttmg the two remaiming
rays wn the points M, N, the
six anharmonic ratios of A B,
C, D can be expressed in torms

of the ratios of the segments
MB, BN, NM.

Dem.—From similartriangles, N
MB AB
0D  AD’
and OD CD

BN ~ BC
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Hence, MB AB.CD

BN BC.AD’
therefore MB:BN::AB.CD:BC. AD.
Componend o—

MN:BN::AB.CD+BC.AD:BC.AD;
. MN:BN::AC.BD:BC.AD;
. MB:BN:NM::AB.CD:BC. AD:CA.BD.

Prop. 28.—If a pencil of four rays be cut by two trans-
versals ABCD, A’B'C'D’, then (see last fig.) any of the
anharmonic ratios of the points A, B, C, D s equal to the
correspondiug ratio for the points A’', B’, ¢/, D',

Dem.—Through the points B, B’ draw MN, M'N’
parallel to OD; then (Section I., Prop. 3) we have
MB:BN:: M'B’: B'N’;

AB.CD A'B.CD

therefore BC.AD  BC.AD

Cor. 1.—We may suppose the rays of the pencil
produced through the vertex, and the transversal to
cut any of the rays produced without altering the an-
harmonic ratio.

Der.—The anharmonic ratio of the four points on any
transversal cutting a pencil being constant, it 7s called the
anharmonic ratio of the pencil.

Cor. 2.—If two pencils have equal anharmonic ratios
and a common vertex ; and if three rays of one pencil
be the production of three rays of the other, then the
fourth ray of one is the production of the fourth ray of
the other.

Cor. 3.—1f two pencils have a common transversal,
they are equal ; that is, they have equal anharmonic
ratios.
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Cor. 4.—If A, B, C, D be four points in the circum-
ference of a circle, and E and F any two other points
also in the circumference, then the pencil (E . ABCD)
= (. ABCD). This is evident, since the pencils have
equal angles.

Cor. 5.—1If through the middle point O of any chord
AB of a circle two other chords CE and DF be drawn,
and if the lines ED and CF joining their extremities
intersect AB in G and H, then OG = OH.

Dem.—The pencil (E. ADCB) =(F . ADCB; there-
fore the anharmonic ratio of the points A, &, O, B = the
anharmonic ratio of the points A, O, H, B; and since

AO = OB, 0G = OH.

Der.—The anharmonic ratio of the cyclic pencil
(E . ABCD) s called the anharmonie ratio of the four
cyclic points A, B, C, D.

Prop. 3.—The anharmonic ratio of four concyclic
points can be expressed vn terms of the chords joiming
these four points.

Dem. (see fig., Prop. 9,SectionIV.)—The anharmonic
ratio of the pencil (O. ABCD)is AC.BD : AB.CD;
and this, by Prop. 9, Section IV. = A’C’ . B'D
: A'B’ . C'D’; but the pencil (O . ABCD) = the pencil
(O . A’'B'C'D’) = the anharmonic ratio of the points
A, B/, C', D’. Hence the Proposition is proved.

Cor. 1.—The six functions formed, as in Def. 1,
with the six chords joining the four concyclic points

A, B, C', D/, are the six anharmonic ratios of these
points.

Cor. 2.—If two triangles CAB, C’A’B’ be inscribed
in a circle, any two sides, viz., one from each triangle,
are divided equianharmonically by the four remaining
sides. For, let the sides be AB, A’B’; then the
pencils (C. A’'BAB'), (C'. A'BAB’) are equal ( Cor. 4,
Prop. 2).

Prop. 4.—Pascar’s TrarorEM.—If a hexagon be
mscribed in a circle, the intersections of opposite sides

K
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viz., 1st and 4th, 2nd and 5th, 3rd and 6th, are colls-
near.

Let ABCDEFA be the
hexagon. The points I, N,
M are collinear.

Dem.—Join EN. Then the
pencil (N . FMCE) = the pen-
cil (C. FBDE), because they
have a common transversal
EF (Cor. 3, Prop. 2.) In
like manner, the pencil
(A.FBDE)= (N .ALDE);
but (A.FBDE)=C.FBDE) (Prop. 2, Cor. 4). Hence the
pencils (N . FMCE), (N . ALDE) are equal ; and there-
fore (Cor. 2, Prop. 2) the points L, N, M are collinear.

Cor. 1.——With six points on the circumference of a
circle, sixty hexagons can be formed. For, starting
with any point, say A, we could go from A to one of the
remaining points in five ways. Suppose we select B,
then we could go from B to a third point in four diffe-
rent ways, and so on; hence it is evident that we
could join A to another point, and that again to another,
and so on, and finally return to A in 5x 4 x 3 x 2 x 1
different ways. Hence we shall have that number of
hexagons; but each is evidently counted twice, and we
shall therefore have half the number, that is, sixty
distinct hexagons.

Cor. 2.—Pascal’s Theorem holds for each of the
sixty hexagons.

Cor. 3.—Pascal’s Theorem holds for six points,

D

A E

which are, three by three, on two lines. Thus, let the



BOOK VI. 131

two triads of points be A, E, C, D, B, F, and the proof
of the Proposition can be applied, word for word, except
that the pencil (A . FBDE) is equal to the pencil
(C. FBDE), for a different reason, viz., they have a
common transversal.

Prop. 5.—1If two equal pencils have a common ray, the
intersections of the remaining three homologous pairs of
rays are collinear.

Let the pencils be (O . 0’ABC), (O’. OABC), having
the common ray OO’; then, if possible, let the line
joining the points A and C intersect the rays OB, O'B
in different points B’, B”; then,
since the pencils are equal,
the anharmonic ratio of the
points D, A, B’, C equal the
anharmonic ratio of the points
D, A, B”, C, which 1s impos-
sible. Hence the points A, B, C
must be collinear.

Cor. 1.—1f A, B, C; A’, B/, C' be two triads of
points on two lines intersecting in O, and if the an-
harmonic ratio (OABC) = (OA’B’C’), the three lines
AA/ B, CC’ are concurrent. For, let AA’, BB,
intersect in D ; join CD, intersecting OA’in E ; then
the anharmonic ratio (OA’B E)= (OABC) = (OA’B C’)
by hypothesis; therefore
the point E coincides
with C’. Hence the
Proposition is proved.

Cor. 2.—If two As
ABC, A’B'C’ have lines
joining  corresponding
vertices concurrent, the
intersections of corre-
sponding sides must be
collinear. For, join P,
the point of intersection

of the sides BC, B'C/,
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to O, the centre of perspective; then each of the
pencils (A . PCA’B), (A’. PC’'AB’) is equal to the pen-
cil (O . PCAB); hence they are equal to one another,
and they have the ray AA’ common. Hence the inter-
sections of the three corresponding pairs of rays AC, A'CY,
AP, A’P, AB, A'B’, are collinear.

Cor. 3.—If two vertices of a variable A ABC move
on fixed right lines LM, LN, and if the three sides
pass through three fixed collinear points O, P, Q, the
locus of the third vertex is a right line.

Let the side AB pass through O, BC through P, CA
through Q, and let A’B’C’ be another position of the A ;
then the two As AA'Q, BB'Q, have the lines joining
their corresponding vertices concurrent ; hence the in-
tersections of the corresponding sides are collinear.
Hence the Proposition is proved.

Prop. 6.—If on a right line OX three pairs of points
A, A’ B, B C, C be taken, such that the three rectangles
OA.OA’,OB. OB, OC.OC, areeach equal to a constant,
say k? then the anharmonic ratio of any four of the six

points vs equal to the anharmonic ratio of their four conju-
gates.

Dem.—Erect OY at right Zs to OX, and make OY
= k; join AY, A’Y, BY, B'Y, CY, C'Y. Now, by
hypothesis, OA . OA’=0Y?; ... the © described about
the AAA’Y touchesOYatY; ... the Z OYA=0A"Y.
In like manner, the Z OYB=0DB"Y ; hence the Z AYB

Y

[

o' O ABCD ¢ B AX

= A'YDB’: similarly the Z BYC = B'YC(/, &c.; .. the
Zx of ithe pencil (Y . ABCC’) = the £s of the pencil
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(Y . A’'B'C'C); and hence the anharmonic ratio of
(Y . ABCC’) equal the anharmonic ratio of the pencil
(Y . A'B'C'C).

Cor. 1.—-If the point A moves towards O, the point
A’ will move towards infinity.

Cor.- 2.—The foregoing Demonstration will hold if
some of the pairs of conjugate points be on the pro-
duction of OX in the negative direction; that is, to

the left of OY, while others are to the right, or in the
positive direction.

Cor. 3.—Ifthe points A, B,u, &e.,be on one side of O,
say to the right, their corresponding points A’, B/, (/, &e.,
may lie on the other side; thatis, tothe left. Inthis
case the As AYA’, BYB,CYC(, &c., are all right-angled
at Y; and the general Proposition holds for this case
also, namely, The anharmonic ratio of any four points vs
equal to the anharmonie ratio of their four conjugates.

Cor. 4.—The anharmonic ratio of any four collinear
points is equal to the anharmonic ratio of the four
points which are inverse to them, with respect to any
circle whose centre is in the line of collinearity.

Drr.— When two systems of three points each, such as
A, B, C; A, B, U, are collinear, and are so related that
the anharmonic ratio of any four, which are not two cou-
ples of conjugate points, s equal to the anharmonic ratio
of their four conjugates, the siz points are said to be in
involution. Z%he point O conjugate to the pownt at vn-
finaty is called the centre of the wnvolution. Again, f
we take two points D, D', one at each side of O, such that
OD?*= 0D = &% 4t 4s evident that each of these points us
its own compugate. Hence they have been called, by
TownsenD and Cmastes, the double points of the n-
volution. From these Definitions the following Propo-
sitions are evident :—

(1). Any pair of homologous points, such as A, A', are
harmonic conjugates to the double points D, D',

(2). Three pairs of povnts whick have a common par of
harmonic conjugates form a system in involution,
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(3). The two double points, and any two pairs of con-
Jugate points, form a system in 1nvolution.

(4). Any line cutting three coaxal circles s cut n
tnvolution.

Der.—1If a system of points in involution be joined to
any pownt P not on the line of collinearity of the povnts,
the sz jovning lines will have the ankarmonic ratio of the
pencil formed by any four rays equal to the anharmonic
ratio of the pencil formed by thewr four comjugate rays.
Such a pencil is called a pencil in involution. The rays
passing through the double points are called the double
rays of the involution.

Prop. 7.—1If four points be collinear, they belong to
three systems in involution.

Dem.—Let the four points be A, B, C, D; upon AB
and CD, as diameters, describe circles; then any circle
coaxal with these will intersect the line of collinearity
of A, B, C, D in a pair of points, which form an invo-
lution with the pairs A, B, C, D. Again, describe circles
on the segments AD, BC, and circles coaxal with them
will give us a second involution. Lastly, the circles
described on CA, BD will give us a third system. The
central points of these systems will be the points where
the radical axes of the coaxal systems intersect the line
of collinearity of the points.

Prop. 8.—The following examples will illustrate the
theory of involution :—

). Any right line cut-
ting the sides and diagonals
of @ quadrilateral is cut in
mvolution.

Dem.—Let ABCD be
the quadrilateral, LL’ the
transversal intersecting the diagonals in the points
N, N. Join AN/, CN’; then the anharmonic ratio of
the pencil (A . LM’\TN’) = (A .DBON’) = (C . DBON')

= (C. M'L'ON) = (C . L'M'N'N).
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- (2). A4 right line, cutting a circle and the sides of an
wseribed quadrilateral, vs cut
wn tnvolution.

Dem.—Join AR, AR/,
CR, CR'’; then the anhar-
monic ratio of the pencil
(A.LRMR)=(A.DRBR/)
=(C.DRBR')=(C.M'RL'R)
=(C.L'R'M'R).

Cor.—The points N, N’
belong to the involution. 4

(8). If three chords of a circle be concurrent, their siz

points of wntersectvon with the ,
arrele are vn tnvolution. A

Let AA’, BB/, CC’ be the A N
three chords intersecting in I~——
the point 0. Join AC, AC, A’A
AB, CB’; then the anhar- C o

monic ratio (A . CA'B'C’) =
(B’ . CBAC") = (B’'. C'ABC).

Cor.—The pencil formed by any six lines from the
-pairs of homologous points A, A’; B, B; C, C, to any
seventh point in the circumference is in involution.

Prop. 9.—1If O, O’ be two fixed points on two given
lines 0X, O'X') and if on OX we take any system of
points A, B, C, &c., and on O'X’ a corresponding system
A, B, O, &c., such that the rectangles OA . O'A’
=0B.O0OB = 0C.00C, &c., equal constant, say I?;
then the anharmonic ratio of any four points on OX equal
the anharmonic ratio of thevr four corresponding points on
0'X/,

This is evident by superposition of O’X’on OX, sothat
the point O’ will coincide with O (see Prop. 7); then
the two ranges on OX will form a system in involution.

Drer.—Two systems of points on two lines, such that
the anharmonic ratio of any four points on one line vs equal
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to the anharmonic ratio of their four corresponding points
on the other, are said to be homographic, and the lines are
said to be homographically divided. ZThe points O, O
are called the centres of the systems.

Cor. 1.—The point O on OX is the point corre-
sponding to infinity on O’X’; and the point O’ on O’X’
corresponds to infinity on OX.

Der.—1If the line O'X’ be superimposed on OX, dut so
that the point O" will not covncrde with O, the two systems
of points on OX divide ot homographically, and the points
of one system which cotncide with their homologous points
of the other are called the double points of the homo-
graphic system.

Prop. 10.— Given three pavrs of corresponding points
of a line divided homographically, to find the double points.

Let A, A’; B, o A B C A P ¢ X
B'; C, ¢/, be the ~ T S )
three pairs of corresponding points, and O one of the
required double points; then the conditions of the
question give us the anharmonic ratio

(OABC) = (0 A’B'C');
OA.BC OA’.B'C
OB.AC ODB.ACY
OA.OB" BC'.AC
OA’. 0B~ BC.AC
equal constant, say £2

Now OA . OB/, OA’ . OB are the squares of tangents
drawn from O to the circles described on the lines A B’
and A'B as diameters; hence the ratio of these tan-
gents is given; but if the ratio of tangents from a
variable point to two fixed circles be given, the locus
of the point is a circle coaxal with the given circles.
Hence the point O is given as one of the points of
intersection of a fixed circle with OX, and these inter-
sections are the two double points of the homographic
system.

therefore

Hence
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If the three pairs of points be on a circle, the points
of intersection of Pascal’s line with the circle will be
the double points required. For (see fig., Prop. 5), let
D, B, F; A, E, C, be the two triads of points, and let
the Pascal’s line intersect the circle in the points P and
Q ; then it is evident that the pencil (A . PDBF)
= (D . PAEC).

Cor.—1If we invert the circle into a line, or vice versd,
the solution of either of the Problems we have given
here will give the solution of the other.

Prop. 11.— We shall conclude this Section with the

solution of & few Problems by means of the double points
of homographic division.

(1). Being gwen two right lines L, 1!, 4t vs required
to place between them a line AA’, which will subtend
given angles Q, Q' at two gwen points P, I,

Solution.—Let us take z
arbitrarily any point A on A /
L. JoinPA, P’A, and make Mi
the £s APA’, APA”, re- |
spectively equal to the two U
given Zs Q, Q' ; then,
when the point A moves
along the line L, the points
A’, A” will form two ho- b p
mographic divisions on the
line I/. The two double points of these divisions will
give two solutions of the required Problem.

(2). Being gwen a polygon of any number of sides,
and as many points taken arbitrarily, 1t is required to
wnseribe in the polygon another polygon whose sides will
pass through the giwen points.

We shall solve this problem for the special case of
a triangle; but it will be seen that the solution is
perfectly general,
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Let ABC be the given triangle; P, Q, R the given
points. Take on AC any A
arbitrary point D. Join
PD, intersecting AB in E; - \p R
then join EQ, intersecting p _
BC in F; lastly, join FR, D’
intersecting ACin D’; then
the two points D, D’ will
evidently form two homo-
graphic divisions on AC,
the two double points of Q'
which will be vertices of two triangles satisfying the
question.

B F C

(3). Being given three points P, Q, R, and two lines
L, I/, ¢t 4s required to describe a triangle ABC having
C equal to a given angle, the vertices A and B on the
gien lines L, I/, and the sides passing through the given
points.

Solution.—Through the point R draw any line
meeting the two lines L, I’ in the points @, 6. Join
Pb, and from Q draw
Qa’ making the required
angle C with Pb; the
two points @, o' will
form two homographic
divisionson L,thedouble
points of which will give
two solutions of the re-
quired question.

(4). T0 inscribe in a
circle a triangle whose sides shall pass through three given
POINTS.

This is evidently solved like the preceding, by taking
three false positions, and finding the double points of
the two homographic systems of points.

(8). The problem of describing a circle touching three
gwen cireles can be solved at once by the method of taking



BOOK VI. 139

three false positions, and finding double points, as fol-
lows :—

Let A, B, C be the centres of the three given circles; Z
the required tangential circle ; a, B, ¥ the points of con-
tact: then the triangles ABC, oy are in perspective,
the centre of Z being their centre of perspective, and the
axis of similitude of the three given circles being their
axis of perspective. Let A’, B’, C’ be the three centres

of similitude. Then take any three points P, P/, P”in
the circle A ; join them to the point B/, cutting the circle
C in the points Q, Q’, Q": again, join these points to A’,
and let the joining lines cut the circle B in the points
R, R/, R”: lastly, join R, R/, R"” to C, cutting the circle
A in the points 7, 7/, #'/; then a will be such that the
anharmonic ratio (aPP’P"”) will be equal to the anhar-
monic ratio (a7 #'7"). Hence the problem is solved.
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Exercises.

1. The eight circles which touch three given circles may be
divided into two tetrads—say X, Y, Z, W; X', Y, Z', W —of
which one is the inverse of the other with respect to the circle
cutting the three given circles orthogonally.

2. Any two circles of the first tetrad, and the two correspond-
ing circles of the second, have a common tangential circle.

3. Any three circles of either tetrad, and the non-corresponding
circle of the other tetrad, have a common tangential circle.

4. Prove by means of the extension of Ptolemy’s Theorem
(the middle points of the sides being regarded as very small
circles) that these point-circles, and the inscribed circle, or any
of the escribed circles, have a common tangential circle.

5. The anharmonic ratios of the four points of contact of the
“nine-points circle’’ with the inscribed and the escribed circles
are respectively

% — b2 12— 2 & — a?

@ — ¢’ 6 — o A& — b%
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SECTION VII.
Tarory oF PorLEs AND PorArs, AND RECIPROCATION.

Prop. 1.—If four pownts be collinear, their anharmonic
ratio 18 equal to the anharmonic ratio of their four polars.

This Proposition may be proved exactly the same as
Proposition 8, Section III. Thus (see tig., Prop. 8.
Section III.) the pencil (O . A'B'C'D")=(P . A'B'C'D");
but the pencil (O.A'B’'C'D") = anharmonic ratio of
the four points A, B, C, D, and the pencil (P . A'B'C'D’)
consists of the four polars. Hence the Proposition is
proved.

The two following Propositions are interesting appli-
cations of this Proposition :—

(1). If two triangles be self-conjugate with respect to a
curele, any two sudes are divided equianharmonically by the
Jour remaining sides ; and any b
two wvertices are subtended
equianharmonically by the four
remaining vertices.

Let ABC, A’B’'C’be the two
self-conjugate As; it is re-
quired toprove that the pencil
(C.ABA'B’) =(C'. ABA'B’).

Dem.—Let A'C/, B'C' meet
AB produced in D and E.
Join A’C, B'C, AC, BC.
Now, since A'C’ is the polar
of B/, and AB the polar of C,
their point of intersection D
is the pole of B'C (see Cor.,
Prop. 25, Section I., Book
1I1.). In like manner, the
point E is the pole of A'C;
hence the four points B, A,
E, D arethe poles of the four lines CA, CB, CA’, CB".
Therefore the anharmonic ratio of the four points B,

E
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A, E, D is equal to the anharmonic ratio of the pencil
(C.ABA'B’). Again, the points B, A, E, D are the in-
tersections of the line AB with the pencil (C . ABA’B’);
therefore the pencil (C . ABA'B’) = (C'. ABA'D’).

We have proved the second part of our Proposition,
and the first follows from it by the theorem of this
Article.

(2). If two triangles be such that the sides of one are the
polars of the vertices of the other, they are in perspective.

Dem.—Let the three sides of the A ABC be the
polars of the corresponding vertices of the A A’B'C/,
and let the corresponding sides meet in the points X,
Y, Z respectively. Now, since AB is the polar of (7,
and B’C’ the polar of A, the point D is the pole of AC’
(Cor., Prop. 25, Section I., Book ITI.). In like man-
ner the point X is the pole of AA’, and the points B/,
(' are, by hypothesis, the poles of the lines AC, AB.
Hence the anharmonic ratio of the points B/, ¢/, D, X
= the pencil (A . YZC'A') = the pencil (Z . YAC'A').
Again, the anharmonic ratio B/C’'DX = the pencil
(Z . A’CAX) = (Z.XAC'A’). Hence (Z . YAC'A')
= (Z . XAC'A'); .. the lines XZ, ZY form one right

Y

line; therefore the intersection of corresponding sides
of the triangles are collinear. Ience they are in per-

455
gpecuive.
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Prop. R.—If two varable pownts A, A’, one on each of
two lines given tn position, subtend an cmgle of constant
magnitude at a gwen point O, the locus of the pole of the
line AA" with respect to a gwen I
circle X, whose centre s O, 15 a
circle.

Dem.—Let AI, A'T be the
lines given in position, and let
B, B, Q be the poles of the
three lines AI, A'I, and AA’
with respect to X ; then the
points B, B’ are fixed, and the
lines BQ, B’Q are the polars of
the points A, A’; .. the lines
OA, OA’ are respectively L to the lines BQ, B'Q;
hence the Z BQB’ is the supplement of the £Z AOA’;
therefore BQB’ is a given angle, and the points B, B’
are fixed ; therefore the locus of the point Q is a
circle.

Prop. 8.—For two homographic systems of points on
two lines gwen n posztzon there exuvst two points, at each
of which the several pairs of corresponding pornts subtend
equal angles.

Dem.—Let A, A’ be two corre- A
sponding points on the lines AT, A'T;
and let O, O’ be the points on the N
lines AI, A’'I which correspond to
the points at infinity on A’'I, AI
respectively ; then (see Prop. 10, 0
Section I'V., Book VI.)the rectangle O
OA. O’A’ = constant, say 4% Join
00’, and describe the triangle OEO’ (see Prop. 15,
Section I., Book VI.) having the rectangle OE . O'E of
its sides = £?, and having the difference of its base Zs
equal difference of base £Zs of the A OIO’. Then E,
the vertex of this A, will be one of the points re-
quired. For it is evident from the construction that
OE . O'E = OA . O’A, and that the £ AOE = A’O'E;
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.. the As AOE, A’O’E are equiangular; .. the Z OAE
= A’'EQ’; ... if the points A, A’ change position, the
lines EA, EA’ will revolve in the same direction, and
through equal angles. Hence the Z AEA’ is constant.

In the same manner, another point F can be found on
the other side of OO’ such that the Z AFA’is constant.

Cor. 1.—Since the line AA’ subtends a constant angle
at K, the locus of the pole of AA’ with respect to a circle
whose centre is E is a circle. Hence the properties of
lines joining corresponding points on two lines divided
homographically may be inferred from the properties of
a system of points on a circle.

Cor. 2.—Since when A’goes to infinity A coincides
with O, then OA is one of the lines joining correspond-
ing points. Andso in like manner is O’A’, and the poles
of these lines will be points on the circle which is the
locus of the pole of AA’.

Cor. 3.—The locus of the foot of the perpendicular
from E on the line AA’ is a circle, namely, the inverse
of the circle which is the locus of the pole of AA’,

Cor. 4.—If two lines be divided homographically,
any four lines joining corresponding points are divided
equianharmonically by all the remaining lines joining
corresponding points. This follows from the fact that
any four points on a circle are subtended equianhar-
monically by all the remaining points of the circle.

Prop. 4.—If any figure A be gwen, by taking the pole
of every line, and the polar of every pornt wn 1t with
respect to any arbitrary circle X, we can construct @ new
Jegure B, which vs called the reciprocal of A with respect
to X. Thus we see that to any system of collinear points
or concurrent lines of A there will correspond o system of
concurrent lines or collinear points of B ; and to any pair
of lines divided homographically in A there will correspond
in B two homographic pencils of lines.  Lastly, the angle
which any two pownts of A subtend at the centre of the
reciprocating circle is equal to the angle made by their
polars in DB.
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Hence it is evident that, from theorems which hold
for A, we can get other theorems which are true for B.
This method, which is called reciprocation, is due to
Poncelet, and is one of the most important known to
Greometers.

We give a few Theorems proved by this method :—

(1). Any two fized tangents to a circle are cut homo-
graphically by any wvariable
tangent.

Dem.—Let AT, BT be the
two fixed tangents touching
the circle at the fixed points A
and B, and CD a variable tan-
gent touching at P. Join AP,
BP. Now AP is the polar of
C, and BP the polar of D; and if the point P take four
different positions, the point C will take four different
positions, and so will the point D ; and the anharmoniec
ratio of the four positions of C equal the anharmonic ratio
of the pencil from A to the four positions of P (Prop. 1).
Similarly the anharmonic ratio of the four positions of
D equal the anharmonic ratio of the pencil from B to the
four positions of P; but the pencil from A equal the
pencil from B; therefore the anharmonic ratio of the
four positions of C equal the anharmonic ratio of the
four positions of D.

(2). Any four fixed tangents to a circle are cut by any
fifth variable tangent in jfour points whose anharmonie
ratio 1s constant.

Dem.—The lines joining the point of contact of the
variable tangent to the points of contact of the fixed
tangents are the polars of the points of intersection of
the variable tangent with the fixed tangents; but the
anharmonic ratio of the pencil of four lines from a
variable point to four fixed points on a circle is con-
stant; hence the anharmonic ratio of their four poles—
that is, of the four points in which the variable tangent
cuts the fixed tangent—is constant.

L
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3). Lunes drawwn from any variable point vn the plane
of & quadrilateral to the six points of intersection of its
Sfour sides form a pencil in wnvolution.

- This Proposition is evidently the reciprocal of (1),
Prop. 9, Section VI. The F

following is a direct proof:
Let ABCD be the quadri-
lateral, and let its opposite
sides meet in the points E
and F, and let O be the point
in the plane of the quadri- |,
lateral ; the pencil from Oto
the points A, B, C, D, E, F

1s 1In 1nvolution.

Dem.—Join OE, cutting the sides AD, BC in X and
Y. Join EF. Now, the pencil(0O.XADF)= (E . XADF)

=(E.YBCF)=(0.YBCF)=(0.XBCF); ... (0.EADF)
= (0 . EBCF). Hence the pencil is in involution.

(4). If two vertices of a triangle move on fized Ilines,
while the three sides pass through three collinear points,
the locus of the third vertex 1s a right line. Hence, reci-
procally, If two sides of a triangle pass through fized
points, while the vertices move on three concurrent lines,
the third side will pass through a fized point.

(8). To describe a triangle about a circle, so that its three
vertices may be on three gwwen lines. 'This is solved by
inscribing in the circle a triangle whose three sides
shall pass through the poles of the three given lines,
and drawing tangents at the angular points of the in-
scribed triangle.

(4). Briawcron’s TarorEM.— If 0 hewagon be described
about & circle, the three lines jorning the opposite angular
points are concurrent.

This is the reciprocal of Pascal’s Theorem : we prove
it as follows :(—

Let ABCDEF be the circumscribed hexagon; the
three diagonals AD, BE, CF are concurrent. For, let
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the points of contact be G, H, I, J, K, L. Now since
A is the pole of GH, and D A

the pole of JK, the line AD
is the polar of the point of
intersection of the opposite
sides GH and JK of the in-
scribed hexagon. In like
manner, BE is the polar of
the point of intersection of
the lines HI, KL, and CF
the polar of the point of
intersection of IJ and LG ;
but the intersections of
the three pairs of opposite
sides of the inscribed hexagon, viz., GH, JK; HI, KL;
1J, LG, are, by Pascal’s Theorem, collinear; therefore
their three polars AD, BE, CF, are concurrent.

(7). If two lines be divided homographically, two lines

jotning homologous points can be drawn, each of which
passes through a gwen point.

For, if AA’ (see fig., Prop. 3) pass through a given
point P, join EP, and let falla 1 EG on AA’; then
(Cor. 2, Prop. 3) the locus of the point G is a © ; and
since EGP is a right angle, the © described on EP as
diameter passes through G; hence G is the point of
intersection of two given ©s; and since two Os inter-
sect in two points, we see that two lines joining homo-
graphic points can be formed, each passing through P.
Now, if wereciprocate the whole diagram with respect
to a circle whose centre is P, the reciprocals of the
points A, A’ will be parallel lines. Hence we have the
following theorem in a system of two homographic
pencils of rays :—ZThere exvst two pairs of homologous
rays which are parallel to each other.

Cor.—There are two directions in which transver.
sals can be drawn, intersecting two homographic pen-
cils of rays so as to be divided proportionally, namely,

parallel to the pairs of homologous rays which are
parallel.
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(8). If we reciprocate Prop. 3 we have the following
theorem :— Being given a fixed point, namely, the centre
of the circle of reciprocation and two homographic pencils
of rays, two lines can be found (the polars of the points E
and ¥ in Prop. 8), so that the portions intercepted on
each by homologous rays of the pencils will subtend an angle
of constant magnitude at the given point.

SECTION VIII,

MrscELLANEOUS EXERCISES.

1. The lines from the angles of a A to the points of contact of
any O touching the three sides are concurrent.

2. Three lines being given in position, to find a point in one of
them, such that the sum of two lines drawn from it, making given
angles with the other two, may be given.

3. From a given point in the diameter of a semicircle produced
to draw a line cutting the semicircle, so that the lines may have a
given ratio which join the pointsof intersection to the extremities
of the diameter.

4, The internal and external bisectors of the vertical angle of
a A meet the base in points which are harmonic conjugates to the
extremities.

5. The rectangle contained by the sides of a A is greater than
the square of the internal bisector of the vertical angle by the
rectangle contained by the segments of the base.

6. State the corresponding theorem for the external bisector.
7. Given the base and the vertical angle of a A, find the fol-
owing loci :—
(1). Of the intersection of perpendiculars.
(2). Of the centre of any circle touching the three sides.
(3). Of the intersection of bisectors of sides.

8. Ifa variable © touch twofizxed Os, the tangents drawn to it
from the limiting points have a constant ratio.
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9. The L from the right angle on the hypotenuse of a right-
angled A isa harmonic mean between the segments of the hypo-
tenuse made by the point of contact of the inscribed circle.

10. If a line be cut harmonically by two O©s, the locus of the
foot of the L, let fall on it from either centre, is a ©, and it cuts

any two positions of itself homographically (see Prop. 3, Cor. 2,
Section VII.).

11. Through a given point to draw a line, cutting the sides of
a given A in three points, such that the anharmonic ratio of the

systeny, consisting of the given point and the points of section,
may be given.

12. If squares be described on the sides of a A and their cen-
tres joined, the area of the A so formed exceeds the area of the
given triangle by 4th part of the sum of the squares.

13. The locus of the centre of a O bisecting the circumferences
of two fixed Os is a right line,

14. Divide a given semicircle into two parts by a L to the
diameter, so that the diameters of the ©Os described in them may
be in a given ratio.

15. The side of the square inscribed in a A is half the hare
monic mean between the base and perpendicular.

16. The ©s described on the three diagonals of a quadrilatera
are coaxal.

17. If X, X' be the points where the bisectors of the £ A of
a A and of its supplement meet the side BC, and if Y, Y’; Z, Z,
be points similarly determined on the sides CA, AB ; then

1 1 + 1 _ 6 .
XX, + YY/ ZZ’ - ’
2 2 2
and ¢ b ‘= 0.

xx tYVv T77

18. Prove Ptolemy’s Theorem, and its converse, by inversion

19. A line of given length slides between two fixed lines: find
the locus of the intersection of the Ls to the fixed lines from the
extremities of the sliding line, and of the Ls on the fixed lines
from the extremities of the sliding line.

20. If from a variable point P L s be drawn to three sides of
a A ; then, if the area of the A formed by joining the feet of
these Ls be given, the locus of P is a circle,
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21. If a variable © touch two fixed Os, its radius varies as the
square of the tangent drawn to it from either limiting point.

22. If two Os, whose centres are O, (", intersect, ag in Euclid
(I. 1), and OO’ be joined, and produced to A, and a © GDH be
described, touching the s whose centres are O, O’, and also
touching the line AO ; then, F 0
if we draw the radical axis o
EE’ of the Os, intersecting
00"in C, and the diameter g
DF of the © GHD, and join
EF, the figure CDFE is a A
square.

Dem.—The line joining
the points of contact G and >
H will pass through C, the E
internal centre of similitude

of the ©s O, O'; therefore CG . CH = CE?; but CD?=CG.CH;
therefore CD = CE.

Again, let O” be the centre of GDH, and D’ the middle point
of AO; then the © whose centre is D’ and radius D’ A touches the
Os O, O’; hence (by Theorem 7, Section V.) the 1L from O’ on
EE' :0"D::CD’: D’A; that is, in the ratio of 2: 1. Hence the
Proposition is proved.

23. If a quadrilateral be circumscribed to a ©, the centre and
the middle points of the diagonals are collinear.

24. If one diagonal of a quadrilateral inscribed in a © be bi-

sected by the other, the square of the latter = half the sum of the
squares of the sides.

25. If a A given in species moves with its vertices on three
fixed lines, it marks off proportional parts on these lines.

26. Through the point of intersection of two Os draw a line
so that the sum or the difference of the squares of the chords of
the Os shall be given.

27. If two Ostouch at A, and BC be any chord of one touching
the other; then the sum or difference of the chords AB, AC bears
to the chord BC a constant ratio. Distinguish the two cases.

28. If ABC be a A inscribed in a ©, and if a || to AC through
the pole of AB meet BC in D, then AD is = CD.

29. The centres of the four Os circumscribed about the As
formed by four right lines are concyclic,

_ 30. Through a given point draw two transversals which shall
intercept given lengths on two given lines.
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31. If a variable line meet four fixed lines in points whose
anharmonic ratio is constant, it cuts these four lines homographi-
cally.

32. Given the 1. CD to the diameter AB of a semicircle, it is
required to draw through A a chord, cutting CD in E and the
semicircle in F, such that the ratio of CE : EF may be given.

33. Draw in the last construction the line AEF so that the
quadrilateral CEFB may be a maximum.

34. The © described through the centres of the three escribed
Os of a plane A, and the circumscribed © of the same A, will
have the centre of the inscribed O of the A for one of their centres
of similitude.

35. The Os on the diagonals of a complete quadrilateral cut

orthogonally the © described about the A formed by the three
diagonals.

36. When the three ls from the vertices of one A on the
sides of another are concurrent, the three corresponding s from
the vertices of the latter, on the sides of the former, are concur-
rent.

37. If a © be inscribed in a quadrant of a ©; and a second ©
be described touching the ©, the quadrant, and radius of quadrant;
and a L be let fall from the centre of the second © on the line
passing through the centres of the first © and of the quadrant;
then the A whose angular points are the foot of the L, the
centre of the quadrant, and the centre of the second ©, has its
sides in arithmetical progression.

38. In the last Proposition, the Ls let fall from the centre of

the second © on the radii of the quadrants are in the ratio of
1:7.

39. When three Os of a coaxal system touch the three sides of
a A at three points, which are either collinear or concurrently
connectant with the opposite vertices, their three centres form,
with those of the three ©Os of the system which pass through the
vertices of the A, a system of six points in involution.

40. If two Os be so placed that a quadrilateral may be in-
scribed in one and circumscribed to the other, the diagonals of
the quadrilateral intersect in one of the limiting points.

41. If from a fixed point Ls be let fall on two conjugate rays
of a pencil in involution, the feet of the Ls are collinear with a
fixed point. '

42. Miquer’s TuEorEM.—If the five sides of auny pentagon
ABCDE be produced, forming five As external to the pentagon,
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the Os described about these As intersect in five peints A", B”,
C"”, D", E”, which are concyclic.

C.'

Dem.—Join E”"B’, E"D"”, D”C”, C"B", C"C; join also DD
and E'B”’, and let them produced meet in G. Now, consider the A
AB'E, it is evident the © described about it (Cor. 3, Prop. 12,
Book III.) will pass through the points E”, B"'; hence the four
points E”, B’, E’, B" are concyeclic; .. the Z GB”"E"” = E'B'E";
but E'B'E” = GD"E"”; .. L GB"E’ = GD”E"”. Hence the
© through the points B"”, D", E"" passes through G.

Again, since the figure CDD"’C"”’ is a quadrilateral in a ©, the
L GDE' = D”C"C, and the £ GE'D = B"C”C (III. 21);
.. L B’C"D"” = GDE" + GE'D. To each add 2 E'GD, and
we see that the figure GD”C”B"” is a quadrilateral in a ©;
hence the © through the points B”, D”, E" passes through C".
In like manner it passes through A”. Hence the five points
A", B"”, C”, D", E" are concyclic.

43. If the product of the tangents, from a variable point P to
two given Os, has a given ratio to the square of the tangent from
P to a third given O coaxal with the former, the locus of P is a
ci.cle of the same system.
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44. Through the vertices of any A are drawn any three paral-
lel lines, and through each vertex a line is drawn, making the
same £/ with one of the adjacent sides which the parallel makes
with the other; these three lines are concurrent. Required the
locus of the point in which they meet.

45. If from any point in a given line two tangents be drawn to
a given ©, X, and if a®, Y, be described touching X and the twe
tangents, the envelope of the polar of the centre of Y with respect
to X is a circle.

46. The extremities of a variable chord XY of a given © are
joined to the extremities of a fixed chord AB; then, if m AX . AY
+ 7 BX . BY be given, the envelope of XY is a circle.

47. If A, A’ be conjugate points of a system in involution, and
if AQ, A’Q be L to the lines joining A, A’ to any fixed point P, it
is required to find the locus of Q.

48. If @, a', b, ¥', ¢, ¢, be three pairs of conjugate points of a
system in involution ; then,

(1). abl! . b .cd ==4a'b.Vec.ca.

(2). ab . be .d=—d'b.V . ca.
ab . alf a'b. 'l

3 L = L]

(8) ac . ac adec.ad

49. Construct a right-angled A, being given the sum of the
base and hypotenuse, and the sum of the base and perpendicular.

60. Given the perimeter of a right-angled A whose sides are
in arithmetical progression: construct it.

51. Given a point in the side of a A ; inscribe in it another A
similar to a given A, and having one £ at the given point.

52. Given a point D in the base AB produced of a given A ABC ;
draw a line EF through D cutting the sides so that the area of
the A EFC may be given.

53. Construct a A whose three Zs shall be on given Os,
and whose sides shall pass through three of their centres of
similitude.

54. From a given point O three lines OA, OB, OC are drawn
to a given line ABC ; prove that if the radii of the ©s inscribed
in OAB, OBC are given, the radius of the © inscribed in OAC
will be determined.

55. Equal portions OA, OB are taken on the sides of a given
right £ AOB, the point A is joined to a fixed point C, and a L let
fall on AC from B: the locus of the foot of this . is acircle,
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56. If a segment AB of a given line be cut in a given anhar-
monic ratio in two variable points X, X’, then the anharmonic
ratio of any four positions of X will be equal to the anharmonic
ratio of the four corresponding positions of X'.

57. If a variable A inscribed in a ©, X, whose radius is R, has
two of its sides touching another ©, Y, whose radius is #, and
whose centre is distant from the centre of X by &; then the dis-
tance of the centre of the O coaxal with X and Y, which is the
envelope of the third side of the A from the centre of X,

(&2 - 32

— 22 -
= 92§ = in?

58. In the same case the radius of the ® which is the enve-
lope of the third side is

72 (R — p) — Rp?
D] b}
.P"’

B2 2
where p = ——é—}‘é—‘—.

59. If two tangents be drawn to a ©, the points where any
third tangent is cut by these will be harmonic conjugates to the
point of contact and the point where it is cut by the chord of
contact.

60. If two points be inverse to each other with respect to any
©, then the inverses of these will be inverse to each other with
respect to the inverse of the ©. Hence it follows that if two
figures be inverse to each other with respect to any ©, their
inverses will be inverse to each other with respect to the inverse
of the circle.

61. MALFATTI’S ProBLEM.—T0 inscribe in a A three ©s which
touch each other, and each of which touches two sides of the A.

Analysis.—Let L, M, N be the points of contact of three Os
which touch one another, and each touch two sides of the A ABC;
draw the common tangents DE, FG, HI to these Os at their
points of contact I, M, N ; then, since these lines are the radical
"~ axes of the Os taken in pairs, they are concurrent: let them
meet in K.

Now, it is evident that FH - HD = FO - DP=FM - DL =
FK - DK. Hence H is the point of contact with FD of the O
described in the A FKD. In like manner, E and G are the
points of coutact of ©s which touch the triads of lines IK, KF,
AC; and IK, DK, AB, respectively.
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again, HN = HP = QL,, and NS = ER = EL; .. HS = EQ;
*. (see 6, Prop. 1, Section V.) the tangents at E and H to the ©Os

F

ES and HQ meet on their © of similitude ; .*. C is a point on the
© of similitude of the ©s ES and HQ; and therefore these Os
subtend equal £s at C. Also, three commor: tang. nts of the ©s HQ,
ES, PNR, viz., QL, SN, KF, are concurrent; ... (see Ex. 48,
Section II., Book ITII.) C must be the point of concurrence of
three other common tangents to the same ©Os. Hence the second
transverse common tangent to HQ and ES must pass through C;
and since C is a point on their © of similitude, this transverse
common tangent must bisect the £ ACB. In like manner it is
proved that the bisectors of A and B are transverse common tan-
gents to the ©s ES and GT, and to HQ and GT, respectively.
Hence, we have the following elegant construction :—Let V be
the point of concurrence of the three bisectors of the £ s of the A
ABC. Inthe AsVAB, VBC, VCA, describe three Os: these Os
will evidently, taken in pairs, have VB, VC, VA as transverse
common tangents; then to the same pairs of ©Os draw the three
other transverse tangents; these will be respectively ED, GF,
HI; and the ©Os described touching the triads of lines AB, AC,
ED; AB, BC, GF; AB, BC, HI, will be the required circles.

This construction is due to Steiner, and the foregoing simple
and elementary proof to Dr. Hart (see Quarterly Journal, vol. i.
p. 219).

62. If a transversal passing through a fixed point O cut any
‘number of fixed lines in the points A, B, C, &c., and if P be a

point such that
1_L. 1, !4 &
OP~ 0A OB og™ ™™

the locus of P is a right line.
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63. The sum of the squares of the radii of the four ©s, cut-
ting orthogonally the inscribed and escribed ©Os of a plane A,
taken three by three, is equal to the square of the diameter of the
circumscribed ©.

64. Describe through two given points a O cutting a given arc
of a given © in a given anharmonic ratio.

65. All Os which cut three fixed Os at equal £ s form a coaxal
system.

66. Being given five points and a line, find a point on the line,
so that the pencil formed by joining it to the five given points
shall form an involution with the line itself.

67. If a quadrilateral be inscribed in a circle, the circle de-
scribed on the third diagonal as diameter will be the circle of
similitude of the circles described on the other diagonals as dia-
meters.

68. If ABC be any A, B'C’ a line drawn || to the base BC;
then, if O, O’ be the escribed ©Os to ABC, opposite the £s B and
C respectively, O; the inscribed © of AB’CY, and 0’1 the escribed
® opposite the £ A ; then, besides the lines AB, AC, which are
common tangents, O, 0/, 01, 0’} are all touched by two other
circles.

69. When two Os intersect orthogonally, the locus of the point
whence four tangents can be drawn to the ©s, and forming a
harmonic pencil, consists of two lines, viz., the polars of the
centre of similitude of the two circles.

70. If two lines be divided homographically in the two sys-
tems of points @, 8, ¢, &c., &/, ¥/, ¢/, &c., then the locus of the
points of intersection of ad’, &’b, ac’, a’c, ad', d'd, &c., is a right
line.

71. Being given two homographic pencils, if through the point
of intersection of two corresponding rays we draw two transver-
sals, which meet the two pencils in two series of points, the lines
joining corresponding points of intersection are concurrent.

72. Inscribe a A in a © having two sides passing through two
given points, and the third || to a given line.

73. If two As be described about a ©, the six angular points
are such that any four are subtended equianharmonically by the
other two.

74. Given four points A, B, C, D on a given line, find two
other points X, Y, so that the anharmonicratios (ABXY), (CDXY)
may be given.

76. If two quadrilaterals have the same diagonals, the eight
points of intersection of their sides are such that any four are
subtended equianharmonically by the other four,
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76. Given three rays A, B, C, find three other rays X, Y, Z
through the same vertex O, so that the anharmonic ratios of the
pencils (O . ABXY), (0O .BCYZ), (O.CAZX), may be given.

77. If a A similar to that formed by the centres of three given
©s slide with its three vertices on their circumferences, the ver-
tices divide the ©Os homographically.

78. Find the locus of the centre of a ©, being given that the
polar of a given point A passes through a given point B, and
the polar of another given point C passes through a given
point D.

79. If a A be self-conjugate with respect to a given ©, the
O© described about the A is orthogonal to another given circle.

80. The Os self-conjugate to the As formed by four lines are
coaxal.

81. The pencil formed by lines || to the sides and diagonals of a
quadrilateral is involution.

82. If four Os be co-orthogonal, that is, have a common or-
thogonal ©, their radical axes form a pencil in involution.

83. In a given O to inscribe a A whose sides shall divide in a
given anharmonic ratio given arcs of the circle.

84. When four Os have a common point of intersection, their
six radical axes form a pencil in involution.

85. The pencil formed by drawing tangents from any point in
their radical axis totwo © s, and drawing twolines to their centres
of similitude, is in involution.

*86. If a pair of the opposite Zs of a quadrilateral be equal to a
right £, then the sum of the squares of the rectangles contained
by the opposite sides is equal to the square of the rectangle con-
tained by the diagonals.

87. Prove thatthe problem 17, page 38, ‘¢ To inscribe in a given
A DEF, a A given in species whose area shall be a minimum,”
admits of two solutions; and also that the point O’ in the second
solution, which corresponds to O in the first, is the inverse of O
with respect to the circle which circumscribes the A DEF.

88. The line joining the intersection of the Ls of a A to the
centre of a circumscribed ©is L to the axis of perspective of the
given A, and the A formed by joining the feet of the Ls.

* This Theorem is due to Bellavitis. Sce his #7¢/%ode des Equipollences.
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89. If two Os whose radii are R, R’, and the distance of whose
centres is &, be such that a hexagon can be inscribed in one and
circumscribed to the other; then

1 1
(R — o) f 4R2Rs = (Ri= 372 — 4R*Ro
_ 1
= IR (RE 4 oY) - (B - o

90. In the same case, if an octagon be inscribed in one and
circumscribed to the other,

1 2 1 2
{ ®*- 0% 1 43'233} * {(Rz T30 — 4RPRs }

- T }2'

91. If a variable O touch two fixed Os, the polar of its centre
with respect to either of the fixed Os touches a fixed circle.

92. If a O touch three Os, the polar of its centre, with respect
to any of the three Os, is a common tangent to two circles.

¥93, Prove that the Problem, to inscribe a quadrilateral, whose
perimeter is a minimum in another quadrilateral, is indeterminate
or impossible, according as the given quadrilateral has the sum of
its opposite angles equal or not equal to two right angles.

94. If a quadrilateral be inscribed in a ©, thelines joining the
feet of the Ls, let fall on its sides from the point of intersection
of its diagonals, will form an inscribed quadrilateral Q of minimum
perimeter; and an indefinite number of other quadrilaterals may be
inscribed whose sides are respectively equal to the sides of Q, the
perimeter of each of them being equal to the perimeter of Q.

95. The perimeter of Q is equal to the rectangle contained by
the diagonals of the original quadrilateral divided by the radius of
the circumseribed circle.

96. Being given four lines forming four As, the sixteen cen-
tres of the inseribed and escribed ©s to these A s lie four by four
on four coaxal cirecles.

97. If the base of a A be given, both in magnitude and posi-
tion, and the ratio of the sum of the squares of the sides to the
area, the locus of the vertex is a circle.

* The Theorems 87 and 93-96 have been communicated to the author
by Mr. W, S, M‘CAy, F.T.C.D.
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98. If a line of constant length slide between two fixed lines,
the locus of the centre of instantaneous rotation is a circle.

99. If two sides of a A given in species and magnitude slide
along two fixed Os, the envelope of the third side is a circle.
(BonIiLLIiER).

100. If the lengths of the sides of the A in Ex. 99 be denoted
by @, b, ¢, and the radii of the three Os by e, B, 7; then
ao * OB * ¢y = twice the area of the A, the sign + or — being

used according as the ©s touch the sides of the A internally or
externally.

101. If five quadrilaterals be formed from five lines by omitting
each in succession, the lines of collinearity of the middle points
of their diagonals are concurrent. (H. Fox Tarsor.)

102. If D, D’ be the diagonals of a quadrilateral whose four
sides are @, b, ¢, d, and two of whose opposite angles are 6, 6, then

D2D"2 = ¢2¢% 4- 52d2 — 2abed cos (0 + ¢').

103. If the sides of a A ABC, inscribed in a ©, be cut by a
transversal in the points @, b, ¢. If a, B, v denote the lengths of
the tangents from a, 4, ¢ to the ©, then a8y = Ad. Be. Ca.

104. If a, b, ¢ denote the three sides of a A, and if a, B, 7 de-
note the bisectors of its angles,

8 abc . s. area
(@+20)(6+0) e +a)

aBy=

105. If a A ABC circumseribed to a © be also circumscribed
to another A A’B'C’, and in perspective with it, the tangents from
the vertices of A’E’C’ will meet its opposite sides in three collinear
points.

106. If two sides of a triangle be given in position, and its
area given in magnitude, two points can be found at each of
which the base subtends an angle of constant magnitude.

107. If two sides of a triangle and its inscribed circle be given
in position, the envelope of its circumscribed circle is a circle.—
MANNHEIM.

108. If the circumference of a circle be divided into an uneven
number of equal parts, and the points of division denoted by the
indices 0, 1, 2, 3, &c., then if the point of the circle diametri-
cally oppos1te to that whose index is zero be joined with all the
points in one of its semicircles, the rectangle contained by the
chords terminating in the points 1, 2, 4, 8 ... is equal to the
power of the radius denoted by the number of chords.
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109. A right line, which bisects the perimeter of the maximum
figure contained by that perimeter, bisects also the area of the
figure. Hence show, that of all figures having the same perimeter
a circle has the greatest area.

110. The polar circle of a triangle, its circumscribed circle,
and nine-points circle, are coaxal.

111. The polar circles of the five triangles external to a pen-

tagon, which are formed by producing its sides, have a common
orthogonal circle.

112. The six anharmonic ratios of four collinear points can be

expressed in terms of the trigonometrical functions of an angle,
-namely,

—sin®p, —cos?p, tan’p, -—cosec®p, -—sec’dp, cotiep.
Show how to construct ¢.

113. If the sides of a polygon of an even number of sides be
cut by any transversal, the product of one set of alternate seg-
ments is equal to the product of the other set. If the number of

sides of the polygon be odd, the rectangles will be equal, but will
have contrary signs (CarNoT).

114. If from the angular points of a polygon of an odd number
of sides concurrent lines be drawn, dividing the opposite sides
each into two segments, the product of one set of alternate seg-
ments is equal to the product of the other set (PoNcELET).

115. If the points at infinity on two lines divided homo-

graphically be corresponding points, the lines are divided pro-
portionally.

116. 70 construct a quadrilateral, being given the four sides and
the area.

Analysis. —Let ABCD be ¢ B
the required quadrilateral. The
four sides, AB, BC, CD, DA are
given in magnitude ; and the ,
area is also given. Draw AE Q
parallel and equal to BD. Join
ED, EC; draw AF, CG per-
pendicular to BD; produce CG D
to H; bisect BD in O.

Now we have

BC2 — CD? = 2BD . 0G H.
AD?® .- AB? = 2BD . OF ; B

!

and
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therefore

BC? + AD? - AB*- CD?=2BD . FG = 2AE. AH.

Hence, since the four lines AB, BC, CD, DA are given in
magnitude, therectangle AE. AH is given. Now, if we suppose
the line AD to be given in position, since DE is equal to AB.
which is given in magnitude, the locus of the point E is a circle,
and since the rectangle AH . AE is given, the locus of the point H
is a circle, namely, the inverse of the locus of E.

Again, since the lines AE, AC are equal, respectively, to the
diagonals of the quadrilateral, and include an angle equal to that
between the diagonals, the area of the triangle ACE is equal to
the area of the quadrilateral. Hence the area of the triangle
ACE is given. Therefore the rectangle AE.CH is given. And
it has been proved that the rectangle AE.AH is given; therefore
the ratio AH : CH is given. Hence the triangle ACH is given
in species. And since the point A is fixed, and H moves on a
given circle, C moves on a given circle. And since D is fixed,

and DC given in magnitude, the locus of the point C is another
circle. Hence C is a given point.

117. Prove from the foregoing analysis that the area is a maxi-
mum when the four points A, B, C, D are concyclic.

118. In the same case prove that the angle between the diagonals
is a maximum when the points are concyelic.

119. The difference of the squares of the two interior diagonals
of a cyclic quadrilateral is to twice their rectangle as the distance
between their middle points is to the third diagonal.

120. Inscribe in a given circle a quadrilateral whose three
diagonals are given. [Make use of Ex. 119.]

121. Given the two diagonals and all the angles of a quadri-
lateral; construct it.

122. If L be one of the limiting points of two cireles, O, O’, and
LA, LB two radii vectors at right angles to each other, and termi-

nating in these circles, the locus of the intersection of tangents at A
and B s a cirele coaxal with O, O’.

Dem.—Join AB, intersecting the circles again in G and H,
and let fall the perpendiculars OC, O’D, LE.

M
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Then
AL2: AB.AH:: OL: 00" [v1. Sect. v. Prop. 1. (3)1.
But AL? = AB.AE.
Hence AE: AH ::0L: 00’;
therefore AE:HE:: OL : O'L.
In like manner GE:BE::OL: OL.
Hence AG:BH ::0L: 0'L,

K

that is, in a given ratio. Therefore the tangents AK, BK are in
a given ratio [Eucrip, VI. 1v. Ex. 2]; and the locus of K is a
circle coaxal with O, O’.

This theorem is the reciprocal of a remarkable one in Confocal
Conics (see Conies, page 184). The demonstration of it here
given, as well as that of the Proposition Ex. 116, have been com-
municated to me by W. 8. M‘Cay, r.T.C.D.

123. In the same case the locus of the point E is a circle co-
axal with O, O'.

124. If O” be the centre of the locus of E, then LO"” is half
the harmonic mean between LO and LO'.
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125. If » bethe radius of the inscribed circle of a triangle ABC,
and p the radius of a circle touching the circumscribed circle in-
ternally and the sides AB, AC; then p cos? 2A = 7.

126. Prove the corresponding relation p’ cos? $A = #’ for the
case of external contact.

127. Prove by inversion the equality of the two circles in
Prop. 8, Cor. 4, p. 32.

128. If AB, CD be the diameters of two circles, and be also
segments of the same line, prove that the two circles are equal
which touch respectively the circles on AB, CD ; their radical
axis on opposite sides, and any circle whose centre is the middle
point of AD.—(STEINER.)

129. Given three points, A, B, C, and three multiples, ¢, m, »,
find a point O such that JAO + mBO + %#CO may be a minimum.

130. If A, B, C, D be any four points connected by four circles,
each passing through three of the points, then not only is the
angle at A between the arcs ABC, ADC equal to the angle at C
between CDA, CBA, but it is also equal to the angle at D be-
tween the arcs DAB, DCB; and to the angle at B between BCD,
BAD.—(HamMiLTON.)

131. If A, B, C be the escribed circles of a triangle, and if
A’, B, C' be three other circles touching ABC as follows, viz.
each of them touching two of the former exteriorly, and one in-
teriorly ; then A’, B’, C’ intersect in a common point P, and the
lines of connexion at P with the centres of the circles are perpen=
dicular to the sides of the triangle.

132. The line of collinearity of the middle points of the diago-
nals of a complete quadrilateral is perpendicular to the line of
collinearity of the orthocentres of the four triangles.

133. The sines of the angles which the line of collinearity of
the middle points of the diagonals of a complete quadrilateral
makes with the sides are proportional to the didmeters of the
circles deseribed about its four triangles,

134. If r, p be the radii of two concentric circles, and R the
radius of a third circle (not necessarily concentric), so related to
them that a triangle described about the circle » may be inseribed
in R, and a quadrilateral about p may be inscribed in R : then

rlp + p|B = p[r.
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135. If R, r be the radii of two circles, C, C’, of which the
former is supposed to include the latter; then if a series of circles
0;, Oz, Os, . ... Om be described touching both and touching each
other in succession, prove that if traversing the space between
C, C » times consecutively the circle O, touch O; if & be the
distance between the centres,

(R - 7)% — 4Ry tan? 9:—:- = §% —(STEINER.)

136. If A, B, C, D be any four points, and if the three pairs
of lines which join them intersect in the points 4, ¢, d, then the
nine-points circles of the four triangles ABC, ABD, ACD, BCD,
and tlig circle about the triangle ée¢d, all pass through a common
point P.

137. If A, By, C;, D, be the orthocentres of the triangles
A, B, C &ec., and 01, e1, d; the points determined by joining
A, By, Ci, Dy, in pairs; then the nine-points circles of the four
triangles Aj, B, C1, &c., and the circumscribed circle of the tri-
angle d,¢1d), all pass through the former point P.—(Ex. 29.)

138. The Simson’s lines (Book 111. Prop. 12) of the extremi-
ties of any diameter of the circumcircle of a triangle intersect at
right angles on the nine-points circle of the triangle.

139.* Every tangent to a cirele is cut harmonically by the sides
of a circumseribed square, and also by the sides of a circumseribed
trapezoid whose non-parallel sides are equal.

140. A variable chord of a circle passes through a fixed point ;
its extremities and the fixed point are joined to the centre ; prove
that the circumcircles of the three triangles so formed touch in
every position a pair of circles belonging to two given coaxal
systems.

141. Weill’s Theorem.—If two circles be so related that a poly-
gon of # sides can be inscribed in one and circumscribed to the
other, the mean centre of the points of contact is a fixed point.

142. In the same case the locus of the mean centre of any
number (» — ) of the points is a circle.

Weill’s Theorem was published in Liowville's Journal,
Third Series, Tome IV., page 270, for the year 1878. A
proposition, of which Weill’s is an immediate inference, was
published by the Author in 1862, in the Quarterly Journal
of Pure and Applied Mathematics, Vol. V., page 44, Cor. 2.

* Theorems 139, 140, have been communicated to the author
by RoBerT GrAHAM, Esq., A.M., T.C.D.
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SUPPLEMENTARY CHAPTER.

RECENT ELEMENTARY GEOMETRY.

SECTION I

TrEORY OF IsoconaL AND Isoromric PoinNts, AND oF
ANTIPARALLEL AND SYMMEDIAN LINES.

Der.—7wo lines AX, AY are said to be Is0cONAL
CoNyUGATES, with respect to an angle BAC, when they make
equal angles with its buisector.

Prop. 1.—If from A
two points X, Y on two
lines AX, AY, which
are 1sogonal conjugates
with respect to a given
angle BAC, perpendi-
culars XM, YN, XP,
YQ be drawn to its
stdes ; then— N

1°. The rectangle M
XM.YN = XP.YQ.

2°. The points M, N, B
P, Q are concyclic. |

8°. MP s perpendicular to AY, and NQ to AX.

Dem.—1°. From the construction, we have evi-
dently XM : AX ::YQ: AY, and AX : XP:: AY
N
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: YN. Hence [Fuc. V. xx11. ] XM:XP:: YQ: YN;
therefore XM.YN = XP.YQ.

2°, In the same manner AM : AX:: AQ: AY, and
AX:AP :: AY : AN. Hence AM: AP :: AQ: AN;
therefore AM . AN = AP.AQ. Hence the points M,
N, P, Q are concyclic.

3°. Since the angles AMX, APX are right, AMXP
is a cyclic quadrilateral ; therefore the angle MAX =
MPX ; but MAX =YAQ. Hence MPX = YAQ, and
PX is perpendicular to AQ. Hence PM is perpendi-
cular to AY. Similarly, QN is perpendicular to AX.

Cor. 1.—If the rectangle contained by the perpend:-
culars from two gwen points on one of the sides of a given
angle be equal to the rectangle contained by the perpendi-
culars from the same pownts on the other side, the lines
Jotning the vertex of the angle to the points are isogonal
conjugates with respect to the angle.

Prop. 2.—The vsogonal conjugates of three concurrent
lines AX, BX, CX, with respect to the three angles of a
triangle ABC, are concurrent.

A

Dem.—Let the isogo-
nal conjugates of AX, BX
be AY, BY, respectively.
Join CY. It is required
to prove that CY is the
isogonal conjugate of CX.

From 1°, Prop. 1, the B¥

rectangles of the perpen- N\/
diculars from X, Y on the S ,
lines AC, BC are each equal M\_/
to the rectangle contained

by the perpendiculars from X, Y on AB. Hence they
are equal to one another, and therefore, by Prop. 1,
Cor. 1, the lines CX, CY are isogonal conjugates with
respect to the angle C.
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DEr.—TVe points X, Y are called isogonal conjugates
with respect to the triangle ABC.

Cor. 1.—If X, Y be usogonal conjugates with respect
to a triangle, the three rectangles contained by the dis-
tances of X, Y from the sides of the triangle are equal to
one another.

Cor. 2.—The middle point of the line XY is equally
distant from the projections of the pownts X, Y on the
thiree sides of the triangle.

Exercises.

1. The sum of the angles BXC, BYC is 180°+ A.

2. The line joining any two points, and the line joining their
isogonal conjugates, with respect to a triangle, subtend at any
vertex of the triangle angles which are either equal or supple-
mental.

3. AM2: AN?:: BM.MC:BN.NC. (STEINER.)

4. If the lines AX, AY meet the circumcircle of the triangle
ABC in M’, N’, then the rectangles AB. AC, AM.AN’, and
AM'. AN are equal to one anothar.

5. The isogonal conjugate of the point M’ is the point at in-
finity on the line AN'.

6. If three lines through the vertices of a triangle meet the
opposite sides in collinear points, their isogonal conjugates will
also meet them in collinear points.

7. If upon the sides of a triangle ABC three equilateral tri-
angles ABC’, BCA', CAB’ be described either externally or in-
ternally, the isogonal conjugate of the centre of perspective
of the triangles ABC, A'B'C’, is a point common to the three
Apollonian circles of ABC. (See Cor. 3, p. 86.)

8. If the lines MX, QY in fig. Prop. 1, intersect in D, and
the lines MP, NQ in E, the lines AD, AE are isogonal conjugates
with respect to the angle BAC.

9. If D, E be the points where two isogonal conjugates, with
respect to the angle BAC, meet the base BC of the triangle BAC
and if perpendiculars to AB, AC at the points B, C meet the per
pendiculars to BC at D, E in the points D'y, E'; D”, E”, respee
tively ; then BD'. BE' : CD”. CE"” :: AB*: AC4.

10. In the same case BD .BE:CD.CE :: AB2: AC2,
N2
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Der.—The right lines AB', AC' are said to be 1so-
tomic congugates, with respect to a side BC, of the tri-

A

e
B B' Cr C

angle ABC, when the intercepts BB', CC' on that side are
equal.

Prop. 3.—If two points X, Y, in the plane of a
triangle, be such that the
Jines AX, AY are vsoto-
micx with respect to the
stde BC3; BX, BY with
respect to AC; then CX,
CY are usotomic con-

Jugates with respect to
AB.

Dem.—Produce AX,
AY to meet BC in A/,
A"; BX, BY to meet B Al A’ C
AC in B, B”; and CX, CY to meet AB in C/, C”, re-
spectively. Then AB’.BC’. CA’=A'B.B'C.C'A ; and
AB".BC".CA”"=A"B.B"C.C"A. [VI., Section 1.,
Prop. 2.]

Hence, multiplying these equations, and omitting
terms that cancel each other, we get BC’. AC”" = C"A.
C’'A. Hence BC"= (C'A. Q.E.D.
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Der.—Two points, X, Y, are sard to be 1sotomic conju-
gates, with respect to a triangle ABC, when the pairs of
lines AX, AY ; BX, BY; CX, CY are tsotomic con-
Jugates, with respect to the sides BC, CA, AB respec-
tively.

Exercises.

1. If the multiples for which the point X is the mean centre of
111
the points A, B, C be a, B, y; prove that—, By are the mul-
a

tiples for which the isotomic conjugate of X is the mean centre of
the points A, B, C.

2. If a right line meet the sides of a triangle in the points A’,
B’, C'; prove that the triads of points in which the isogonal and
the isotomic conjugates of AA’, BB’, CC’, with respect to-the
angles A, B, C, meet the sides of the triangle, are each collinear.

DEer.—Lines BC, B'C’ are said to be antiparallel, with

C

respect to the angle A, when the angle ABC 1s equal to
AC'B.

There are three systems of antiparallels with re-
spect to a triangle ABC.

1°.—Antiparallels to BC with respect to the opposite

angle A.
2°, ' CA ') B.
3°. ’s AB ) C.

Prop. 4.—The antiparallels to the sides of a triangle
are parallel to the tangents to ts circumeircle at the
angular points,
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For if LMN be the triangle formed by the tangents,
the angle MAC is [Eue. 1II. xxx1r.] equal to ABC;

therefore MAC = AC’B’, and hence AM 1is parallel to
C'B'.

Cor. 1—T"e points B', C'; B, C are concyclic.

Cor. 2.—The lines joining the feet of the perpendicu-
lars of a triangle are antiparallel to vts sides.

Drr.—The sogonal conjugate of a median AM of a
triangle vs called a symmedian.

It follows from Prop. 2 that the three symmedians
of a triangle are concurrent. The point of concur-
rence (K) is called the symmedian point of the triangle.

Prop. 5.—The perpendiculars from K on the sides of
the triangle are proportional to the sides.

Dem.—Let the perpendiculars from M on the sides
AB, AC be MD, ME, and from K on the three sides

z, 9, 2. Then [Prop. 1, 1°]| MD.s=ME.y; but MD.

AB=ME.AC. Hencey:z:: AC: AB, which proves
the proposition, ‘
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Cor. 1.— L =2 ==

Cor. 2.— The symmedians of a triangle are the medians
of 1ts antiparallels.

Cor. 8.—The symmedian AS divides BC in the ratio
AB%: ACA

Cor. 4.—The multiples for which K ¢s the mean centre
of the points A, B, C are a? b?, c*.

Cor. 5.—The pownt K is the vsogonal conjugate of the
centroid of the triangle.

Prop. 6.—The symmedians pass through the poles of
the sides of the triangle ABC with respect to its circum-
cirele.

Dem.—Let A’ be the pole of BC. Let fall perpen-
diculars A'F, A’G; then A'F : A’G : : sin A'BF :
sin A’CG or::sin ACB:sin ABC; ... A’F: A'G:: AB

: AC : erpendlcular from K on AB perpendlcular
from K on AC. Hence the points A, K, A’ are col-
linear.

Cor. 1.—The polar of K s the axis of perspective of
the triangle ABC, and dts reciprocal, with respect to the
curcumerrcle.

Cor 2.—The tangent at A to the circumcirele, and the

symmedian AS, are harmonic conjugates with respect to the
stdes BA, AC of the triangle.

Prop. 7.—The sum of the squares of the distances of
K firom the sides of ABC s a minimum.

Dem.—Let #, 7, s be the distances of any point
whatever from the sides of ABC, and let A denote
its area. We have the identity

(@*+ y*+ 2%)(a® + B* + ) — (az + by + ¢3)?
= (ay — bx)*+ (b2 — cy)* + (cx —ag)?;

but az + by + cz = 2A. Consequently 2% + 72 + ¢* has its



172 A SEQUEL TO EUCLID.

minimum value when the squares which occur on the
right-hand side of the identity vanish ; that is, when

z_y

<
0.

o b
Cor.—K s the mean centre of the feet of its own
perpendiculars on the sides of the triangle ABC.

Der.—1If we put ;—0 =% tan o, o s called the Brocard
angle of the triangle.

Prop. 8.—cot o = cot A + cot B + cot C.

Dem.—From 5, Cor. 1, we have

tanow = 44
WMO= Pt &

Hence
oot a*+ 0%+ ¢®  2becos A + 2¢a cos B + 2ab cos C

w = = : N

4A 4A ’
2be cos A

but Y cot A, &ec.
Hence cot w = cot A + cot B + cot C.

Cor.—1If the base and the Brocard angle of a triangle
be given, the locus of the symmedian pornt vs a right line
parallel to the base.

Exercises.

1. If K,, K, K. be the points of intersection of the symme-
dians with the sides of the triangle ABC, the area of the triangle

124°
KoKeKe = e e

N i
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2. If the side BA of the triangle ABC be produced through A
until AB"’ = BA; and at B’ and C be erected perpendiculars to
BA, AC, respectively, meeting in I; AI is perpendicular to the
symmedian passing through A.

2. If A” be the pole of the line BC, with respect to the cir-
cumcircle As”, Ay, A/, the feet of the perpendiculars from A",
on the sides of ABC; the area of the triangle A.”, Ay, A/’

1243

(b2 + 2 — “2)2'

4. In the same case prove that the figure A”A” A, A" isa
parallelogram.

SECTION II.

Two FIGURES DIRECTLY SIMILAR.

DErIN.—Being giwen a system of points A, B, C, D,
.« . If upon the line jorning them to a fixed point O
pownts A’y B, C', &e., . . . be determined by the condi-
OA’ OB oOC
OA 0B 0C ™~
tems of points A, B, C, &c., and A’, B’, C', &e., are said
to be homothetic, and O vs called their homothetic centre.

&e., . . . =k, the two sys-

tions

Prop. 1.—1° The figure homothetic to a right line vs
a parallel right line.

2°, The figure homothetic to a circle 1s a circle.

Dem.—1°% This follows at once from the definition
and Fue., VI. 11.

9°. It is evident from Book VI., Section 11., Prop. 1,
Cor. 4.

Prop. 2.—In two homothetic figures—1°. Thwo homo-
logous lines are wn the constant ratio k. 2°. Two cor-
responding triangles are simelar.

These are evident,
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Prop. 3.—Being giwen two homothetic systems, viz.,
ABC, . .. A'B'C" . . . If one of them, A'B'C/, ... be
turned round the homothetic centre O, through a constant

angle a, 1nto @ new position A"B"C"; . .. then—1°. Any
two homologous lines (AB, A"B") are inclined at an angle
a to each other. 2°. The triangles OAA', OBB", &ec.,
are ssmular to each other.

Dem. — By hypothesis, the angle OAB = OA’DB’
= OA”B”, and the angle OZA" =0ZQ [ Euc. 1. xv.].
Hence [ Eue. I. xxx11. | the angle A”OZ =ZQA. Hence
ZQA = .

Again, the triangles OAB, OA’B’ are equiangular.
Therefore OAB and OA”B” are equiangular. Hence
OA:0B::0A”:0B”; ...OA:0A"”:: 0B : OB”, and
the angle AOA” =BOB”. Therefore [ Zue. VI. v1.] the
triangles AOA”, BOB” are similar.

Cor. 1.—Reciprocally.—1If upon the lines drawn from
@ fived point O to all the angles of a polygon ABCD, &ec.,
similar triangles OAA”, OBB”, OCC” be described, the
polygon formed by the vertices A", B”, C", &c., vs similar
to the original polygon ABCD.

Cor. 2.—1If O be considered as & point belonging to the
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first figure, 1t will be tts own homologue in the second
Siqure.

Der.—The point O is called a double point of the two
Sfigures ; 1t 18 also called thevr centre of svmalitude.

Prop. 4.—Being gwen two polygons directly similar,
ot 18 required to find thewr double point.

Let AB, A’B’ be two homologous sides of the figures ;
C their point of intersection. Through the two triads
of points A, A’, C; B, B, C describe two circles inter-

secting again in the point O : O will be the point re-
quired. For it is evident that the triangles OAB, OA'B
are similar, and that either may be turned round the

point O, so that the two bases AB, A'B’ will be
parallel.

Observation.—The foregoing construction must be modified
when the homologous sides of the two figures are consecutive

D
sides BA, AC of a triangle. In this case, upon the lines BA,
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AC describe two segments BOA, AOC, touching AC, BC, re-
spectively, in the point A. Then O, their point of intersection,
will be the double point required, for it is evident that the tri-
angles, BOA, AOC are directly similar.

Cor. 1.—If AO be produced to meet the circumecirele
of the triangle ABC in D, AO s bisected 7n D.

Dem.—Produce BO to meet the circle in E. Join
ED. Now since the triangles BOA, AOC are directly
similar, the angle OAC = ABO, and therefore = ODE.
In like manner, the angle ACO=DEO. Now, because
the angles DAC and ADE are equal, the arc CD = AE,
Hence DE = AC; .:.chord DE = AC; .. [ Hue. 1. xxV1. ]
DO = OA.

Cor. 2.—The distances of the double point from any
two homologous points A, A’ are wn a gwen ratio, because
the distances are homologous lines.

Cor. 3.—=The perpendiculars drawn from the double
point to any two homologous lines are in a given ratio.

Cor. 4.——The angle subtended at the double point by
the line jovmang two homologous points vs constant.

Cor. 5.—The line AO passes through the symmedian
pownt of the triangle BAC; because the perpendiculars
Jrom the symmedian point on the lines BA, AC are pro-
portional to these lines, and therefore proportional to the
perpendiculars from O on the same lines.

Cor. 6.—1f BD be joined, the rectangle AB . BD: AO?
: : BC : CO.

Prop. 5.——The centre of stmilitude of a given triangle
ABC, and an equiangular inscribed triangle, s ome or
other of two fixed points.

Dem.—Let DFE be an inscribed triangle, having
the angles D, F, E equal to B, A, C, respectively.
Then the point common to the circles BDF, AFE,
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CED will [I1I., Section 1., Prop. 17] be a given point :
if this be Q, Q will be the centre of similitude of the
triangle ABC, and an equiangular inscribed triangle,
such as DFE, whose vertex F, corresponding to A, is
on the line AB. In like manner, there is another point,
', which is the centre of similitude of ABC, and similar
inscribed triangles such as E'F'D’, having the vertex
corresponding to A on the line AC.

Der.—Q, 'Q are called the Brocard points of the tri-
angle ABC.

Cor. 1.—The circumcircle of the triangle AQB touches
BC ¢n B.

Dem.—Since Q is the double point of the triangles
ABC, DEF, the triangles QBD, QFA are equiangular ;
.. the angle OBD = QAF. Therefore the circle AQB
touches BC in B. In like manner, the circumcircles
of the triangles BQC, CQA touch respectively CA in C,
and AB in A.
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Cor. 2.—The three angles QAB, QBC, QCA are equal
to one another, and each is equal to the Brocard angle of
the triangle.

Dem.—The angles are equal [ Fuc. ITI. xxx11.]. Let
their common value be w. Then, since the lines AQ,
BQ, CQ are concurrent, we have, from Trigonometry,

sin‘w =sin (A — 0)sin (B - ) sin (C - o).
Hence cot w = cot A + cot B + cot C.

Therefore w is the Brocard angle of the triangle (Sec-
tion 1., Prop. 8).

Exercises.

1. Inscribe in a given triangle ABC a rectangle similar to a
given rectangle, and having one side on the side BC of the tri-
angle. A is the homothetic centre of the sought rectangle, and a
similar rectangle constructed on the side BC.

2. Inscribe in a given triangle a triangle whose sides will be
parallel to the three given lines.

3. From the fact that a triangle ABC, and the triangle A’B’C’,
whose vertices are the middle points of the sides of ABC, are
homothetic ; prove—1°, that the medians of ABC are concurrent ;
2°, that the orthocentre, the circumcentre, and the centroid of
ABC are collinear.

4. Show that Proposition 9 of Book VI., Section 1., and its
Cor. are applications of the theory of figures directly similar.

5. If figures directly similar be described on the perpendicu-
lars of a triangle, prove that their double points are the feet of
perpendiculars let fall from the orthocentre on the medians.

6. The Brocard points are isogonal conjugates with respect to
the triangle BAC.

7. The system of multiples for which Q is the mean centre of
.1 1 1 .1 1 1
A, B,Cis L and the system for Q’ is BT L
8. If theline A'B’ (Fig., Prop. 4) turn round any given point
in the plane, while AB remains fixed, the locus of the double
point O is a circle.
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9. If through A [second Fig., Prop. 4] a line AF be drawn
parallel to BC, and meeting the circle AOC again in F'; prove
that BF intersects the circle AOC in a Brocard point.

10. Inthe same Fig., if BC cut the circle AOC in G, prove that
the triangles ABC, ABG have a common Brocard point.

SECTION III.
Lemorne’s, Tucker’s, AND TavLoR’s CIRCLES.

Prop. 1.—The three parallels to the sides of a triangle
through its symmedian point meet the sides wn six con-
cyclic points.

Dem.—Let the parallels be DE’, EF’', FD'. Join
ED’, DF’, FE'. Now AFKE'is a parallelogram. AK

bisects FE'. Hence [Section 1., Prop. 5, Cor. 2] FE/
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is antiparallel to BC. Similarly DF’ is antiparallel to
AC. Hence the angles AFE’, BF'D are equal ; hence
it is easy to see that FE’ is equal to F'D. In like
manner it is equal to ED’.

Again, if O be the circumcentre, OA is perpendi-
cular to FE’; therefore the perpendicular to FE/, at its
middle point, passes through the middle point of KO.
Hence, since FE'=ED’= DI’, the middle point of KO1is
equally distant from the six points F, E’, E, D', D, F.

This proposition was first published in 1873, at the
Congress of Lyons, Association Francaise pour I avance-
ment des Sciences, by M. Lemoine, who may be re-
garded as the founder of the modern Geometry of the
triangle. It was rediscovered in 1883 by Mr. Tucker,
Quarterl y Journal of Pure and App&wd Mathematies,
p. 340.

I proved, in January, 1886 (Proceedings of the Royal
Irish Academy), that polygons of any number of 31des
called harmonic polygons, can be constructed, for which
a corresponding proposition is true. [See Section VI ]

Der.— We shall call the circle through the siz points
F, ¥, E, D, D, ¥’ Lemowné’s circle, and the hexagon of
which they are the angular points Lemoine’s hexagon.

Cor. 1.—The sides of the triangle ABC are diwided
symmetrically by Lemowne’s circle.

For it is easy to see that
AF :FF' :: F'B:6:¢c*: a;
BD:DD'::D'C:¢:a .62,
CE:EE ::EA:a*:0: .

Cor. 2.—The wntercepts DD’, EE, F¥' are propor-
tronal to a3, b, ¢°.

Dem.—-Let fall the perpendicular AL ; then, since
the triangles DKD’, BAC are similar,

DD':2::BC:AL:: a%: 2A.
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a’x a?
Hence DD’ = S—
9A & + 0%+ ¢*

In like manner,
R - FF = *
@+ b+ ¥ @R+ b4
On account of this property, Mr. Tucker called the
Lemoine circle ¢“ The Triplicate Ratio *’ circle.

Cor. 8.—~The sixz triangles into which the Lemoine
hexagon ts dwided by lines from K to 1ts angular points
are each similar to the triangle ABC.

Cor. 4.—1If lines drawn from the angles of a triangle

ABC, through a Brocard point, meet the cvrcumeircle again
" A’ B, O, the figure AB'CA’BC' is a Lemorvne hexagon.

Prop. 2.—The radical azis of Lemoine’s circle and the
cvreumcrrcle 18 the Pascal’s line of the Lemoine hexagon.

Dem.—Let FE produced meet BC in X. Then
since FE' is antiparallel to BC, the points BFE'C are
concyclic.. Hence the rectangle BX . CX = X . E’X.
Therefore the radical axis of the Lemoine circle and
the circumecircle passes through X. Ience the pro-
position is proved.

Cor. 1.—The polar of the symmedian point, with
respect to the Lemoine circle, vs the Pascal’s line of
the Lemotne hexagon.

For since DFE'D’ is a quadrilateral inscribed in the
Lemoine circle, the polar of K passes through X. In
like manner, it passes through each pair of intersec-
tions of opposite sides.

Cor. 2.—1If the chords DE, D'E’ intersect in p, EF,
E'F on q, and FD, F'D’ in r, the triangle pgr 1s in per-
spective with ABC.

Dem.—Join Ag, Cp, and let them meet in T ; then
denoting the perpendiculars from T on the sides of
ABC by a, B, v, respectively, we have a: S :: per-
pendicular from p on BC : perpendicular from p on

0
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CA—that is, : : DD’: EE, or::¢®: 8% In like man-
ner, B:y::8:6 Hence a:vy::4a®: ¢ :: perpen-
dicular from 7 on BC : perpendicular from # on AB.
Hence the line Br passes through T.

Cor. 8.—The perpendiculars from the centre of per-
spectwe of ABC, pgr, on the sides of ABC are propor-
tional to a2, b, c>.

Cor. 4.—The intersections of the antiparallel chords
D'E, E'F, ¥'D with Lemoine’s parallels DE', EF’, FI),
respectively, are collinear, the line of collinearity being
the polar of T with respect to Lemoine’s circle.

Dem.—Let the points of intersection be P, Q, R;
then CpP forms a self-conjugate triangle with respect
to Lemoine’s circle. Hence P is the pole of Cp.
Similarly Q is the pole of Ag, and R the pole of Br;
but Ag, Cp, Br are concurrent. Hence P, Q, R are
collinear.

Prop. 8.—If a triangle afy be homothetic with ABC,
the homothetic centre being the symmedian point of ABC ;
and if the sides of a3y produced, if necessary, meet those
of ABC wn the points D, E'; E, F'; F, D’; these six
points are concyclic,

Dem.—Let K be the symmedian point. From the
hypothesis it is evident that the lines AK, BK, CK are
the medians of FE/, DF/; ED’. Hence these lines are
antiparallel to the sides of the triangle ABC, and
therefore, as in Prop. 1, the six points are concyclic.

Cor. 1.—The circumeentre of the hexagon DD'EE'FF’
bisects the distance between the circumcentres of the tri-
angles ABC, afy.

Comr. 2.—If the triangle aBy vary, the locus of the cir-
cumceentre of the hexagon vs the line OK.

The circumecircles of the hexagon, when the triangle
a3y varies, were first studied by M. Lemoine at the
Uongress of Lyons, 1873. Afterwards by NEUBERe
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see Mathesvs, vol. 1., 1881, pp. 185-190; by M‘Cay,
Fducational Times, 1883, Questlon 7551 ; by TUCKFR,
Quarterly Journal of Pure and Applied Matkematws,
vol. xx., 1885, pp. 57-59. Neuberg has called them
Tucker’s CIRCLES.

Cor. 3.—If the triangle aBy reduce to the point K, the
Tuvcker’s CIRCLE, whose centre vs the middle pomt of OK
7s LEMOINE’s CIRCLES.

Cor. 4.—If parallels to the sides af the orthocentre tri-
angle pass through XK, the centre of the TuckEer's circle
will be K, the inscribed triangles will have their sides
perpendicular to those of ABC, and the intercepts which
the cvrcle makes on the sides of ABC will be proportional
to the cosines of 1ts angles. Thisvs called the CosiNe CIRCLE.

02
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Cor. 6.—The centre of perspectwe of ABC, and the
triangle formed by the points ¥, D, E, vs the Brocard
point Q, and of ABC and E'F'D’ ¢s Q.

Cor. 6.—If O, be the centre of a Tucker’s circle, and
R, its radius, 0OQ:0,Q::R:R,::0Q": 0.

Prop. 4.—1f A’, B/, C' be the vertices of the ortho-
centric triangle of ABC, and K, N; K’, N’; K", N”
thesr projections on the sides, these projections are con-
cyclie.

A
K K"
C' rr
L
K
I, B
I/ LB .
w \M
TRAM
N
B Nn A Nv

Dem.——Let H be the orthocentre. Then the figures
AKA'N, AC’HB’ are homothetic, A being the homo-
thetic centre. Hence KN is parallel to C’'B’, and
evidently K'’K” is antiparallel to C'B’; .. K'K" is
antiparallel to KN. Hence the points KK'K”N are
concyclic. Similarly K'K”KN’ are concyclic. Hence
the proposition is proved.

This circle was first discussed in England by H. M.
Taylor in a Paper published in the Proe. ofthe London
Mathematical Society, vol. xv., p. 122. It is called
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the Taylor circle of the triangle. I shall denote it by
the letter T, and the Taylor circles of the triangles
BHC, CHA, AHB, respectively, by T,, T,, Ts.

Prop. 5.—7The chords KN, K'N’, K”"N" of T meet the
stdes of the triangles BHC, CHA, AHB, respectively, in
their points of intersection with the Taylor’s circles of

these triangles.

Dem.—Let KN meet BH in L, and HC in M. Now
it is evident that the point A’ is common to the circum-
circles of the four triangles formed by the lines AB,
AC, BB, CC’. Hence [Book III., Prop. 12, Cor, 2]
the projections of A on these lines are collinear ; there-
fore the points L, M are the projections of A’ on BH,
HC, respectively. Similarly M’ is the projection of
B on HC, and M” of ¢/ on BH. Therefore the circle
T, passes through the points L, M; M’, N'; M”, N ;
that is, through the points of intersection of KN, K'N’,
K”N”, with the sides of the triangle BHC. Hence the

proposition is proved.

Prop. 6.— The contres of T, T, Ty, T cotnciderespectively
with the incentre and the excentres of the triangle formed
by joining the middle paints of the sides of the orthocentric

triangle of ABC.

Dem.—The line KN is evidently the Simson’s line
of the point A’ with respect to the triangle BHC’, and
C’ is the orthocentre of BHC'. Hence A'C’ is bisected
by KN [Book III., Prop. 14]. Similarly, KN bisects
A'B’, therefore it bisects two of the sides of the triangle
A’B’C’, and similar properties hold for K'N’, and K”N.
Hence, if a, B3, y be the middle points of the sides of
A’'B’C’, each of the lines KN, K'N’, K””N”passes through
two of these points. Again, since B'C’is bisected in
a, the triangle aN'N" is isosceles, and the bisector of
the angle a bisects N’N’ perpendicularly, and therefore
passes through the centre of T. Similarly, the bisectors
of the other angles of the triangle oSy pass through the
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centre of T. Therefore the centre of T 1s the incentre

of the triangle afBy. Similarly, the excentres of oSy
are the centres of T, T,, Ts.

Cor. 1.—Tuaylor’s circle T isone of the Tucker system
of the triangle ABC.

For, if we consider the triangle KX''N’ inscribed in
ABC, the angle KK”N’is equal to KK'N’, since the
points K, K’, K, N are concyelic; but KK’'N’is equal
to C, since K'N’ is antiparallel to AC. Hence KK”N
1s equal to C. Again, N'KK” is equal to N'K'K”,
which, since K'K” is parallel to BC, is equal to K'N’B,
and therefore equal to A. Therefore KKN’ is similar
to ABC. Hence its circumcircle T is one of the
Tucker system of the triangle ABC.

Cor. 2.—The radical axes of the circles T, T, Ty Ts

taken in pairs are the sides and the altvtudes of the tri-
angle ABC.

Cor. 8.—The figure formed by the centres of T, Ty, T,
Ty vs svmalar to, and in perspective with, that formed by
the points H, A, B, C.

For, H, A, B, C are the incentre and the excentres
of the triangle A’B'C’, which is similar to, and in per-
spective with, oSy.

Prop. 7.—Taylor’s circle T cuts orthogonally the
three escribed circles of the orthocentric triangle of ABC,
and each of the circles T\, Ty, Ts cuts orthogonally the

wnscribed and two of the escribed circles of the same tri-
angle.

Dem.—Let the perpendiculars from A, B, C on the
lines B’C’, C’'A’, A’B', respectively, be m, m,;, s, re-
spectively ; then m;, m,, m; are the radii of the escribed
circles of A'B'C’. Now, since the triangles AB'C/,
ABC are similar, = ?%: AA?:: AC?: AC?*; that is, m*:
AN.AC:: AC. AK":AC*; ... m*= AN . AK”; but
AN. AK” is equal to the square of the tangent from
A to T. Hence the circle whose centre 1s A, and radius
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my, cuts the circle T orthogonally, and similarly the
circles whose centr@®B, C, and radii mp, m5 cut T ortho-
gonally. Hence the propos1t10n 1s proved.

Prop. 8.—1If o be the semiperimeter of the triangle o3y.
and p, py, ps, ps the radii of vts vnevrele and circumeircles ;
then the squares of the radiv of Taylor’s circle are, re-
spectively, g+, pit+ (a—a, pit+ (7—BY, pi(c= 7Y

Dem.—Since the triangle A'N”C’ is right-angled at
N”; and A’C’ is bisected in B, N8 is equal to A/B;
that is [ Bue. I. xxx1v.], equal to ay. In like manner,
aK"” is equal to By. Hence N’K” =20; and since the
circle T passes through the points N”, K”, and is con-
centric with the incircle of a3y, we have the square of
the radius of T = p?*+ $N"K"? = p? + o2

Again, if M"C’ be joined, the figure C’'M"B’K"” is a
rectangle. Hence M"K" = 2aB’ = 28y = 2a, but N"K"”
=20; ... N'"M" =2(0 - ), and, as before, the square of
the radius of T; = p,®* + (¢ — a)®. Hence the proposition
1s proved.

Cor.—The sum of the squares of the rader of Taylor’'s
circles 1s equal to the square of the diameter of the circum-
cirele.

For it is easy to see that the squares of the radii of
the four circles are, respectively, equal to,

4R?*(sin*A sin®B sin®C + cos?A cos’B cos?C),

4R?*(cos®A sin’B sin%C + sin*A cos’B cos?C),

4R?(sin*A cos®’B sin®*C + cos®A sin®B cos?C),

4R?(sin’A sin®B cos®C + cos*A cos?B sin®C),
and the sum of these 1s 4R%

Exercises.

1. The chords DE, EF, FD of Lemoine’s hexagon meet the
chords F'D’, D'E’, E'F’, respectively in three points forming a
triangle homothetic with ABC.

2. The triangle formed by the three alternate sides DF’, FE’,

ED’, produced, is homothetic with the orthocentric triangle, and
their ratio of similitude is 1: 4 cos A cos B cos C.
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3. The system of circles which are cireles of similitude of the
circumcircle and Tucker’s circles, respectively, are coaxal.

4. The perpendiculars from K on the sides of the triangle
Ex. 2 are proportional to a?, b?, .
ad + B + 3 + 3abe

5. The perimeter of Lemoine’s hexagon is
Ala* + 0* + 4+ a?b? 4 D% + c*a?)
(@® 1 B+ 62 .

6. If the cosine circle intersect the sides of ABC in the points

D, D, E, E, F, I, the figures DD'E'F, EE'F'D, FF'D’E are

rectangles; and their areas are proportional to sin 2A, sin 2B,
sin 2C,

)

and its area

7. In the same case, the diagonal of each rectangle passes
through the symmedian point. This affords a proof of the
theorem, that the middle point of any side, the middle point of
its corresponding perpendicular, and the symmedian point, are
collinear.

8. If the sides of the triangle a8y (fig., Prop. 8) produced,
if necessary, meet the tangents at A, B, C to the circumcircle, six
of the points of intersection are concychc, and three are collinear.

9. If the distance OK between the circumcentre and symme-
dian point be divided in the ratio Z:sm by the centre of one of
Tucker’s circles, and if R, R’ be the radii of the circumcircle and

v/ PR? + mR?
{4+ m )
10. The square of the diameter of Lemoine’s circle is R? + R"2.

11. If a variable triangle aBy of given species be inscribed in
a fixed triangle ABC, and if the vertices of a@y move along the
sides of ABC, the centre of similitude F of aB7, in any two of its
positions, is a fixed point. (TowNsEND.)

the cosine circle, the radius of Tucker’s circle is

12. In the same case, if the circumcircle of aBy meet the sides
of ABC in the three additional points a’, 8, y'; the triangle o/g'y
is given in species, and the centre of ‘similitude ¥’ of it, in any
two of its positions, is a fixed point. (TAYLOR.)

13. Also F, F’ are isogonal conjugates with respect to the
triangle.

14. The locus of the centre of the circle aBy is a right line.

156. If through the Brocard points and the centre of any of
Tucker’s circles a circle be described, cutting Tucker’s circle in
X, Y; prove X + Q'X=0Y + Q'Y = constant,
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16. The locus of the inverse of either Brocard point with respect
to a Tucker circle is a right line.

17. If the middle points of the lines AH, BH, CH be A", B"”,
C”, respectively, and the middle points of the sides BC, CA, AB
be A"’y B”', C""; then the Simson’s line of any of these six
points, with respect to the triangle A’B’C’, passes through the
centres of two of Taylor’s'circles.

18. If the orthocentres of the triangles AB'C', HB'C' be P, Q,
respectively, the lines A'P, A'Q are bisected by the centres of two
of Taylor’s cirecles.

19. The Simson’s lines of any vertex of the triangle A'B’C’,
with respect to the four triangles A”"B"”C"’", B"C’ ’A”’ C”A”B”’
A"'B"'C"™ pass respectively through the centres of Taylor’s
circles.

20. Prove that the intercept which the loci in Ex. 16 make on
any side of the triangle subtends a right angle at either Brocard
point.

SECTION IV.

GENERAL THEORY OF A SysTEM oF THREE SIMILAR
Freurgss.

Notation.—Let F,, F,, F; be three figures directly
similar ; @,, @, @; three corresponding lengths; @, the
constant angle of intersection of two corresponding
lines of ¥, and F;; o, a; the angles of two correspond-
ing lines of F; and F,, of F, and F,, respectively; S,
the double point of F, and F;; S, that of F; and F,;
S; that of I, and I, We shall denote also by (O, AB)
the distance from the point O to the line AB.

Der. 1.—The triangle formed by the three double points
Si1, Sy, S; v called the triangle of symilitude of ¥y, ¥y, Fy;
and its circumeircle thewr circle of similitude.

Prop. 1.—1In every system of three figures durectly
somilar, the triangle formed by three homologous lines 1s
i perspective with the triangle of simalitude, and the

locus of the centre of perspective vs their circle of simule-
tude.,
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Dem.—Let d,, d,, d; be three homologous lines
forming the triangle D;D.D;; we have, by hypothesis,

(Sl’ d,) @ . (S, ds) _ a3, (Ss, i) 0

(Sh d) ‘7’ (827 dl) B (—‘—1’ (Sa; dz) B “‘;

Hence 1t follows that the lines S,D,, S,D,, S;D; co-
intersect in a point K, whose distances from the lines
@y, d, 5 are proportmnal to ay, @, a;. The triangle D, D,D,

being given in species, its angles are the supplements
of a;, a; a;. Hence the angles D,KD,, D,KD,, D;KD,,

are constants; that is, the angles S, KS,, S,KS;, S;KS,
are constants. Hence the point K moves on three
circles passing through S, and 8,, S, and S;, S; and 8, ;
that is, it moves on the circumcircle of the triangle
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Drr. 2.—The pownt K is called the perspective centre
of the triangle D,D,Ds.

Prop. 2.—In every system of three svmilar figures
there is an wnfinvte number of triads of concurrent homo-
logous lines. These lines turn round three fixed points
P, Py, Py of the circle of similitude, and their point of
concurrence 18 on the same circle.

Dem.—Let K be the perspective centre of a tri-
angle D, D,D; formed by three homologous lines.

Through K draw three parallels, KP,, KP,, KP; to the
sides of D;D,D;. These are three homologous lines.

(8, KP) (S _aa o
(S, KPy) ~ (S, do) @

The point P, is fixed ; for the angle S,KP,; is equal to
the inclination XD, to D,D,, which is constant. Hence
the arc SP, and, therefore, the point P; is given
Similarly the points P,, P; are fixed.

Dxr. 3.—The pownts Py, Py, Py are called the tnvariable
points, and the triangle PP, Py the invariable triangle.

For

Cor. 1.—The vnvariable triangle vs wnversely similar

to the triangle formed by three homologous lines.
For the angle P,P;P, = P,KP, = angle D;D;D,, and
similarly for the other angles.

Cor. 2.—The wnvarvable points form a system of three
corresponding points.

For the angle
SiP, (8, KPy)

PzSIP3 = a, and SIPS = (S” KP3) = ;z;.

Cor. 3.—The lines of connexion of the invariable points
Py, Py, Py, to any point whatever (K) of the circle of simi-
litude, are three corresponding lines of the figures F,,
F,, ..
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In fact these lines pass through three homologous
points, P;, P, P, and make with each other, two by
two, angles equal to a;, as, as.

Prop. 3.— The triangle formed by any three correspond-
g points 18 1n perspectwe with the invariable triangle,
and the locus of their centre of perspective vs the circle of
simulitude.

Dem.—Let B, B,, B; be three corresponding points ;
then PlBl, P,B,, P,B; are three corresponding lines ;
and since they pass thl ough the invariable points they
are concurrent, and their point of concurrence is on
the circle of similitude. ~ Hence the proposition is
proved.

Prop. 4.—The wnvariable triangle and the triangle of
sinulitude are in perspective, and the distances of thevr
centre of perspective from the sides of the tnvariable tri-
angle are inversely proportional to a;, az, as.

Dem.——We have
ay S, P, _ (Sh Ple) L@ (S?,) PzPs) L0 (Saa 1)3]-)1)

a3 - §1—173 - (Sl, PIPB), ‘Z - (Sz’ P2P1) ’ 6;2 B (S37 PaPz).
Hence the lines S,P,, S,P,, S;P; are concurrent.

DEr. 4.—The centre of perspective of the vnvariable
triangle, and the triangle of similitude, ts called the
director point of the three similar figures ¥, F,, F,.

Prop. 5.—

Let S be the point of ¥\, which 1s homologous to S,,
considered in ¥, and F,.

Let S, be the point of ¥y, which is homologous to S,
considered in Fy and F,.

Let Sy be the point of Fs, which 1s homologous to S,
considered wn ¥, and F,.
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The triangle 8,/S)Sy' is in perspective both with the
wnvariable triangle and with the triangle of similitude ;
and the three triangles have a common centre of perspec-
twe.

Dem.—By hypothesis, the three points 8,, S, 8,
are homologous points of the figures ¥,, F,, F;. Hence
the lines S,'P,, S,P,, S,P; are concurrent. Hence the
points S,, P,, S, are collinear. Similarly S, P, S,
are collinear, and S;, P;, S, are collinear. Hence the
proposition s proved.

DEF. 5.—=The points S,', S, S5 are called the adjoint
pownts of the figures.

Prop. 6.—1In three figures, ¥, ¥y, By, directly similar,
there exists an wnfinite number of systems of three corre-
sponding points which are collinear.  Their loct are three
circles, each passing through two double points and
through B, the centre of perspective of the triamgle of
simulvtude, and the vmariable triangle. Also the line
of collinearity of each triad of corresponding points passes
through E.

Dem.—Let C,, C,, C; be three homologous collinear
points. Since S, is the double point of the figures F,,
F,; the triangles S,C;C,, S,P;P, are similar; therefore
the angle S,C;C, is equal to the angle S,P,P,, and
therefore [ Huc. I1I., xx1.] equal to the angle S,S,E.
In like manner, the angle C,C;S; is equal to S,S,E;
therefore the angle S,C;8, is equal to S,ES,. Hence
the locus of C; is the circumecircle of the triangle S,ES,.

Again, since S,C;ES; is a cyeclic quadrilateral, the
angles S,S5,E, EC;S, are supplemental. Hence the
angles S,C;C,, EC;S, are supplemental ; therefore the
points C,, C;, E are collinear, and the proposition is
proved.

Cor. 1.—=The circumeircle of the triangle S,ES, passes
through Sy. For S, is a particnlar position of Cs,.
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Cor. 2.—=The lines-C,P,, C,P,, C,P; are concurrent, and
the locus of thevr point of concurrence vs the circle of simi-
litude.

The substance of this Section is taken from Mathesis, vol. ii.,
page 73. Propositions 1-5 are due to M. G. Tarry, and Pro-
position 6 to NEUBERG.

Exercises.

1. If in the invariable triangle be inscribed triangles equian-
gular to the triangle of similitude, so that the vertex correspond-
ing to S; will be on the side P;P3, &c., the centre of similitude
of the inseribed triangles is the director point.

2. If V;, Va, V3 be the centres of the circles which are the
loci of the points C;, C2, C3; then the sum of the angles Py, S;, V)
is equal to the sum of Py, S;, Vo, equal to the sum of P3, Sz, Vs,
equal to two right angles.

3. The system of multiples for which the director point is the
mean centre of the invariable points is @; cosec a1, a@zcosecaz,
@3 COSEC ag.

4. The director point, and either the triangle of similitude or
the invariable triangle suffice to determine the figures F1, Fs, Fs.

5. Provethat the triangles S;S253’, S283581", S3S:5,” are similar.

6. If Si’Se, S¢’'S; meet in S3”, prove that the tnangle S18285",
and the two other analogous triangles S2S3S;"”, 835:52”, are s1m11ar

SECTION V.

SPECIAL APPLICATION OoF THE THEORY OF F'IGURES.
DIRECTLY SIMILAR.

1°. The Brocard circle.

Dzr. 1.—1f O be the circumcentre, and K the symme-
dian point of the triangle ABC, the circle on OK as
diameter 1s called the Brocard circle of the triangle.

DEr. 2.—If from O perpendiculars be drawn to the sides
of the triangle ABC, these meet the Brocard circle in three
other points A', B', C', forming a triangle, which we shall
call Brocard’s First Triangle.
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The Brocard circle is called after M. H. Brocarp, Chef de
Bataillon, who first studied its properties in the Nouvelle Cor-
respondance, Mathematique, tomes 111., 1V., v., vI. (1876, ’77, 78,
’79) ; and subsequently in two Papers read before the Association
Francaise pour I'avancement des Sciences, Congres d’Alger, 1881,
and Congres de Rouen, 1883. Several Geometers have since
studied its properties, especially Neuberg, M‘Cay, and Tucker.

Prop. 1.—Brocard’s first triangle s inversely similar
to ABC.

Dem.—~Since OA’is perpendicular to BC, and OB’
to AC, the angle A’OB’ is equal to ACB ; but [ Zue. I11.
xxI. | A'OB’ is equal to A’C’'B’. Hence A’C'B’ is equal
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to ACB. In like manner, the other angles of these
triangles are equal ; and since they have different
aspects, they are inversely similar.

Cor.—The three lines A'’K, B'K, C'K, produced, coin-
cvde with Lemoine's parallels. For since the angle O'AK
18 right, A'K vs parallel to BC.

Prop 2.—The three lines A’B, B'C, C'A are concur-
rent, and meet on the Brocard circle, wn one of the Bro-
card points.

Dem.—Produce BA’, CB’ to meet in . Then since
the perpendiculars from K, on the sides of ABC, are
proportional to the sides, and these perpendiculars are
equal, respectively, to A’X,B"Y,C’Z, the triangles BA'X,
CB’Y, A’CZ are equiangular; .. the angle BA’Xis equal
to CB’Y, or [ Euc. I. xv.] equal to QB’O. Hence the
points A’, Q, B/, O are concyclic, and ... BA’; CB’ meet
on the Brocard circle. In like manner, BA’, AC’ meet
on the Brocard circle. Hence the lines A’B, B’C, C'A
are concurrent, and evidently (Section 11., Prop. 5) the
point of concurrence is a Brocard point. In the same
manner it may be proved that the three lines AB/, BC,
C’A meet on the Brocard circle in the other Brocard
point.

Prop. 8.—The lines AA’, BB/, CC’ are concurrent.

Dem.—Since Lemoine’s circle, which passes through
F’ and E, and Brocard’s circle, which passes through
A’ and X, are concentric, the intercept F'A’ is equal to
KE. Hence the lines AA’, AK are isotomic conjugates
with respect to the angle A. In like manner, BB/, BK
are isotomic conjugates with respect to the angle B,
and CC’ and CK with respect to C. Therefore the
three lines AA’, BB’, CC/, are concurrent : their point
of concurrence is the isotomic conjugate of K with re-
spect to the triangle ABC.

Cor. 1.—The Brocard points are on the Brocard circle.

CoRr. 2.—The sides of the triangle FDE are parallel to
the lines AQ, BQ, CQ, respectively.
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Dem.——Join DF. Then since AF = KE’; but KE’
=DC’; ... AF =DC’. Hence [Euc. 1. xxx1v.] DF is
parallel to AC’—that is, to AQ, &c.

In the same manner it may be proved that the sides
of D’E'F are parallel to AQ, BQ/, CQ/, respectively.

Cor. 3.—The siz sides of Lemoine’s hexagon, taken in
order, are proportional to sin (A —w), sin o, sin (B - w),
sin o, sin (C - ), sin o,

Cor. 4.—Q and K are the Brocard points of the tri-
angle DEF, and Q' and K of D'E'F'.

Cor. 6.—The lines AA’', BB, CC’ are isogonal con-
jugates of the lines Ap, Bg, Cr (SkcrioN 11, ProP. 2,
Cor. 2) with respect to the triangle ABC.

DEr.—1If the Brocard circle of the triangle ABC meet
its symmedian lines tn the pownts A", B", C", respectively,
A"B"C" 15 called Brocard’s second triangle.

Prop. 4.—Brocard’s second triangle is the triangle of
stmulvtude of three figures, dvrectly svmilar, described on
the three sides of the triangle ABC.

Dem.—Since OK (fig., Prop. 6) is the diameter of the
Brocard circle, the angle OA”K is right. Hence A"
is the middle point of the symmedian chord AT, and is
therefore [Section 11., Prop. 4, Cors. 1, 5] the double
point of figures directly similar, described on the lines
BA, AC. Hence [Section 1v., Def. 1] the proposition
is proved.

Prop. 5.—If figures directly similar be descrrbed on the
stdes of the triangle ABC, the symmedian lines of the tri-
angle formed by three corresponding lines pass through
the vertices of Brocard’s second triangle.

Dem.—Let bac be a triangle formed by three corre-
sponding lines, then bac is equiangular to BAC; and
since A” is the double point of figures described on BA,
AC, and ba, ac are corresponding lines in these figures,
the line A”a divides the angle bac into parts respec-

P
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tively equal to those into which A”A divides the angle
BAC. Hence A”a is a symmedian line of bac, and
similarly B”b, C"c are symmedian lines of the same tri-
angle.

Cor. 1.—The symmedian povnt of the triangle bac s
on the Brocard circle of BAC.

a

;y

R

T

Dem.—Because the triangle bac is formed by three
homologous lines, and A”B”C” is the triangle of simili-
tude, and [Section 1v., Prop. 1] these are in perspec-
tive ; therefore their centre of perspective, K’, is a
point on the circle of similitude, that is, on the Brocard
circle.
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CoRr. 2.—The vertices A’; B', C' of Brocard’s first tri-
angle are the invariable points of the three figures directly
sumilar, described on the sides of BAC.

For the angle KA’K’ is equal to KA”K’, and that is
evidently equal to CLc from the properties of the simi-
litude of BAC, bac; but A’K is parallel to LC. Hence
A'K’ is parallel to be. In like manner, B’K’, C’K’ are
parallel to ac, ab, respectively. Hence A’K’, B'K’,
C’K’, form a system of three corresponding lines, and
A’, B/, C’ are the invariable points.

Cor. 83.—The centre of similvtude of the triangles bac,
BAC s a point on the Brocard circle.

For since the figures K’bac, KBAC are similar, and
K’a, KA are corresponding lines of these figures inter-
secting in A", the centre of similitude [Section 1r.,
Prop. 4] is the point of intersection of the circum-
circles of the triangles A”aA, A”KK’; but one of
these is the Brocard circle. Hence, &c.

Cor. 4.—1In Ulike manner, ¢ may be shown that the
centre of simalitude of two figures, whose sides are two
triads of corresponding lines of any three figures directly
similar, 18 a point on the circle of simulitude of the three
JSigures.

Cor. 5.—If three corresponding lines be concurrent,
the locus of their point of concurrence vs the BrocarRD
CirciE.

This theorem, due to M. Brocarp, is a particular
case of the theorem Section 1v., Prop. 2, or of Cor. 1,
due to M¢Cay, or of either of my theorems, Cors. 3, 4.

2°, The Nine-points Circle.

6. Let ABC be a triangle, whose altitudes are AA’,
BB/, CC’; the triangles AB'CY, A’BC/, A’'B’C are in-
versely similar to ABC. Then if we consider these

triangles as portions of three figures, directly similar,
P 2
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F,, Iy, F;, we have three triads of homologous points,

F, F, F.
First triad, A, A, A
Second ,, B, B, DB
Third ,, ¢, ¢, C.

The double points A’, B’; (' are the feet of the per-
pendiculars. The three homologous lines, AB’, A’'B,
A'B, equal to AB cos A, AB cos B, AB cos C. Hence
the three homologous lines are proportional to cos A,
cos B, cos C.

Bl
____________ N \ B’
A
"/1 ,‘,‘ rnr
e '1 B
C o
H ;'
B ‘l / )
B ‘A'- - .A'" C

The three angles ay, a5, az are 7 — A, # = B, = - C.

First triad of corresponding lines; perpendiculars at
the middle points of the corresponding lines AB/,
A'B, A'B'. |

Second triad of corresponding lines; perpendiculars
at the middle points of the corresponding lines B'CY,
BC', B'C.
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Third triad of corresponding lines; perpendiculars
at the middle points of the corresponding lines C’A,
C'A’, CA'.

- The point of concurrence of these triads are the
middle points A"/, B/, """ of the sides of ABC.

The point of concurrence of the lines of I, of these
triads is the middle A” of AH; the point of concur-
rence of the lines of F, is the middle B” of BH ; and
of the lines of F; the middle C” of CH.

The points A, B”, C” are the invariable points.
Hence the nine points, viz., A’, B/, ¢’ (centres of simi-
litude) ; A”, B”, C” (invariable points); A'”, B"’, C'"
(points of concurrence of triads of corresponding lines),
are on the circle of similitude. Hence the circle of
similitude is the nine-points circle of the triangle.

Hence we have the following theorems :—

1°. Three homologous lines of the -triangles AB'C/,
A’BC’, A'B'C form a triangle aBy in perspective with
A'B'C'; the centre of perspective, N, vs on the nine-
points circle of ABC, and it s the circumcentre of afSy.
For its distances to the sides of a3y are :: cos A : cos B
: cos C. For example, the Brocard lines of the three

triangles possess this property.

2°, Lines jovming the points A", B", C" to three homo-
logous points ¥\, ¥,, F3 are concurrent, and meet on the
nine-points circle of ABC.

3°. If P, P, P,, P; be corresponding points of the tri-
angles ABC, AB'C’, A’BC’, A'B'C, the lines A"P,
B"P,, C"Ps meet the nine-points circle of ABC wn the
pownt which s the vsogonal conjugate with respect to the
treangle A"B"C" of the pownt of infinity on the line
Jowning P to the circumcentre of ABC.

4°. Every line passing through the orthocentre H meets
the circumaerrcles of the triangles AB'C’, A'BC’, A'B'C in
corresponding points.

5°. The lines jovming the points A", B”, C" to the
centres of the wnscribed circles of the triangles AB'C/,
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A’BC, A'B'C, pass through the point of contact of the
nine-points circle of ABC with ts inscribed circle.

Dem.—Let O be the circumcentre. Join OA, and
draw A”E parallel to OA, meeting OH in E ; then EA’
is a radius of the nine-points circle. Let AD be the
bisector of the angle BAC; then the incentres of the

e

triangles ABC, ABC’ are in the line AD. Let these
be I, I'. Join I’A”. Tt is required to prove that I’A”
passes through the point of contact of the nine-points
circle with the incircle of ABC. From I let fall the
perpendicular IL on AB. Join LI'. It is easy to see
that the triangle ILI’ is isosceles ;—in fact IL is equal
to LI'. Hence if # be the inradius of the triangle ABC,
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R the circumradius, we have 2r*> = AT . II', and
2Rr = AT . ID. Hencer:R::11': DI

Again, through I draw IF parallel to EA”. Now,
since the points I’; A”, in the triangle AB’C’, corre-
spond to I and O in ABC, the angle AT'A”= AIO.
Hence the angle II'F is equal to DIO, and the angle
I'IF is equal to IDO, because each is equal to DAO.
Hence the triangles II'F and DIO are equiangular.
Therefore II': DI : : IF : DO. Hence IF:DO::#r: R.
Therefore IF =7. Now since EA” and IF are pa-
rallel, and are radii respectively of the nine-points
clrcle, and incircle of ABC, the line FA" passes through
their centre of similitude. Hence the proposition 18
proved.

Similarly, of J' be the centre of any of the escribed
curcles of the triangle AB'C’, the line A"’ passes through
the pownt of contact of the nine-points circle of ABC with
the corresponding escribed circle.

Exercises.

1. If Ay, By, C; be the reflexions of the angular points A, B, C
of the triangle ABC, with respect to the opposite sides, then the
triangles A;BC, AB;C, ABC;, being considered as portions of
three figures directly similar,

Prove that—
(1°) A, B, C are the double points.

(2°) The orthocentres of A;BC, AB;C, ABCj, are the invari-
able points.

(3°) Ai, Bi, C; are the adjoint points.
(4°) The orthocentre of ABC is the director point.

(6°) The incentre of the triangle formed by three homologous
lines is its perspective centre.

(6°) The triangle formed by any three homologous lines is
similar to the orthocentric triangle of ABC.

(7°) The lines joining the orthocentres of A;BC, AB,C, ABC;
to their incentres are concurrent.
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2. If through the orthocentre of a triangle be drawn any line
L meeting the sides in A/, B, C’, the lines through A’, B’, C’,
which are the reflections of L, with respect to the sides of the
triangle, are concurrent.

3. If upon the sides of a triangle, ABC, be constructed three
triangles, BCA;, CAB;, ABCj, such that A is an excentre of BCA;,
B an excentre of CAB;, C an excentre of ABC;,

Prove that—
(1°) The triangles BCA;, CAB;, ABC;, are directly similar.
(2°) A, B, C are the double points.

(3°) The incentres of A;BC, BiCA, C,AB are the invariable
points.

(4°) Aj, By, C; are the adjoint points.
(6°) The circumcentre of ABC is the director point.

(6) The perspective centre of the triangle formed by three
homologous lines is the orthocentre of that triangle.

(7°) Three homologous lines form a triangle inversely similar
to ABC.

(8°) The lines joining the incentre of A;BC, AB,C, ABC;, are
concurrent.

4. Prove that the triangles, AE'F, DBY¥’, D'EC, fig., p. 183,
are directly similar, and that—

(1°) The invariable points are the centroids of these triangles.

(2°) The double points are the intersections of the symmedians
of the triangle ABC with the circle through) the invariable
points.

(3°) The director point is the symmedian point of ABC.

(4°) The perspective centre of the triangle formed by any
three homologous lines is the centroid of that triangle.

The application of Tarry’s theory of similar figures contained
in this sub-section, with the exception of the theorems 3° and 5°,
and the Exercises 2 and 4, are due to Neuberg. The demonstra-
tion of 5° given in the text, is nearly the same as one given by
Mr. M‘Cay shortly after I ecommunicated the theorem to him.
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SECTION VI
TrEORY oF HAaRrRMONIC Porycons.

DEr. 1.— 4 cyclic polygon of any number of sides, hav-
sng a point K in ots plane, such that perpendiculars from
1t on the sides are proportional to the sides, vs called a
harmonie polygon.

DEr. 11.—The pomnt K is called the symmedian point
of the polygon.

DzEF. 111.—The lines drawn from K to the angular
pownts of the polygon are called its synmunedian lines.

DEer. 1v.—Two figures having the same symmedian
lines are called co-symmedian figures.

DEr. v.—1If O be the circumcentre of the polygon, the
circle on OK, as dvameter, vs called vts Brocard circle.

DzF. vi.—If the sides of the polygon be denoted by
@, b, ¢c,d,...and the perpendiculars on them from K
by z, y, 8, u, ... then the angle o, determined by any
of the equations z = 1.4 tan o, y = £ b tan o, &c., vs called
the Brocard angle of the polygon.

Prop. 1.—The wnverses of the angular points of a
regular polygon of any number of sides, with respect to
any arbitrary powmt, form the angular points of a har-
monse polygon of the same number of sides.

Dem.—Let A, B, C ... be the angular points of the
regular polygon; A/, B/, C’ . . . the points diametrically
opposite to them. Now, inverting from any arbitrary
point, the circumcircle of the regular polygon will
invert into a circle X, and its diameters AA’, BB/,
CC’...into a coaxal system Y, Y,, Y, &c; then
[ VL., Section v., Prop. 4] the radical axes of the pairs
of circles X, Y; X, Y;; X, Y,, &c., are concurrent.
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Hence, if the inverses of the systems of points A, B, C
... A, B C. .. be the systems aBy, ...dBY ...,
the lines aa/, BB’ ¥y’ ... are concurrent. Let their
common point be K; and since, evidently, the points
A, B, C, B’ form a harmonic system, their inverses, the
points a, B, v, B, form a harmonic system; but the
line BB’ passes through K. Therefore the perpendi-
culars from K on the lines a3, By are proportional to
these lines. Hence the proposition is proved.

Coz. ].—If the vertices of a harmonic polygon of n
sudes be 1, 2, .., and XK dts symmedian point, the

re-entrant pol ygon formed by the chords 13, 24, 35, &o.,
18 a harmonic polygon, and K is its sy /mmedzan pomt

This is proved by showing that the perpendiculars
from K on these chords are proportional to the chords.

Thus, let A, B, C be any three consecutive vertices ;
p, p' perpendiculars from K on the lines AB, AC; and
let AK produced meet the circumcircle again in A ;
P, ya
AB AC
the anharmonic ratio (ABCA’), which is constant, be-
cause [Book VI., Section 1v., Prop. 9] it is equal to
the correspondmg anharmonic ratlo in a regular polygon,

/
and APB 1s constant. Hence 1%0 1s constant.

then it is easy to see that the ratio — is equal to

Cor. 2.—1In the same manner the polygon formed by
the chords 14, 25, 36 ts a harmonic polygon, and I vs its
symmedian point, &c.

Cor. 3.—Thevertices of any triangle may be eonsidered
as the tnverses of the angular points of an equilateral tri-
angle.

Cor. 4.— A4 harmonic quadrilateral is the inverse of a
square ; and 1ts symmedian point vs the intersection of its
diagonals.
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Cor. 5.—A harmonic quadrilateral is the figure whose
vertices are four harmonie points on a circle [ Book VI.,
Sect. 111., Prop. 9, Cor. 21]. Hence, the rectangle contained

by one pair of opposite sides s equal to the rectangle con-
tained by the other pair.]

Cor. 6. If 1, 2,3 . . . 2n be the vertices of a har-
monic_polygon of an even number of sides, the polygon
Jormed by the alternate vertices 1, 3, 5 . 2n — 1 18 a

harmonic polygon, and so s the polz/gon formed by the
vertices 2, 4, 6, . . . 2n, and these three polygons have @
common symmedian point.

Prop 2.— 7o invert @ harmonic polygon into a reqular
polygon.

Sol.—Let AB be a side of the harmonic polygon, Z
its circumcircle, O the circumcentre, and K the sym-

@/C&t‘“;d =,

AI

median point. Upon OK as diameter describe a circle
OKX ; and let S, 8' be the limiting points of Z and
OKX; join SA, SB, and produce, if necessary, to meet Z
again in A’, B’. Then A’B’is the side of a regular polygon.
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Dem.—Let AB, A’B/, produced, intersect in P,
and meet the line OK in C, . Now the polar of S
will pass through P and through 8 ; then the pencil
P(SCS’C’) is harmonic.

. 2/88' = 1/8C + 1/8C" = 1/SK + 1/80.
Hence (SK -8C) / (SK . SC) = (SC’ - 80) / (8C'. 80);
. KC/SC : 0C¢//SC : : SK : 80;
or, (K, AB)/ (S, AB): (0, A’B") / (S, A’B') : : 8K : 80.

But (S, AB) : (S, A’'B’):: AB : A’'B’. [Book VL,
Sect. 1v., Prop. 6.]

Hence (K, AB) / AB : (0, A’B") / A/B’: : 8K : SO.

Now, since AB is a side of a harmonic polygon
whose symmedian point is K, the ratio (K, AB) / AB is
constant ; and since S, K, O are given points, the ratio
SK : SO is given; hence the ratio (O, A’'B’) | A'B’ is
constant; ... A’B’ is constant. Hence the proposition
is proved.

Cor. 1.—If we join the points A, B to §', and produce
to meet 7 agan wn A", B", the points A”, B" are the
reflexzions of A, B, with respect to the diameter DD’ of
Z.

DEr. vir.—The points S, S’ are called the centres of
wnversion of the harmonic polygon.

- Cor. 2,— The centres of vnversion of a harmonic polygon
are harmonie conjugates with respect to its circumeentre
and symmedian point.

Observation.—It is evident that this proposition
gives a new demonstration of Prop. 1. It is also plain,
if, instead of O, we take a point K’ collinear with
O and K, and repeat the foregoing construction, only
using K’ instead of O, that we shall have the harmonic
polygon, whose symmedian point is K, inverted into
another whose symmedian point is K',
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Prop. 3.—1If 8 be the distance of the symmedian point
K from the circumcentre, and R the circumradius of th,

polygon, tan o =,/ (1 - ;ﬁz} cot =/n.

Dem.—We have Def. vi. (K, AB)/AB =2 tan w;
and since the polygon whose side is A’B’ is regular, and
has #» sides (O, A’B")/A’B’ =2 cot w/n. Hence tan :
cot w/n : : SK : SO. Again, since the points O, K
are harmonic conjugates to S, &, and S, §' are inverse
points with respect to Z, it is easy to see that

SK/S0 = /(1 - §7R?):

Hence, tan o =4/ (1 — 8/R?) cot /.

Cor. 1.—8* = R? (1 — tan® o tan® =/ n).

Cor. 2.—If two harmonic polygons of m and n sides
respectively have a common circumeircle and 8g/mmedmn
pownt, the tangents of their Brocard angles are : : cot w/m
: cot 7 [n.

Cor. 3.—NSince the side A’B’ of a regular polygon of »
sides may have any arbitrary position as a chord in the
circle, ¢t follows that an indefinite number of harmonie
polygons of n sides, and having a common symmedian
pownt, can be inscribed in the circle.

Cor. 4.—The anharmonic ratio of any four consecutive
vertices of a harmonic polygon vs constant.

Prop. 4.—If A, A,... A, be the vertices of a
harmonic polygon of » sides, the chords AjA, _;, A,A
are concurrent.

n-2

Dem.—Let K be the symmedian point. Join AyK,
and produce to meet the circumcircle again in A,
Then the points Ay, A, are harmonic conjugates with
respect to the points A;, A,_; (Demonstration of Prop. 1),
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Hence the line A,A,; passes through a«, the pole of
AjA/. Similarly, A,A, _; passes through a, &c. Hence
the proposition is proved.

Cor.—The vertices A A, 1, AA, ,, &c., form a system
of points wn wmvolution, and points Ay, Ay are the double
pownts. Hence the vertices of a harmonic polygon form
as many systems in involution as it has symmedian lines.

Prop. 5.—If a transversal through the symmedian
point K cuts the sides of the polygon in the points R,, R,
.« « Ry, and if a point P be taken on it so that 1/KR, +
1/KR, . .. =n/KP, the locus of P vs the polar of K with
respect to the cvrcumeircle.

Afo
Dem.—Let « be the pole of the symmedian chord

AyAy. Join Ka. It is easy to see that a is one position
of P. TFor if » be even, the sides may be distributed
in pairs, so that the points K, a are harmonic conjugates
to the points in which each pair of sides may be cut by
the line Ka. Hence,

1/KR,; + 1/KR, = 2/Ka,

1/KR, + 1/KR,, = 2/Ka, &c.
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If » be odd, the intercept made by one of the sides
on Ka is equal to Ka. Hence, in each case, the sum
of the reciprocals of the intercepts made by all the sides
on Ka is equal to #/Ka. Therefore a is a point on the
locus of P. Similarly, the pole of each symmedian
line is a point on the locus. Hence the locus passes
through the poles of all the symmedianlines; and since
it must be a right line [ Ex. 62, page 1565], it is the
right line through these points. Hence the proposition
is proved.

Cor. 1.—Te point K and its polar, with respect to the
circumerrcle, are harmonie pole and polar with respect to
the polygon. (See Salmon’s Higher Curves, Third
Edition, p. 115.)

The harmonic pole and polar are called by French
geometers Zhe Lemowne point and line of the polygon.

Cor. 2.—If a harmonic polygon be reciprocated with
respect to vts Lemoine povnt, the pole of its Lemoine line
18 the mean centre of the vertices of the reciprocal polygon.

This follows from Prop. 6 by reciprocation.

Prop. 6.—If the lengths of the sides of a harmonic poly-
gon be a, b, ¢, &c., and the perpendiculars on them from
any pownt P in the Lemoine line be a, B, v, &c., then the
sum aja + B[b + y/c + &e., = 0.

Dem.—Let KP intersect the sides in the points R,
R,, &c. Then we have

(1/KR,~1/KP)+(1/KRy=1/KP)+...(1/KR,~1/KP)=0

Hence
PR,/KR, + PR,/KR,;+ ... PR,/KR,= 0.

Now, if the perpendiculars from K on the sides
of the polygon be o/, B, 7/, &c., PR/KR, = a/d,
PR./KR, = B/f', &c. Hence a/o’ y BB + y/¥, &ec.,
= 0; but o, £, ¥/, &c., are proportional to «, b, ¢, &c.
Hence the proposition i is proved.
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Prop. 7.—If the perpendiculars from the vertices of a

harmonie polygon on 1ts Lemoine line be denoted by p,, p,

. Pny and the perpendiculars on it from the Lemoine
poz'nt by w, then 3 (1/p) = n/x.

Dem.—Let LL’ (fig., Prop. 2) be the Lemoine line.
Then, since the points O, ¥, K, S form a harmonic
system R?*/O8’, R*/OK’, R*/OS are in AP [Book VI,
Sect. 111, Cor.]; that is, OS, 0Q, OS are in AP.
Therefore S’S is bisected in Q. Hence VS is bisected
inV; and since the points A’, A are harmonic conjugates
to V, S, the lires UA, UV, UA’ are in GP [ Book VI,,
Sect. 111, Prop. 1]. Therefore AL, VR, A’L’ are in
GP. Hence AL. A’/ = VR?> = S’Q2 0Q.XKQ; that

. A'L'=7.0Q. Therefore A'L’[r=0Q/p,. Hence
E(A’L/ﬂ-) = OQ=(1/p). Butsince A’isthe vertex of a
regular polygon whose centre is O, Z(A'L’) = n0Q.
Hence n/z = 3(1/p).

Prop. 8.—If a transversal through the symmedian point
(K) meet the sides of a harmonic polygon of n sides in the
pownts Ry, Ry ... R, and meet the circumcircle in P ;
then 1/R,P + 1/R,P ... 1/R,P =n/KP.

Dem.—Let a, b, ¢, &c., be the lengths of the sides ;
a, B, vy, &c., the perpendiculars on them from the point
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P; and o, B, ¥/, &c., the perpendiculars from X.
Then [Book VI., Sect. 1v., Prop. 7] afa + b/ + c/y +
&c = 0; but since K is the symmedian point, o', {3,
v's &c are proportional to @, &, ¢, &c. Hence ofa +
B'/B + Y[y, &c., = 0. NOW, a'/a = R K/R,P =1 -
KP/R,P, with similar values for 8’/8, &c. Hence,

n -KP/R,P-KP/R,P ...-KP/R,P=0;
therefore
1/R,P+1/R,P...1/R,P =n/KP.

Prop. 9.—If through the symmedian point of & har-
monie polygon  parallel be drawn to the tangent at any
of ts wertices, the wntercept on the parallel between the
symmedian point and the point where it meets either of the

sides of the polygon passing through. that vertex s con-
stant.

Dem.—Let AB be a side of the harmonic polygon,
AT the tangent, KU the parallel. Produce AK to meet
the circle in A’. Join A’B, and let KX be the per-

pendicular from K on AB; then KX + KU = sin AUK
=sin UAT = sin AA'B =1AB - R. Hence KU =+ R
= KX + JAB =tan o (if o be the Brocard angle of the
polygon). Hence KU =R tan o.

Q
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Cor. 1.—1If the polygon consist of n sides there will be
2n points corresponding to U, and these points are con-
eyclie.

Cor. 2.—If o' be the Brocard angle of the harmonic
AK.KA’/

R*

For, draw KYV parallel to A'T. It is easy to see
that the triangles AKU, VKA’ are equiangular. Hence
KU.KV = AK . KA'—that is, R? tan o .tan o’ = AK.
KA’

Prop. 10.—If all the symmedian lines, KA, KB, &c.,
of @ harmonic polygon be divided wn the pomts A" B”
&ec., n a gwen ratio, and through these points pamllels

polygon of which A'B us a side, tan o . tan o' =

be drawn to the tangents at the vertices, each parallel
meeting the two sides passing through the corresponding
vertex, all the points of wntersection are concyclic, and,
taken alternately, they form the vertices of two harmonie

polygons.
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Dem.—Let KA be divided in A” in the ratio/ : m.
Join AO, OK, and draw A”0Q’ parallel to AO, and let
A"U be parallel to the tangent AT. Then we have

O'U? = O’A"* + A"U?; but O'A" = ‘R , and A"U =

. l+m
KU = R tan o . Hence (/+m)* O'U? = R?
[ +m [+ m

(7 + m*tan’»w). Hence O'U is constant.

Again, if B”V be parallel to the tangent at B, the
triangle O’'B”V is in every respect equal to O’A”T.
Hence the angle UO'V is equal to AOB. Therefore
the points U, V . . . are the angular points of a polygon
similar to that formed by the points A, B... Hence
they form a harmonic polygon. It is evident, by pro-
ceeding in the opposite direction from A, that we get
another harmonic polygon. Hence the proposition is
proved.

m m

Cor. 1.—The wntercept which the circle O’ makes on the
side AB s 2R (! ssn A — m cos A tan )[({ + m), where A
denotes the angle of wntersection of the side AB with the
cureumenrcle.

For the perpendiculars from O and K on AB are, re-

spectively,
Rcos A, Ksin A tan o,

and OK 1s divided in O’ in the ratio m : /. Hence the
perpendicular from O’ on AB is

R (fcos A+ msin A tan )/l + m);

and subtracting the square of this from the square of
the radius of O’ we get

R* (I sina — m cos A tan 0)?/(1 + m)2.
Hence intercept = 2R ({sin A — m cos A tan w)/({ + m).

Cor. 2.—By gwving special values to the ratio ! : m,
we get some interesting results. Thus—

1° I£7=0 we get intercepts proportional to cos A,
Q 2
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cos B, cos C, &c. The curcle wn thes case ts that of
Prop. 9, and s called the CosiNe CIRCLE of the polygon.

2°, If I = m, the line OK will be bisected in O’, and
the circle will be concentric with the Brocard circle.
This 1s, by analogy, called the LemoINe CIRCLE of the

polygon : ztsm@é@%ﬁ‘ 78 e Gual to R sec o, and the intercepts

which 1t makes on the 3zdes are proportional to sin (A - w),
sin (B - ), &e.

3°. If I = m tan o, the wntercepts are proportional to
sin (A - w/4), sin (B — «w/4), &c., and the radvus 1s equal
R sin w cosec (o + 7/4).

4°. 1£ 1 = m tan® w. The centre of the circle is the
middle pont of the line QQ', its radius vs equal to Rsin w,
andthe intercepts are proportionalto cos(A+w),cos(B+w),
&c. These will be the projections of QQ on the sides of the
polygon.

5°. If the polygon reduce to a triangle, and the ratio
of [ :m

— cos A cosBecosC: 1+ cos A cosBcosC,

the intercepts are, respectively, equal to

R sin 2A cos (B - C),
R sin 2B cos (C - A),
R sin 2C cos (A - B).

The perpendiculars from the centre on the sides will be
proportional to cos* A, cos® B, cos* C.  Thus vs the case of
Taylor's Circle. The ratio 1 : m expressed in terms of
w 18 stn (A — o) — simPA : sin® A

6°. Any Tucker’s circle of the triungle ABC is a Taylor’s
circle of some other triangle having the same cvreumesrele
and symmedian point.

For the Tucker’s circle of the triangle ABC being
given, the ratio / : m is given, and from the proportion
sin (A — o) —sin®A : sin®A : : [ : m, we get, putting cot
A = z, the equation

2° —cotw.2* + z + (1 + f/m) cosec w — cot w = 0;

the three roots of which are the cotangents of the three
angles of the required triangle.
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11. I[fABC..., A'B'C/, ... be two homothelic harmonie
polygons of any number of sides; K their homothetic centre ;
and of consecutive pavrs of the sides of A'B'C' . . . pro-
duced, of necessary, intersect the correspondiny pairs of
ABC ... n the pairs of points aa’, BB, vy, &c., the
pownts aa, BB, vy, &ec., are concyclic.

For, since the figure SBB'B’ is a parallelogram, BB’
is bisected by BB’ in B”; and since the ratio of KB:
KB’ is given, the ratio of KB : KB” is given, and B8,
through B”, is parallel to the tangent at B. Hence, &c.

Cor. 1.—If the harmonic polygons of Cor. 2, be qua-
drilaterals, their circumcircles and that of the octagon
ad’ BB'yy'88" are coaxal.

For it is easy to see that the squares of the tangents
from Bto the circumeircles of aa’33"yy'88’, and A’B'C'D’
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are in the ratio 1 : 2; and the squares of tangents from
C, D, A to the same circles are in the same ratio.

Cor. 2.—If the two harmonic polygons of Cor. 2 have
an even number of sides, the n points of intersection of the
stdes of the first with the corresponding opposite sides of
the second, respectively, are collinear.

Dem.—For simplicity, suppose the figures are qua-
drilaterals, but the proof is general. Let P be the point
of intersection ; then the angle ABE = AC’D’. Hence
ABC'D’ is a cyclic quadrilateral. Therefore P is a
point on the radical axis of the circumcircles. Hence
the proposition is proved.

Cor. 3.—1In the general case the lines ad', B3, vy are
the sides of @ polygon, homothetic with that formed by the
tangents at the angular points A, B, C, &c. Hence it
Jollows, if the harmonic polygon ABC . . . be of an even
number of sides, that the intersections of the lines ad’,
BB vy, taken in opposite parrs, are collinear.

Prop. 12.—The perpendiculars from the circumcentre
of a harmonic polygon, of any number of sides n on the sides,
meet tts Brocard circle in n points, which connect con-
currently wn two ways with the vertices of the polygon.

This general proposition may be proved exactly in
the same way as Prop. 2, page 196.

Der.—1If the points of concurrence of the lines in this
proposition be Q, ', these are called the BrocarDp Points
of the polygon ; and the n pomnts L, M, N, &c., n which
the perpendiculars meet the Brocard cwcle, Jfor the same
reasons as i Cor. 2, p. 194, are called 1ts INVARIABLE
Pornts. Also the points of 'bisection of the symmedian
chords AK, BK, CK, &c., will be vts DouBLE PoInts.

Cor. 1.—The n linesjoining respectively the invariable
points L, M, N . . . to n corresponding points of figures
directly simalar described on the sides of the harmonie
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polygon are concurrent s the locus of their point of concur-
rence 18 the Brocard circle of the polygon.

Prop. 138.—The centres of simulitude of the pairs of
consecutive sides of a harmonic polygon form the vertices of
a harmonie polygon.—(TARRY.)

Dem.—Let A be a vertex of the harmonic polygon,
K its harmonic pole. Join AK, and produce to meet the
Brocard circle in M. Join MS, cutting the Brocard
circle in N, and AS, cutting the circumcircle in A’.
Join ON. Now the polar PQ of S passes through the

intersection of MK and ON ; and since the points P, S
are harmonic conjugates to A, A’, and &/, S to K, O,
the pencils Q(SKS'0), Q(SAPA’), are equal, and they
have three common rays, viz. QS, QA, QP. Hence
their fourth rays, QO, QA’, coincide; therefore the
points Q, O, A’ are collinear. Again, A’, being the
inverse of A with respect to Z, is a vertex of a regular
polygon inscribed in Z. Hence N is the vertex of a
regular polygon inscribed in the Brocard circle ; and
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therefore M, which is its inverse, is a vertex of a har-
monic polygon ; but M is evidently the middle point of
the symmedian chord passing through A. Hence it is
the centre of similitude of the two consecutive sides
passing through A. Hence the proposition is proved.

Prop. 14.—If figures directly svmilar be described on
the sides of a harmonic polygon of any number of sides,
the symmedian lines of the harmonic polygon formed by
corresponding lines of these figures pass through the middle
points of the symmedian chords of the original figures.

This is an extension of Prop. 5, page 197, and may
be proved exactly in the same way.

Cor. 1.—The symmedian point of the harmonic polygon,
formed by corresponding lines of figures directly similar,
18 @ pownt on the Brocard circle of the original polygon.

Cor. 2.—The tnvariable points of the original polygon
are corresponding pownts of figures directly similar de-
seribed on vts sides.

Cor. 8.—The centre of svmalitude of the original poly-
gon, and that formed by any system of corresponding lines,
18 a pownt on the Brocard circle of the original polygon.

Cor. 4.—The centre of symilitude of any two harmonic
polygons, whose sides respectively are two sets of corre-
sponding lines of figures directly similar, described on the
stdes of the original polygon, is a po'mt on the Brocard
curcle of the original.

Exercises.

1. If the symmedian lines through the vertices A, B, C of a
triangle meet its circumeirele in the points A’, B, C’, the tnangles
ABC, A’'B'C’ are cosymmedian.

For since the lines AA’, BB’, CC’ are concurrent, the six
points in which they meet the circle are in involution. Hence
the anharmonic ratio (BACA') = (B'A’C'A); but the first ratio is
harmonie, therefore the second is harmonic. Hence A’A is a
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symmedian of the triangle A’B’C’.  Similarly, B'B, C’C are
symmedians.

2. The centres of inversion of a harmonic polygon are the
limiting points of its circumecircle and Brocard circle, and the
Lemoine line is their radical axis.

3. The product of any two alternate sides of a harmonic poly-
gon is proportional to the product of the sines of their inclinations
to their included side.

For if A, B, C, D be four consecutive vertices, A’, B, C’, D’ the
corresponding vertices of a regular polygon, the anharmonic
ratio (ABCD) = (A'B’C'D’). Hence (AB . CD) / (AC. BD) =
(A’'B". C'D’) | (A’'C’ . B'D') = (sec®w[n) [ 4; but AC=2 R sin
ABC, BD = 2R sin BCD.

Hence (AB . CD)/sin ABC . sin BCD = R2 sec? w/x.

4. If we invert the sides A'B’ (see fig. p. 207) of a regular
polygon with respect to S, we get a circle passing through AB
and S.  Hence, if through the extremities of each side of a
harmonic polygon circles be described passing through either of
the centres of inversion, these circles cut the circumcircle at a
constant angle /n.

6. In the same case they all touch another circle, and the
points of contact are the vertices of a harmonie polygon.

6. If through the symmedian point, and any two adjacent
vertices of a harmonic polygon, a circle be described, it cuts the
circumcircle at a constant angle.

7. A system of circles passing through the two centres of
inversion of a harmonic polygon, and passing respectively
through its vertices, cut each other at equal angles, and cut its
circumcircle and Brocard circle orthogonally.

8. In the same case the points of intersection on the Brocard
circle are the vertices of a harmonic polygon.

9. Prove that the centre of similitude of the two polygons
formed by the alternate vertices in Prop. 9 is the symmedian
point of the original polygon, and that the centre of similitude of
either, and the original polygon, is a Brocard point of the
original polygon.

10. Prove that the circles in Ex. 5, described through the sym-
median point, and through adjacent vertices of a harmonic poly-
gon, all touch a circle coaxal with the Brocard circle and the
circumcircle, and that the points of contact are the vertices of a
harmonic polygon,
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11. If A, B, C be any three consecutive vertices of a harmonic
polygon, whose symmedian point is K, prove, if K’ be the sym-
median point of the triangle ABC, and B’ the point where KK’
intersects AC, thatthe anharmonic ratio (KB’K'B) is constant.

12. If through the vertices A, B, C, &c., of a harmonic poly-
gon F, be drawn lines making the same angle ¢ with the sides
AB, BC, &c., and in the same direction of rotation, prove that
the polygon F; formed by these lines is a harmonic polygon, and
similar to the original.

13. If a polygon F3 be formed by lines which are the isogonal
conjugates of Fo, with respect to the angles of F, prove that F;
is equal to F2 in every respect.

14. If F1, Fq, F3 be considered as three directly similar figures,
prove that their symmedian points are the invariable points, and
that the double points are the circumcentre of F, and its Brocard
points.

15. The symmedian point of a harmonic polygon is the mean
centre of the feet of isogonal lines drawn from it to the sides of
the polygon.

This follows from the fact that the isogonal lines make
equal angles with, and are proportional to, the sides of a closed

polygon.
16. The square of any side of a harmonic polygon is propor-

tional to the rectangle contained by the perpendiculars from its
extremities on the harmonic polar.

17. If from the angular points of a harmonic polygon tangents
t1, t3, . . .ty be drawn to its Brocard circle, prove that

3(1/%) =n/ (R? — 8?).

18 If ABCD, &c., be a harmonic polygon, Q one of its
Brocard points, prove that the lines AQ, BQ, &c., meet the circum-
circle again in points which form the vertices of a harmonic
polygon equal in every respect, and that © will be one of its
Brocard points.

The extension of recent Geometry to a harmonic quadrilateral
was made by Mr. Tucker in a Paper read before the Mathema-
tical Society of London, February 12, 1885. His researches were
continued by Neuberg in Mathesis, vol. v., Sept., Oct., Nov.,
Dec., 1885. The next generalization was made by me in a Paper
read before the Royal Irish Academy, January 26, 1886, ‘“On
the Harmonic Hexagon of a Triangle.”” Both extensions are
special cases of the theory contained in this section, the whole
of which I discovered since the date of the latter Paper, and
which M. Brocard remarks, ‘‘parait étre le couronnement de ces
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nouvelles étndes de géométrie du tna,ngle ” The following
passage, in a note by Mr. M‘Cay in Tucker’s Paper, shows the
idea of extension had occurred to that geometer :—¢¢1 believe
all these results would hold for a polygon in a circle, if the side
were so related that there existed a point whose distances from
the sides were proportional to the sides.”’—March, 1886.

Since the date of the foregoing note, which appeared in the 4th
Edition of the ‘“ Sequel,”” two Papers on the Harmonic Polygon
have been published; one by MM. NEeuBere and TArRry—
Congress of Nancy, 1886, Association Frangaise pour l'avance-
ment des Sciences ; the other by the Rev. T. C. Simmons—Pro-
ceedings of the London Mathematical Society, April, 1887. I am
indebted to the former of these for the demonstration of Prop. 2,
and to the latter for the enunciation of Prop. 7. With these
exceptions, and Prop. 13, all that is contained in this Section is
original.

SECTION VII.

GENERAL THEORY oF AssociaATED FIGURES.

DEr. 1.—1If any point X vn the circumference of a circle
7 be joined to n fixed points 1,, 1,, ... L,, on the same
ourcumference, and portrons LA, LA, .. . LA, be
taken on the joining lines tn giwen ratios d, dy . . . d,,

and all measured wn the same direction with respect to
X, a- system of figures directly simalar, described on
LA, . LA, . .. LA, is called an associated system.

Drr. 11.—The points 1, I, ... I, are called the in-
variable points of the system,
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Prop. 1.—The centres of similitude of an associated
system of figures are concyclic.

Dem.—Let the figures be F,, I, ... F,, and I,, I,,any
two invariable points, A,, A, the correspondmg points
of F,, I, taken on the fines XI,, XI,. Hence [Sup.
Sect. 11., Prop. 4] the second infersection of the circle
7 with the circumeircle of the triangle XA, A, is the
centre of similitude of the figures F,, F,. Hence the
centre of similitude of each pair of figures of the as-
sociated system lies on Z, that is, on the circle through

the invariable points.

Der. n1.—The circle Z, through the invariable points,
18, on account of the property just proved, called the circle
of stmilvtude of the system.

Prop. 8.—The figure formed by n homologous points s
wn perspectwe with that formed by the invariable points.

This follows from Def, 1.

Cor.—EHvery system of n homologous lines passing
through the tnvariable points forms a pencil of concurrent
lines.

Prop. 8.—1In an associated system of n figures the
pownts of intersection of n homologous lines are in per-
spective with the centres of similvtude of the figures.

Dem.—Let the homologous be L;, L, . . . L,, and
through the invariable points draw lines respectively
parallel to them Then, since these parallels are cor-
responding lines of F,, F,, . . . F,, they are concurrent.
Let them meet in K. Now, consider any two lines
L,, L,: the perpendiculars on them from K are respec-
tlvely equal to their distances from the invariable
points I,, I,, and therefore proportional to the perpen-
diculars on them from the centre of similitude S,, of
the figures F,, F,. Hence the point of intersection of
L,, L, the point K, and S,,, are collinear, Hence it
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follows that the lines joining the n(% + 1)/2 intersec-

tions of Ly, L,, . . . L, to K pass respectively through
the n (n + 1)/2 centres of similitude.

DEr. 1v.—1 shall call X the perspective centre of the
polygon formed by the lines Ly, Ly, . .. L,.

Prop 4.—1In an associated system of n figures, the
oentre of simulitude of amy two polygons, G, G', each

Jormed by a system of n homologous lines, s a pomt on the
curcle of sumilitude.

Dem.—Let K, K’ be the perspective centres of G,
G’ : thus K, K’ are corresponding points of G, G’. Let
I be any of the invariable points. Join IK, IK’, and
let the joining lines meet any two corresponding lines
of G, G’, in N, N’; then KN, K'N’ are corresponding
lines of G, G/. Hence the centre of similitude is the
second intersection of the circumcircle of the triangle
INN’ with the circle of similitude. Hence the pro-
position is proved.

Prop. 5.—The sz centres of simelitude of an assocrated
system of four figures taken in pavrs are in involution.

Dem.—Let L;, L,, L;, Ly be four homologous lines
of the figures, and K the perspective centre of the
figure formed by these lines. Then the pencil from K
to the six centres of perspective passes [Pro 3]
through the three pairs of opposite intersections of the
sides of the quadrilateral L,, L,, L;, L, and therefore
forms a pencil in involution.

DEr. v.—1If vn an associated system of n figures F,,
F,... T, there exist n + 1 points A, Ay . o . A,y Apiy
such that A A, A A; ... ALA, are homologous lines
of the figures; then the broken line AjA, ... AA,, s
called a Tarry’s LINE; and, of A, cotncides with A,
TaArrY’s Porycon.

I have named the line of this definition after M. Gaston Tarry,
‘“ Receveur des contributions, & Alger,”” to whom the theory of
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associated figures is due. See Mathesis, Tome, vI., pp. 97, 148,
196, from which this Section, except propositions 4 and 5, is
taken.

Prop. 6.—If AJA, . . . AA,. be a Tarry’s line,
I, I, . . . I, the vnvariable points, then the angle 1,A A,
=LAA; ... =1L,AA,., and the angle 1,A,A, =1,A3A,
s e = Iﬂ.An+1An'

Dem.—By hypothesis the triangles I,A;A;, I,A,A;
e o . I,A A, form an associated system. Hence they
are equiangular, and therefore the proposition 1is
proved.

Der. vi.—The lines A1, A1, . .. AL, betng cor-
responding lines passing the invariable points, meet on the
crcle of similitude. In like manner, AL, Asl, . . .
AL, meet on the circle of similitude. The points of con-
currence are called the Brocard points of the system, and
denoted by Q, Q.

DEr. vit.—The base angles of the equiangular triangles
LAA,, LAA; ... are called its Brocard angles, and
denoted by o, o', viz. 1,A A, by o, and 1,A,A, by o'.

Der. viit.—Zhe perspective centre [Def. 1v.] of @
Tarry’s line, being such that perpendiculars from it on the
several parts of that line are proportional to the parts, is
called the symmedvan point of the line.

Prop 7.—DBeing given two consecutive sides ALA,,
A,A; of a Tarry’s line, and its Brocard angles, to con-
struct ot.

Sol.—Upon A;A,, A,A; construct two triangles
A LA, A,LA;, having their base angles equal to o, o,
respectively, viz., A, AL} = AsA,l, = o, and AJAT =
A,A; I, = o'. Then the vertices I,, I, are invariable
points. The lines A,I;, A,I, will meet in one of the
Brocard points Q [ Def. vr.], and the lines A,I;, A;I,in
the other Brocard point Q. Then the four points I,
I,, Q, Q' are concyclic, and the circle Z, through them,
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is the circle of similitude. Join QA;. This will meet
Z in T;, which will be the invariable point correspond-
ing to the next side, AgA,, of the Tarry’s line. Join
Q'I;, and produce to meet the line AjA,, makmg with
QA; an angle equal to o in A;. We construct in the

ey

V

0

same manner A4A;, A;Ag;, &c. Tarry’s line, it is ob-
vious, may be continued in the opposite sense, A;A,A;.

Cor.—If one side of @ Tarry’s line and its Brocard
pownts be given, 1t may be constructed.

Prop 8.—If the Brocard angles v, o' of a Tarry’s line
be equal, the points Ay, Ay . . . A, form the vertices of a
harmonie polygon.

Dem.—From the invariable points I, I,, &c., let
fall perpendiculars I,0;, I,C;, &c., on the lines A;A,,
A,A;, &c. Then, since these perpendiculars are homo-
logous lines of ¥y, I, they meet on Z. Let O be their
point of intersection. Now, since v = o', the triangle
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I,A A, is isosceles. Hence A;A, is bisected in C,, and
OA; = OA,. Similarly OA; = OA; &c. Hence the
points A;, A, . .. are concyclic ; and since the polygon
formed by them has a symmedian point K, it is a har-
monic polygon.

Prop. 9.—1If the Brocard angles v, o' of a Tarry’s
line be unequal, vt cannot be a closed polygon.

Dem.—If o' be > w, A;C; is > C;A;. Hence OA,
>0A,. Similarly OA, > OA;. Hence the points A}, A,
. . . are continually approaching O. Hence the propo-
sition is evident.

Cor.— When Tarry’s line has equal Brocard angles,
its symmedian point vs diametrically opposite to O on
the circle of simulitude.

For the parallels to A A, A;A;, &ec., through the in-
variable points, meet in K. Now, since LK, I,0 are
respectively parallel and perpendicular to A;A,, the
angle OI,K is right. Hence OK is the diameter of Z.

Exercises.

1. If an associated system of figures have a common centre of
similitude, the figures formed by inverting them from that point
form an associated system.

2. In the same case, the figures formed by reciprocating them
from the centre of similitude form an associated system.

3. If a series of directly similar triangles be inscribed in a
given triangle, they have a common centre of similitude.

4. If a series of directly similar triangles be circumscribed to
a given triangle, they have a common centre of similitude.

5. In an associated system of four directly similar figures
there exists one system of four homologous points which are
collinear.

6. In the same case the four director points of the four triads
which are obtained from them are collinear.
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7. In three directly similar figures there exists an infinite
number of triads of corresponding circles which have the same
radical axis.

8. In the same case four systems of three homologous circles
can be described to touch a given line.

9. Through any point can be described three homologous circles
of the system.

10. Eight systems of three homologous circles can be described
to touch a given circle.

11. Every cyclic polygon which has a Brocard point is a har-
monic polygon.

12, Every polygonal line which has a symmedian point and 4
Brocard point, or which has two Brocard points, is a Tarry’s line.

13. In every system of three similar figures, F';, Fa, F3, there
exists an infinite number of three homologous segments, AA’,
BB’, CC’, whose extremities are concyeclic, and the locus of the
centre of the circle X through their extremities is the circle of
similitude of Fi, F2, Fs. -

14. The Brianchon’s point of the hexagon, formed by the
tangent to X at the points A, B, C, A’, B, C' is the symmedian of
the segments.

156. The projections of the centre O of the circle X on the
diagonals of Brianchon’s hexagon are the double points of the
ﬁgures F], Fz, Fs.

16. If K be the symmedian point of the segments, and O the
centre of X ; and if perpendiculars from K on the radii OA,
OA’ meet the segment AA’ in the points (@, ¢’); and if (4, &'),
(¢, ') be similarly determined on BB/, CC’, the six points are con-
cyclic.

17. The symmedian point of the three segments, aa’, 48’, cc¢’, is
the centre of X.

18. Ifthelines KA, KA’ be divided in a given ratio, and through
the points of division lines be drawn respectively perpendicular
to OA, OA’, meeting AA’ in the points (a, '), the points (a, a’),
and the points similarly determined on BB’y CC’, are concyclic.

19. If A, A’ be opposite vertices of a cyclic hexagon ; P the
pole of the chord AA’; L, I/ the points of intersection of the radii
OA, OA’ with the Pascal’sl ine of the hexagon ; a, a’ the projec-

R
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tions of the centre O on the lines PL, PL’; then (e, «), and the
two other pairs of points similarly determined, are concyclic.

20. Let M, M’ be points of the radii OA, OA’, such that the
anharmonic ratios (OAML), (OA’'M’L’) are equal. The projec-
tions of O on the lines PM P'M’, and the other palrs of points
determined in the same manner from the chords BB', CC’, are
concyelic.

21. The circle of similitude of the three directly similar tri-
angles ABC, FDE, E'F'D’ (fig., p. 177) passes through the
Brocard points and Brocard centre of ABC.

22-25. If a, b, ¢ be the points of intersection of the correspond-
ing sides of two equal and directly similar triangles, ABC, A'B’C,
whose centre of similitude is S; then, 1°, if S be the circum-
centre of ABC, it is the orthocentre of abdec; 2° if it be the
incentre of ABC, it is the circumcentre of abdc ; 3°, if S be the
symmedian point of ABC, it is the centroid of abc; 4°, if it be a
Brocard point of ABC, it is a Brocard point of ade.

26. State the corresponding propositions for ABC, and the

triangle formed by the lines joining corresponding vertlces of
ABC, A'B'C.

27. If a cyclic polygon of an even number of sides ABCD,
&c., turn round its circumcentre into the position A’B'C'D’, &ec.,
each pair of opposite sides of the polygon whose vertices are the
intersection of corresponding sides are parallel.

28. If a variable chord of a circle divide it homographically,
prove that there is a fixed point (Lemoine point) whose distance
from the chord is in a constant ratio to its length.

29. In the same case, prove that there are two Brocard points,
a Brocard angle, a Brocard circle, and systems of invariable
points, and double points.

30. Prove also that the circle can be inverted so that the in-
verses of the extremities of the homographic chords will be the
extremities of a system of equal chords.
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Miscellaneous Exercises.

1. If from the symmedian point of any triangle perpendicu-
lars be drawn to its sides, the lines joining their feet are at
right angles to the medians,

2. If ACB be any triangle, CL a perpendicular on AB; prove
that AC and BL are divided proportionally by the antiparallel
to BC through the symmedian point.

3. The middle point of any side of a triangle, and the middle
point of the corresponding perpendicular, are collinear with the
symmedian point.

4. If X bethe symmedian point, and G the centroid of the tri-
angle ABC; then—1° the diameters of the circumcircles of the.
triangles AKB, BKC, CKA, are inversely proportional to the
medians; 2° the diameters of the circumcircles of the triangles
AGB, BGC, CGA are inversely proportional to AK, BK, CK.

6. If the base BC of a triangle and its Brocard angle be given,
the locus of its vertex is « circle. (NEUBERG.)

Let K be its symmedian point. Through K draw FE parallel

0
(A
Q pd N R
. F/‘ /@M\E .
B/ I L \G

to BC, cutting the perpendicular AL in M. Make MN equal to
R 2



232 A SEQUEL TO EUCLID.

half LM. Through L draw QR parallel to PC. Bisect BC in I,
and draw 10 at right angles, and make 210 . MN = BI=.

Now, because the Brocard angle is given, the line FE parallel to
the base through the symmedian point is given in position. Hence
QR is given in position ; therefore MN is given in magnitude.
Hence 10 is given in magmtude ; therefore O is a given point.
Again, because FE is drawn through the symmedian point,
BA? + AC?: BC? : : AM : ML; therefore BI? + IA%?: BI?:
MN + NA : MN. Hence BI? : TA? : : MN : NA; therefore
TA2=2I0.NA ; and since I,’0 are given points, and QR a given
line, the locus of A is a circle coaxal with the point I and the
line QR [VI., Section v., Prop. 1].

6. If on a given line BC, and on the same side of it, be de-
scribed six triangles equlangula,r to a given triangle, the vertwes
are concyclic.

7. If from the point I, fig., Ex. 5, tangents be drawn to the

Neuberg circle, the 1ntercept between the point of contact and I
is bisected by QR.

8. The Neuberg circles of the vertices of triangles having a
common base are coaxal.

9. In the fig., Prop. 4, p. 175, if the segment A'B’ slide along
the line CB’, prove that the locus of O is a right Iine.

10. If two triangles be co-symmedians, the sides of one are
proportional to the medians of the other,

11. The six vertices of two co-symmedian triangles form the
vertices of a harmonic hexagon.

12. The angle BOC, fig., Ex. 5, is equal to twice the Brocard
angle of BAC.

13. If the lines joining the vertices of two triangles which
have a common centroid be parallel, their axis of perspective
passes through the centroid. (M*Cav.)

14. The Brocard points of one of two co-symmedian triangles
are also Brocard points of the other.

.If L,M, N, P, Q, R be the angles of intersection of tke
mdes of two co- symmechan triangles (omifting the intersections
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which are collinear), these angles are respectively equal to those
subtended at either Brocard point by the sides of the harmonic
hexagon. (Ex. 11.)

16. If two corresponding points, D, E of two directly similar
figures, 1, F2, be conjugated points with respect to a given circle
(X), the locus of each of the points D, E is a circle.

Dem.—Let S be the double point of Fi, Fs, and let DE in-
tersect X in L, M. Bisect DE in N. Join SN. Then, from the
property of double pomts, the triangle SDE is given in species;
therefore the ratio SN : ND is given. Again, because E, D
(hyp.) are harmonic _conjugates with respect to L, M, and N is
the middle point of ED, ND? is equal to the rectangle NM . N L;
that is, equal to the square of the tangent from N to the circle X.
Hence the ratio of SN to the tangent from N to X is given.
Hence the locus of N is a circle, and the triangle SND is given
in species ; therefore the locus of D is a circle.

17. If we consider each side of a triangle ABC in succession
as given in magnitude, and also the Brocard angle of the triangle,
the triangle formed by the centres of the three corresponding
Neuberg’s circles is in perspective with ABC.

18. If in any triangle ABC triangles similar to its co-sym-
median be inscribed, the centre of similitude of the inscribed tri-
angles is the symmedian point of the original triangle.

19. If figures directly similar be described on the sides of a
harmonic hexagon, the middle point of each of its symmedian
lines is a double point for three pairs of figures.

20. If F, F,, F3, Fy be figures d1rect1y similar described on
the sides of a harmonic quadrilateral, X its symmedlan point, K',
K" the extremities of its third diagonal, and if the lines KK'
KK"” meet the Brocard circle again in the points H, I; H is the
double point of the figures Fy, F3; I of the figures Fy, Fy.

Der.—The quadrilateral formed by the four invariable points of
a hormonic quadrilateral s called Brocard’s first quadrilateral, and
that formed by the middle points of its diagonals, and the double
points H, 1, Brocard’s second quadrilateral.

This nomenclature may evidently be extended,



234 A SEQUEL TO EUCLID.

21. Brocard’s second quadrilateral is a harmonic quadri-
lateral.

22. If w be the Brocard angle of a harmonic quadrilateral
ABCD, cosec? w = cosec® A + cosec® B = cosec? C + cosec?® D.

23. If the middle point F of the diagonal AC of a harmonic
quadrilateral be joined to the intersection K’ of the opposite
sides AB, CD, the angle AFK’ is equal to the Brocard
angle. (NEUBERG.)

24. The line joining the middle point of any side of a har-
monic quadrilateral to the middle point of the perpendicular on
that side, from the point of intersection of its adjacent sides,
passes through its symmedian point.

25. If Fi, Fo, F3 ... be figures directly similar described on
the sides of a harmonic polygon ABC . . . of any number of sides,
and if aBy . . . be corresponding lines of these figures; then if

any three of the lines aBy . . . be concurrent, they are all con-
current.

26. In the same case, if the figure ABC . . . be of an even
number of sides, the middle points of the symmedian chords of

the harmonic polygon aBy . .. coincide with the middle points
of the symedian chords of ABC.

27. If F1, Fa, Fs5 be three figures directly similar, and Bi, By,
Bs three corresponding points of these figures; then if the ratio
of two of the sides BiB; : BoBs of the trlangle formed by these
points be given, the locus of each is a circle ; and if the ratio
be varied, the circles form two coaxal systems.

Dem.—Let S;, Sz, Sz be the double points : then the triangles
S3B1B2, S1B:B; are given in species. Hence the ratios B;B; :
S3B2, and ByB3 : S1B; are given; and the ratio B;B; : BsBs is
given by hypothesis. Hence the ratio S3Bz : S1B; is given, and
therefore the locus of By is a circle.

28. If through the symmedian point K of a harmonic polygon
of » sides be drawn a parallel to any side of the polygon, inter-
secting the adjacent sides in the points X, X', and the circum-

circle in Y, Y’, then 4XK . KX’ sinZ% =YK .KY.
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29. TIf the area of the triangle B;B;Bs, Ex. 27, be given, the
locus of each point is a circle.

Dem.—Here we have the Bz

ratios B;Bz : S3B2, and B;Bs

: 51B2 given. Hence theratio

of the rectangle BB, . B2B; .

sin B1B2B3 : S3B; . S1B:. sin L
BiB:B; is given : but the for- &
mer rectangle is given ; there-

forethe rectangle S3By . S1B: .

sin B1B2B; is given ; now,

the angles B1st3, SlB2B3 are

given. Hence the angle B

B2B3 £ S3B2S; is given. Let J
its value be denoted by a; S S
therefore B;B:Bs = o 4+ Sz 9 1
B:S;. Hence, taking the

upper sign, the problem is re-

duced to the following. T%e

base S3S) of a triangle S3B2S)

is given in magnitude and position, and the rectangle S3Bg . S1Bs .

sin (o — S3B3S1) s given in magnitude, to find the locus of Bs, which
18 solved as follows:—Upon S3S; describe a segment of a circle

S3LS; [Eue. I11., xxxi111.] containing an angle S;LS; equal to a.

Join S;L; then the angle B3S;L is equal to a — S3B2S;.  Hence,

by hypothesis, S3B . S;B; . sin B2S;L is given; but S;B; . sin

ByS,L is equal to LB:sina; therefore the rectangle S3B: . LBa

is given. Hence the locus of B is a circle.

30. If Q, Q' be the inverses of the Brocard points of a triangle,
with respect to its circumcircle, the pedal triangles of Q, Q' are—
1°, equal to one another; 2° the sides of one are perpendicular
to the corresponding sides of the other; 3°, each is inversely
similar to the original. (M‘Cay.)

31. If the area of the triangle formed by three corresponding
lines of three figures directly similar be given, the envelopes of
its sides are circles whose centres are the invariable points of the
three figures.

32. If the area of the polygon formed by # corresponding lines
of n figures directly similar described on the sides of a harmonic
polygon of » sides be given, the envelopes of the sides are circles
whose centres are the invariable points of the harmonic polygon.

33. The four symmedian lines of a harmonic octagon form a
harmonic pencil,
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34, A', C’ are corresponding points of figures F3, F, directly
similar described on the sides BC, AB of a given triangle : if AA’,
CC’ be parallel, the loci of the points A, C are circles.

Dem.—Let S be the double point of the figures, and D the
point of Fg, which corresponds to C in F;. Join DA’, and pro-
duce CC’ to meet it in E. Now, since S is the double point of
the figures ABCC’/, BCDA’, the triangles SCC’, SDA’ are equi-
angular ; therefore the angle SCC’ is equal to SDA’. Hence the
points S, D, E, C, are concyclic; therefore the angle DEC is
equal to the supplement of DSC ; that is, equal to ABC ; there-
fore DA'A is equal to ABC, and is given. Hence the locus of
A’ is a circle.

35. The Brocard angles of the triangles ABC, BCA’ are equal.

Dem.—Let the circle about the triangle DA'A cut AB in F,

O'

E A

Join DF, CF'; thenthe angle DFB is equal to DA'A [Eue. ITI1.,
xxIL]; therefore it is equal to BCD. Hence the triangles BCA,
BCF, BCD are equiangtlar. Hence the circle which is the locus
of the vertex when the base BC is given, and the Brocard angle
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is equal to that of ABC, passes through the points A, F, D.
Hence it coincides with the locus of A.

36. If C’, A’, B’ be three corresponding points of figures di-
rectly s1m11ar, described on the sides of the triangle ABC, and if
two of the lines AA’, BB’, CC’ be parallel, the three are parallel

37. If ABC, A'B'C’ be two co-symmedian triangles, then
cot A + cot A’ = cot B + cot B' = cot C 4 cot C' = % cot w.
(Tucker.)

38. If @ be a Brocard point of the triangle ABC, and py,
p2, p3 the circumradii of the triangles AQB, BaC, CQA; then
pipzps = R3. - (Tucker.)

39. If O be a Brocard point of a harmonic polygon of # sides,
P1, P2, P3, &c., the circumradii of the trlangles AQB, BaC, CaD,

&c. ; then pipaps . . . pn = 2% cosn o " Rn,

40. If the line joining two corresponding points of directly
similar figures, F1, Fa, '3, described on the sides of the triangle
ABC, pass through the centroid, the three corresponding points
are collinear, and the locus of each is a circle.

Dem.—Let Dj, Dy, collinear with the centroid G, be correspond-
ing points of F;, Fy, and let AN, BM, CL be the medians inter-
secting in G. Join ND;, MD,, and produce to meet parallels to
D;iD; drawn through A, B in the points A’, B’. Now, from
the construction NA’'=3ND,, and MB’'=3MD ; and since Dy, D,
are corresponding points of Fj, Fo; A’, B’ are corresponding
points ; and AA’, BB being each parallel to D1Da, are parallel
to one another. Agam, let D3 be the point of F3 which corre-
sponds to D1, D2 ; and C’ that which corresponds to A’, B'; then
the lines AA’, BB’, CC' are parallel ; and since LD3 = §LC' and
LG =1LC; D3G is parallel to CC’. Hence D;, Dz, D3 are col-
linear ; and since the loci of A, B', C’ are circles, the loci of
D, D2, Ds are circles. These are called M<¢CAaY’s circles. It is
evident that each of them passes through two double points, and
through the centroid.

41. The polar of the symmedian point of a triangle, with re-
spect to Lemoine’s first circle, is the radical axis of that circle and
the eircumcircle.

42. The centre of perspective of the triangles ABC, pg» (Sec-
tion 111., Prop. 2, Cor. 2) is the pole of the line Q’, with respect
to the Brocard circle.

43. The axis of perspective of Brocard’s first and second
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triangle is the polar of the centroid of the first, with respeet to
the Brocard circle.

44. Brocard’s first triangle is triply in perspective with the
triangle ABC.

45. The centroid of the triangle, formed by the three centres
of perspective of Ex. 44, coincides with the centroid of ABC.

46-51. Inthe adjoining fig., ABCD is a harmonic quadrilateral,

2°. NQ, GF, MP are parallel.
3°. The pairs of triangles MNP, FHG; MQP, GHF; NMQ,
FIG; NPQ, GIF are in perspective. The four centres of per-
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persctive are collinear ; and the line of collinearity bisects FG at
right angles.

4°. The lines AG, CG, BF, DF are tangential to a circle con-
centric with the mrcumclrcle

5°. If X, Y, Z, W be the feet of perpendiculars from E on the
sides of ABCD, E is the mean centre of X, Y, Z, W.

6°. The sides of the quadrilateral XYZW are tangential to a
circle concentric with the circumecircle.

52-556. If R, R’ be the symmedan points of the triangles ABC,
ADC; 8, § of the triangles BCD, DAB ; then—

1°. The quadrilaterals ABCD, S'RSR’, have a common har-
monic triangle.

. The four lines RS, S’'R’, AD, BC, are concurrent.

3°. If & be the pole of AC; E” of BD, the three pairs of
points A, C; S', S; E, E”, form an involution of which E, E”
ave the double pomts

4°. If through E a parallel to its polar be drawn, meeting the
four concurrent lines AD, S’'R’, RS, BC in the points A, u, », p,
the four intercepts Aw, ,LLE Ev, vp are equal ; and a similar
property holds for the intercepts on the pa1allel made by the
lines AB, S'R, R’S, CD.

56. If two triangles, formed by two triads of corresponding
points of three figures, F, Fa, F3, directly similar, be in perspec-
tive, the locus of their centre of perspective is the circle of
similitude of Fi, Iy, F3. (TArrY.)

57. If the symmedian lines AK, BK, CK, &c., of a harmonic
polygon of an odd number of sides, be produced to meet the cir-
cumcircle again in the points A’, B’, C’, &c., these points form
the verticesof another harmonic polygon ; and these two poly-
gons are co-symmedian, and have the same Brocard angles, Bro-
card points, Lemoine circles, cosine circles, &c.

58. If three similar isosceles triangles BEA’, CAB’, ABC’ be
described on the sides of a triangle ABC, prove that the axis of
perspective of the triangles ABC, A'B’C’ is perpendicular to the

line joining their centre of perspective to the circumcentre of
ABC. (M Cav.)

59. In the same, if perpendiculars be let fall from A, B, C on
B'C’, C'A’, A'B', prove that their point of corcurrence is col-
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linear with the centre of perspective and the circumcentre of
ABC. (I5id.)

60. If the three perpendiculars of a triangle be corresponding
lines of three figures directly similar, the circle whose diameter
is the line joining the centroid to the orthocentre is their circle
of similitude.

61. If the base of a triangle be given in magnitude and position,
and the symmedian through one of the extremities of the base in
position, the locus of the:vertex is a circle which touches that
symmedian.

62. If through the Brocard point Q three circles be described,
each passing through two vertices of ABC, the triangle formed
by their centres has the circumcentre of ABC for one of its Bro-
card points. (DewuLr.)

63. If through the Brocard point Q of a harmonic polygon
of any number of sides circles be described, each passing through
two vertices of the polygon, their centres from the vertices of a
harmonic polygon are similar to the original.

64. In the same manner, by means of the other Brocard point,
we get another harmonic polygon The two polygons are equal
and in perspective, their centre of perspective being the circum-
centre of the original polygon.

65. In the same case, the circumcentre of the original polygon
is a Brocard point of each of the two new polygons.

66. If p be the circumradius of either of the new polygons,
the radius of Lemoine’s first circle of the original harmonic poly-
gon is p tan w.

67-72. If D,, D;, D3 be corresponding points of ¥;, Fs, Fj,
three figures directly similar, the loci of these points are circles
in the following cases :—

1°. When one of the sides of the triangle D,D;Dj3 is given in
magnitude.

2°. When one angle of the triangle D;D;D; is given in mag-
nitude.

3°. When tangents from any two of the points Dj, Dg, D3 to
a given circle have a given ratio.

. When the sum of the squares of the distances of D1, Dy,
D3 from given points, each multiplied by a given constant, is
given,
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5°. 'When the sum of the squares of the sides of the triangle
D1D:Ds, each multiplied by a given constant, is given.

6°. When the Brocard angle of the triangle D1D2Dj3 is given.

73. The poles of the sides of the triangle ABC, with respect to
the corresponding M‘Cay’s circles, are the vertices of Brocard’s
first triangle.

74. The mean centre of three corresponding points in the
system of figures, Ex. 60, for the system of multiplies s, b, co,
is the symmedian point of the triangle ABC.

75. If from the middle points of the sides of the triangle ABC
tangents be drawn to the corresponding Neuberg’s circles, the

points ef contact lie on two right lines through the centroid of
ABC.

76. The circumcentre of a triangle, its symmedian point, and
the orthocentre of its pedal triangle, are collinear. (TUCkEr.)

77. The orthocentre of a triangle, its symmedian point, and
the orthocentre of its pedal triangle, are collinear. (E. Van
AUBEL.)

78. The perpendicular from the angular points of the triangle
ABC on the sides of Brocard’s first triangle are concurrent, and
their point of concurrence (called TArrY’S PoinT) is on the
circumcircle of ABC.

79. The Simson’s line of Tarry’s point is perpendicular to OK.

80. The parallels drawn through A, B, C to the sides (B'C’
C’'A’, A'B’), or to (C’'A’, A’'B’, B'C’), or (A'B’, B’C’, C'A’) of
the first triangle of Brocard, concur in three poiuts, R, R’, R”.
(NEUBERG.)

81. The triangles RR'R”, ABC have the same centroid. (Zbid.)

82. R is the point on the circumecircle whose Simson’s line is
parallel to OK.

83. If from Tarry’s point, Ex. 78, perpendiculars be drawn to
the sides BC, CA, AB of the triangle, meeting those sides in (a
a1, a2), (B, B1, B2), (¥, 71, 7v2), the points a, Bi, ¥, are collinear
(Simson’s line). 8o also a1, B2, 7, and az, B8, 71 are collinear
systems. (NEUBERG.)

84. M‘Cay’s circles are the inverses of the sides of Brocard’s
first triangle, with respect to the circle whose centre is the cen=
troid of ABC, and which cuts its Brocard circle orthogonally.
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85. The tangents from ABC to the Brocard circle are pro-
portional to a1, 471, ¢-1,

86. If the alternate sides of Lemoine’s hexagon be produced to
meet, forming a second triangle, its inscribed circle is equal to
the nine-points circle of the original triangle.

87. If K be the symmedian point of the triangle ABC, and
the angles ABK, BCK, CAK be denoted by 61, 6z 03, re-
spectively; and the angles BAK, CBK, ACK by ¢1, ¢2, ¢s,
respectively; then cot 61 + cot 62 + cot 63 = cot ¢;1 + cot ¢2
+ cot ¢3 = 3 cot w. (TucxkEer.)

88. If Aj, By, C1 be the vertices of Broeard’s first triangle, the
lines BA1, AB; are divided proportionally by QQ'.

89. The middle point of AB, A;B;, QQ’ are collinear (SToLL.)

90. The triangle formed by the middle points of Aj, Bj, Cy,
is in perspective with ABC. (Zbid.)

91. If the Brocard circle of ABC intersect BC in the points

M, M’, the lines AM, AM’ are isogonal conjugates with respect
to the angle BAC.

92. If Q, Q' be the Brocard points of a harmonic polygon of

. . . W
nsides, QQ" = 2R sin w J (cos?w — sinw . tan® —).
7

93. If the polars of the points B, C, with respect to the Brocard
circle of the triangle ABC, intersect the side BC in the points
L, L/, respectively; the lines AL, AL’ are isogonal conjugates
with respect to the angle BAC.

94. The reciprocal of any triangle with respect to a circle,
whose centre is either of the Brocard points, is a similar triangle,
having the centre of reciprocation for one of its Brocard points.

956. If the angles which the sides AB, BC,CD ... KLofa
harmonic polygon subtend at any point of its circumcircle be
denoted by &, 8, ¥, . . . A, the perpendiculars from the Brocard
points on the sides are proportional respectively to the quantities,
sin A cosec A, sin o cosec B, sin 8 cosec C, . . . sin K cosec L,
and their reciprocals.

96. The triangle ABC, its reciprocal with respect to the Bro=
card circle, and the triangle pgr [Section 111., Prop. 2, Cor. 2],

are, two by two, in perspective, and have a common axis of per-
spective.
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97. If the sides AB, BC, CD, DE, &c., of a harmonic polygon
of any number of 31des, be d1v1ded proportlonally in the points
L', M', N', P, &c., the circumcircles of the # triangles I/ BM’,
M’CN' N’DP' ‘P EQ &c., have one point common to all, and
each of them bisects one of the symmedian chords of the polygon

98. The locus of the common point in Ex. 97, as the points L',
M, N', &c., vary, is the Brocard circle of the polygon.

99. If 0, &' be the Brocard points of a harmonic polygon of
any number of sides () ; then the products AQ . BQ.Ca . ...

=AQ".Ba".Ca"....=(R sec:—;sin w)™.

100. If ABCDEF be a harmonic hexagon; L, M, N, P, Q, R
points which divide proportionally the sides AB, BC, CD, &c.;
the circles through the pairs of points L, R; M, Q; N. P, and
through any common point on the Brocard cirele of the hexagon,
are coaxal.

101. If the lines AQ, BQ, CQ meet the opposite sides in A’,
B’, ¢, prove that

AABC | AA'BC = (@ + 52 (B2 + ) (¢ +a2) | (2 a?B2?).

102. A harmonic polygon of any number of sides can bé pro-
jected into a regular polygon of the same number of sides, and
the projection of the symmedian point of the former will be the
circumcentre of the latter.

103. The sum of the squares of the perpendiculars from the
symmedian point of a harmonic polygon on the sides of the poly-
gon is a minimum.

104. Similar isosceles triangles, BA’C, CB'A, AC'B, are de-
gcribed on the sides of a triangle ABC; then if ABC, and the
triangles whose sides are AB, BC’, CA’ and A'B, B'C, (A,
respectively, be denoted by F;, Fa, F3, the triangle of similitude
of Fy, Fo, F3is 00Q/, formed by the Brocard points and circum-
centre of ABC; and "their symmedian points are also their in-
variable points. (NEUBERG.)

105. If the coaxal system, consisting of the circumcircle of a
harmonic polygon of any number of sides, its Brocard circle, and
their radical axis, be inverted into a concentric system, the radii
of the three inverse circles are in GP.

- 106. If two pairs of opposite summits of a complete quadri-
lateral be isogonal conjugates with respect to a triangle, the re-
maining summits are isogonal conjugates.
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107. Prove a corresponding property for isotomic conjugates.

108. In fig., p. 207, prove that
OS: 0% : : cos (w— E) : CO8 (w+ E).
7 n

109. If AA’, BB, CC’ be fixed chords of a circle X, and
circles cutting X at equal angles be described through the points
A, A'; B, B'; C, (', respectively, the locus of their radical
centre is a right line. (M‘Cavy.)

110. Find the locus of a pointin the plane of a triangle, which
is such that the triangle formed by joining the feet of its perpen-
diculars may have a given Brocard angle.

111. If the extremities of the base of a triangle be given in
position, and also the symmedian passing through one of the
extremities, the locus of the vertex is a circle.

112. If through the extremities A, B; B, C; C, D, &ec., of
the sides of a harmonic polygon circles be described touching the
Brocard circle, the contacts being all of the same species, these
circles cut the circumcircle at equal angles, and are all tan-

gential to a circle coaxal with the Brocard circle and ecircum-
circle.

113. The radical axis of the circumcircle and cosine circles of

a harmonic quadrilateral passes through the symmedian point of
the quadrilateral.

114. If the Brocard angles of two harmonic polygons, A, B, be
complementary, and if the cosine circle of, A be the circumecircle
of B, the cosine circle of B is equal to the circumcircle of A.

116-117. In the same case, if the cosine circle of B coincide
with the circumcircle of A ; and #, %" be the numbers of sides of

the polygons; w, w' their Brocard angles; & the diameter of
their common Brocard circle ; then—

o T, T
1°, tan w = cos — = cos —.
»n n

2°, The Brocard points of A coincide with those of B.

T T T ™ ™
3°, &2 cos® — = R? cos (-— + —,) CcOS (— - -) .
n n n n

’

118. If through the vertices of a harmonic polygon of any
number of sides circles be described, cutting its circumecircle and
Brocard circle orthogonally, their points of intersection with the
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Brocard circle form the vertices of a harmonic polygon, and the
Brocard circle of the latter polygon is coaxal with the Brocard
circle and circumcircle of the former.

119. If the symmedian lines AK, BK, CK of a triangle meet
the sides BC, CA, AB in the points K, Kb, K., respectively, the
triangle ABC its reciprocal with respect to its circumcircle, and
the triangle KaKch, have a common axis of perspective.

120. If DE be the diameter of the circumecircle of ABC, which
bisects BC, and K, be the intersection of the symmedian AK
with BC, the line joining the middle point of BC to K meets the
lines EK,, DX, respectively, on the bisectors, internal and ex-
ternal, of the angle ABC.

121. If a heptagon circumscribed to a circle has for points of
contact the vertices of a harmonic heptagon, the seven hexagons
obtained by omitting in succession a side of the original poylgon
have a common Brianchon point.

122. Prove = sin A cos (A + w) = O.

123. If O be the circumcentre of a harmonic polygon of =
sides, I. one of the limiting points of the circumcircle and
Brocard circle; then if OL = R cot 6,

™
cos 20 = tan w tan .

124. If ABCD, &c., be a harmonic polygon, and if a circle
described thlough the pairs of points A, B; B, C; C, D, &ec.,
touch the radical axis of the 01rcumc1rcle and Brocard 01rcle, the
points of contact are in involution.

125. Any four given sides of a harmonic polygon meet any of
the remaining sides in four points, whose anharmonic ratio is
constant.

126. The quadrilateral formed by any four sides of a harmonic
polygon is such, that the angles subtended at either of the
Brocard points, bv opposite sides, are supplemental.

127. The reciprocals of two co-symmedian triangles, with re-
spect to their common symmedian point, are equiangular.

128. The reciprocals of two co-symmedian triangles, with re-
spect to either of their common Brocard points, are two co-
symmedian triangles.

129. The reciprocal of a harmonic polygon, with respect to
either of its Brocard points, is a harmonic polygon, having the
centre of reciprocation for one of its Brocard points.

S
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130. If two circles, W, W’, coaxal with the circumcircle and
Brocard circle of a harmonic polygon, be inverse to each other,
with respect to the circumcircle; then the inverses of the circum-
circle- and the circle W, with respect to any point in the circum-
ference of W’, are respectively the circumecircle and Brocard circle
of another harmonic polygon whose vertices are the inverses of
the vertices of the former polygon.

131. If R’ be the radius of the cosine circle of a harmonic
polygon of 7 sides; A, 8, the diameters of its Lemoine circle and
Brocard circle, respectively ; then

™
7

132. If the vertices of a harmonic polygon of # sides be in-
verted from any arbitrary point into the vertices of another har-
monic polygon, the inverses of the centres of inversion of the
former will be the centres of inversion of the latter.

133. The mean centre of the vertices of a cyclic quadrilateral
is a point in the circumference of the nine-point circle of the
harmonic triangle of the quadrilateral. (RusseLL.)

134. Prove that in the plane of any triangle there exist two

points whose pedal triangles with respect to the given triangle
are equilaterals.

135. Prove that the loci of the centres of the circumecircles of
the figures Fq, F'3, Ex. 13, page 222, are circles.

136. If A’, B’, C’ be the points where Malfatti’s circles touch
each other, prove that the triangles ABC, A’B’C’ are in perspec-
tive.

137. Prove the following construction for Steiner’s point R
(Ex. 80). With the vertices A, B, C of the triangle as centres, and
with radii equal to the opposite sides, respectively, describe
circles. These, it is easy to see, will intersect, two by two,
on the circumcircle in points A;, By, C;. Then the line joining the
intersection of BC and B;C; to A, will meet the semicircle in the
point required.

138-140. If the perpendiculars of the triangle ABC, produced
if necessary, meet the circles of Ex. 137 in the points A’y B’, C’,
prove—

1°. Areaof A A'B'C’' =4 cot w . A ABC.
2°, Sum of squares of A'B’, B'C’, C'A’
=8 A ABC (2 cot w — 3).
3°. If o’ be the Brocard angle of A'B’C’,
cot w’ = (2cot w = 3) /| (2 — cot w). (NEUBERG.)
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141-144. In the same case, if the perpendiculars produced
through the vertices meet the circles again in A", B", C", prove
that—

1°. AA'B'C' + AA”"B”C"” =8 AABC.
2°. Sum of squares of sides of A'B'C’, A”"B"C"
= 32ABC cot w.
3°. Sum of the cotangents of their Brocard angles
=2 cot w [ (4 — cot?w). (Ibid.)

145. Prove that the circle in Ex. 60 is coaxal with the nine-
point circle and the Brocard circle.

Loneouamps’ CircLe, 146-158.—The circle which cuts ore
thogonally the three circles of Ex. 137 has been studied by M.
LoNceouAMPS, in a paper in the Journal de Mathematiques Spe-
ciales for 1866. The properties which he proves both of a special
nature, and also in connexion with recent geometry, are so in-
teresting that we think it right to give some account of them
here. The demonstrations are in all cases very simple, and
form an excellent exercise for the student. We shall denote
Longchamps’ circle by the letter L, and the radical axis of it and
the circumcircle by A. It will be easily seen that the circle is
real only in the case of obtuse-angled triangles.

146. The centre of L is the symmetrique of the orthocentre of
ABC, with respect to its circumcentre.

147. The radius of Lis equal to the diameter of the polar
circle of ABC.

148. The circle Lis orthogonal to the circles whose centres are
the middle points of the sides of ABC, and whose radii are the
corresponding medians.

149. If I, I' be two isotomic points on any side BC of the
triangle, the circle whose centre is I and radius AI’ belongs to a
coaxal system.

150. The line A is the polar of the centroid of the triangle
ABC with respect to L.

151. A is the isotomic conjugate of the Lemoine line of the
triangle ABC, with respect to itssides.

152. A is parallel to the line which joins the isotomic conju-
gates of the Brocard points of ABC.

153. The trilinear pole of A, with respect to the triangle ABC,
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is one of the centres of perspective of ABC, and its first Brocard
triangle.

154. L intersects the circumcircle in isotomic points, with
respect to the triangle.

155. The circle described with the orthocentre as centre, and
radius equal to the diameter of the circumcircle, is coaxal with L
and the circumecircle.

156. The ecircle, L, the circumcircle, and the circumcircle of
the triangle A”B”C", formed by drawing through the vertices
of ABC parallels to its sides, are coaxal.

157. The centroid of ABC is one of the centres of similitude
of L and the polar circle.

158. The radical axis of the circumcircle and polar circle of
ABC is parallel to A, and the centroid of ABC divides the distance

between them in the 2 : 1.
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ADJOINT points, 193.

Anharmonic Section, 126.

ratio, 127.
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Antiparallel, 169.

Artzt, 191.

Associated figures, 221,

Aubel E. Van, theorem by, 215.

Axis of perspective, 77.

— radical of two circles, 43.

— of similitude of three circles, 84.

— of three figures directly similar,
185.

—— of similitude
figures, 222,

—

——

of associated

Brianchon, theorem by, 147.
Brocard, theorems by, 191, 195.
Brocard’s circle of a triangle, 190.
circle of a harmonic poly-
gon, 199.
angle of a triangle, 172.
- angle of a harmonic poly-
gon, 203.
angle of Tarry’s polygon,

222,

- points of a triangle, 177.
points of a harmonic poly-
gon, 205.

222,
—— - first triangle, 191
——-—— second triangle, 192.

first quadrilateral, 209.
——-—— second quadrilateral, 209.

points of Tarry’s polygon,

Carnot, theorem by, 160.

Centre of perspective, 77.

——— of inversion, 41.

——— of inversion of harmonic poly-
gon, 219.

——— of involution, 133.

——— of mean position, 12.

——— of reciprocation, 144.

——— radical, of three circles, 43.

——— of similitude of two circles, 82.

of two figures directly similar,.

175.
Chasles, preface, 133.
Circle of inversion, 41, 96.
—— of similitude of two circles,.

86.

of similitude of three figures.

directly similar, 189.
— of similitude of associated

figures, 224.

——— cutting another circle ortho-
gonally, 42.

nine-points, 58, 104, 105, 199.

touching three given circles,
121, 123, 139.

——— Brocard’s, 194, 205.

——— the cosine, 183, 216.

——— Lemoine’s, 179, 216.

——— Longchamps’ 247.

——=— Tucker’s system of, 179.

——— Taylor’s, 184.

——— Neuberg’s, 231.

——— M‘Cay’s, 237.

——— four mutually orthogonal, 110~

coaxal, 43, 113.
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Clebsch, 77.

‘Collinear points, 3.
Complete quadrilateral, 3.
Concurrent lines, 3.
Conjugate points, 45.
-—————lines, 75.
Co-symmedian figures, 199.

Dewulf, theorem by, 240.

Director point, 192.

Double points of two figures directly
similar, 175.

of a harmonicpolygon,
2035.
of a pencil in involu-
tion, 134.
—— of a system in involu-
tion, 133.

homographic

_——————0of a

system, 136.

Envelope of a movable line or circle
defined, 120.

Escribed circles, 55.

——— square, 1I.

Feuerbach’s theorem, 58, 104, 103,
201,

‘Graham, theorems by, 160.

Harmonic conjugates, 87, go.

————— mean, 88.
—————pencil, go.
= ——— polygon, 109.

quadrilateral, 200.
~————— section, 87.
— system of points on a
circle, 92.
————triangle of quadrilateral,
94.
Hamilton, theorem by, 163.
Hart, theorems by, 106, 155.
Hexagon, Brianchon’s, 147,
————— Lemoine’s, 180.
- Pascal’s, 129.
Homographic division, 136,
Homothetic figures, 173.
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Ingram, o5.
Invariable points of three figures,

187.

- ofa harmonic poly-

gon, 205.
- of associated fi-

gures, 222.
Invariable triangle, 187.
Inverse points defined, 95.
of a curve, o5.
Inversion defined, 49, 51.
Involution, pencil in, 134.
points in, 133.
Isogonal conjugates with respect to
an angle, 165.
points with respect to a
triangle, 167.
Isotomic conjugates with respect to
a side of a triangle, 168.
points with respect to a
. triangle, 169.

Lemoine, 180, 181, 182, 187, 211, 212,
Locus, 5.
Longchamps, theorems by, 247.

Malfatti’s problem, 154.

Mathesis, 183, 205, 206.

Maximum and minimum defined, 13.

M¢‘Cay, theorems by, 112, 158, 162,
195, 206, 211, 239, 240, 244.

Miquel’s theorem, 151.

Multiples, system of, 13.

Neuberg, theorems by, 189, 207, 209,
217, 219, 246, 247.

Newton, method of describing a
circle touching three given circles,
123.

Points, the adjoint points of similar
figures, 193.

——— the Brocard points of a
triangle, 177.

the Brocard points of a har-

monic polygon, 205.

the invariable points of three

figures directly similar, 191.

the director points, 192.
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Points, the limiting points of a coaxal
system, 43, 115.

——— the symmedian point of a tri-
angle, 170.

——— the symmedian point of a
harmonic polygon, 199.

Pole and polar defined, 44.

Polygon, harmonic, 199.

———— Tarry's, 222.

Poncelet, 77.

Poncelet’s theorem, 125.

Ptolemy’s theorem, extension of,
104.

Radical axis, 43.

—-—— centre, 43.
Radius of inversion, 41, 96.
Rays, pencil of, 127.
Reciprocation, 142, 143.
Russell, 246.

Salmon, preface, 46, 77, 211.
Similitude, axis of, 84.
————— centre of, 82.
~————— circle of, 86, 18s.
———— triangle of, 18s.
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Simmons, 223.

Simson, 164, 185.

Species, triangle given in, 37.
quadrilateral given in, 81.

Steiner, theorem by, 103, 155, 164,

167.

Stoll, theorem by, 217.

Stubbs, 95.

Symmedian lines of a triangle, 170.

—————- point of a triangle, 170.

lines of harmonic poly-

gon, 199.
—————- points of harmonic poly-
gons, 199.

Tarry, theorem by, 189, 213, 221.
Taylor, theorem by, 184, 185, 186,
187, 188.
Triangle, given in species, 37.
———— self-conjugated, 93.
———— of similitude, 185.
Townsend, preface, 77, 125, 133, 1€8.
Tucker, theorems by, 206, 212, 216,
217.

‘Weill, theorems by, 164.

THE END.
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